直流直流变换器优秀课件
合集下载
电力电子技术第五章直流-直流变流电路PPT课件

(5-37) O
i
t
o
当tx<t0ff时,电路为电流断续工作状态, tx<t0ff是电流断续的条件,即
m
1 e 1 e
(5-38)
i
i
1
2
I
20
O
t
tt
t
t
on
1
x
2
t
off
T
c)
图5-3 用于直流电动机回馈能 量的升压斩波电路及其波形
c)电流断续时
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
◆斩波电路有三种控制方式
☞脉冲宽度调制(PWM):T不变,改变ton。 ☞频率调制:ton不变,改变T。 ☞混合型:ton和T都可调,改变占空比
5/44
5.1.1 降压斩波电路
■对降压斩波电路进行解析
◆基于分时段线性电路这一思想,按V处于通态和处于断态两个过程 来分析,初始条件分电流连续和断续。
◆电流连续时得出
3/44
5.1.1 降压斩波电路
■降压斩波电路(Buck Chopper)
◆电路分析
☞使用一个全控型器件V,若采用晶闸
管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD,在V关断时
给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也
可拖动直流电动机或带蓄电池负载等。
◆工作原理
☞ t=0时刻驱动V导通,电源E向负载
☞输出电流的平均值Io为
EI1 U o I o
Io
Uo R
1
E R
(5-24) (5-25)
☞电源电流I1为
I1
Uo E
Io
第2章-基本DC-DC变换器 ppt课件

c)
DC-DC电压变换原理电 路及输入、输出波形
图3-1a为基本的DC-DC电压变换原 理电路,从图中可以看出:输入电压 源Ui通过开关管VT与负载RL相串联, 当开VT关管RVL TI导O 通时,输出电压等于输 入电压,Uo=Ui;而当开关管VT关断 时,b) 输出电压等于零,Uo=0。得到的 基本电压变换电路的输出电压波形如 图3-1c所示。
图3-1b为基本的DC-DC电流变换原理电 路,从图中可以看出:输入电流源Ii通过 开关管VT与负载RL相并联,当开关管 VT关断时,输出电流等于输入电流,即 Io=Ii;而当开关管VT导通时,输出电流 等于零,即Io=0。基本电流变换电路的 输出电流波形如图3-1d所示。
显然,若令输出电流的平均值为Io,则 Io≤Ii 。可见,图3-1b所示的电流变换电路 实现了降流型DC-DC变换器(buck电流 变换器)的基本变换功能
uo ii
RL
VD
L
VT
C
d)
L
io ui
RL
VT
VD
+
C uo ii
RL
c)
ppt课件
24
2.1.2 boost型 DC-DC变换器的基本结构
以上讨论了buck型 变换器的构建,那 么如何实现升压型 (boost)的电压变 换和升流型(boost
)的电流变换呢?
若考虑变换器输入、输出能量的不变性 (忽略电路及元件的损耗),则buck型电 压变换器在完成降压变换的同时也完成了 升流(boost)变换。同理buck型电流变换 器在完成降流变换的同时也完成了升压( boost)变换。
结构较为完善的
buck型电压斩波器
L
VD LL
《直流变换电路》课件

减小电磁干扰的措施
布局优化
合理安排电路元件的布局,减小 信号线长度,降低电磁干扰。
滤波电容的使用
在关键部位增加滤波电容,吸收高 频噪声和干扰。
接地措施
采用多点接地,降低地线电感和阻 抗,减少电磁干扰。
06
直流变换电路的应 用实例
电动车用直流变换电路
01
电动车用直流变换电路概述
电动车用直流变换电路是用于将直流电源转换为电动车所需电压的电路
将直流电能转换为交流电能,用于电 力机车、地铁等交通工具的牵引。
将交流电转换为电池所需的直流电。
02
直流变换电路的工 作原理
电压型直流变换电路
总结词
通过控制开关管通断,将输入直流电压变换成输出直流电 压的电路。
电路特点
输出电压稳定,负载调整性能好,适用于输出电压要求较 高的场合。
详细描述
电压型直流变换电路采用电感作为储能元件,通过控制开 关管的通断,实现输入直流电压的斩波或调压,从而得到 所需的输出直流电压。
THANKS
感谢您的观看
光伏逆变器用直流变换电路的特点
光伏逆变器用直流变换电路具有高效率、高可靠性、低噪声等特点,能够有效地提高太阳 能利用率和系统的稳定性。
不间断电源用直流变换电路
不间断电源用直流变换电路概述
不间断电源用直流变换电路是用于在停电或电源故障时提供不间断电源的电路。它通常包括输入滤波器、整流器、直 流变换器和逆变器等部分。
优点
结构简单,易于实现,对输 出电压的调节快速且准确。
缺点
对输入电压和负载变化的抑 制能力有限,可能存在较大 的电压调整率。
电流模式控制
总结词
详细描述
优点
缺点
双向直流变换器建模ppt课件

① Buck 方向时, K2断开,电源V1提供负载R2能量:
VBuck V1 d
I Buck
V1 R2
d
② Boost 方向时,K1断开,电源V2提供负载R1能量:
VBoost V1 d
I Boost
V1 R1 D 2
d
③ 稳态时,电压之间的关系满足下式:V1 :V2 1: D
34
3 双向 Buck-Boost 变换器的小信号模型
1 iL
0
uc
27
2、 Boost 方向小信号模型的建立
(2)dTs ≤ t ≤ Ts(时间段记为dTs),状态空间 方程:
•
iL
0
• uc
1 C1
1 L
1 R1C1
iL uc
1 L 0
v2
v1
i2
0 1
1 iL
0
uc
28
2、 Boost 方向小信号模型的建立
L
iL
+
D1
+
V1
Q2
D2
V2
-
-
图1 双向Buck-Boost DC/DC变换器
3
1、 Buck 方向小信号模型的建立
1.1 列出状态方程
Buck 方向时电路结构如图2所示,忽略电感、
电容的寄生电路,开关管、二极管均假定为理想器
件。
i1
+
Q1
L
iL
+
V1
D2
C2 R2
V2
-
-
图2 Buck 方向在连续状态下的等效电路
基本建模法
建模方法
状态空间平均法 开关元件平均模型法 开关网络平均模型法
电力电子技术课件 10 DC-DC变换器

狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 我国工频频率是50Hz,所以纹波电压以工频50Hz或50Hz的整数倍计取。 具体取50Hz还是50Hz的倍数,取决于整流电路的类型。对于半波整流, 取50Hz;对于全波整流,取50Hz的2倍即100Hz;对于三相半波整流, 取50Hz的3倍即150Hz;对于三相全波整流,取50Hz的6倍即300Hz。 对于日本、美国等国家,使用60Hz工频,计取方式只需把上述的50改为 60即可。 纹波电压通常用有效值或峰值表示。
其中β为变压比的倒数。
4.1.3 Buck-Boost变换器
概述:
升降压变换电路(又称Buck-boost电路)的输出电 压平均值可以大于或小于输入直流电压,输出电压与输 入电压极性相反,其电路原理图如图所示。 它主要用于要求输出与输入电压反相,其值可大于或 小于输入电压的直流稳压电源。
4.1
直流变换电路的工作原理
工作原理:图中 T是可控开关, R 为纯阻性负载。在时间 内当开关T接通时,电流经负载电阻R流过, R两端就有 电压;在时间内开关T断开时, R中电流为零,电压也变 为零。
电路中开关的占空比
D
ton TS
TS为开关T的工作周期,ton为导通时间。 由波形图可得到输出电压平均值为
U dTS D(1 D) 2L
即电感电流临界连续时的负载电流平均值为 :
I OB
U d TS D(1 D) 2 LO
式中IOB为电感电流临界连续时的负载电流平均值。
总结:临界负载电流 IOB与输入电压Ud、电感L、开关频率f以及开关管 T的占空比D都有关。 当实际负载电流Io> IOB时,电感电流连续; 当实际负载电流Io = IOB时,电感电流处于连续(有断流临界点);
其中β为变压比的倒数。
4.1.3 Buck-Boost变换器
概述:
升降压变换电路(又称Buck-boost电路)的输出电 压平均值可以大于或小于输入直流电压,输出电压与输 入电压极性相反,其电路原理图如图所示。 它主要用于要求输出与输入电压反相,其值可大于或 小于输入电压的直流稳压电源。
4.1
直流变换电路的工作原理
工作原理:图中 T是可控开关, R 为纯阻性负载。在时间 内当开关T接通时,电流经负载电阻R流过, R两端就有 电压;在时间内开关T断开时, R中电流为零,电压也变 为零。
电路中开关的占空比
D
ton TS
TS为开关T的工作周期,ton为导通时间。 由波形图可得到输出电压平均值为
U dTS D(1 D) 2L
即电感电流临界连续时的负载电流平均值为 :
I OB
U d TS D(1 D) 2 LO
式中IOB为电感电流临界连续时的负载电流平均值。
总结:临界负载电流 IOB与输入电压Ud、电感L、开关频率f以及开关管 T的占空比D都有关。 当实际负载电流Io> IOB时,电感电流连续; 当实际负载电流Io = IOB时,电感电流处于连续(有断流临界点);
《DCDC变换器》课件

提高电源系统的稳定性和 可靠性
降低电源系统的成本和维 护费用
提高电源系统的效率和性 能
提高电源系统的灵活性和 适应性
卫星电源系统:为 卫星提供稳定的电 源
航天器电源系统: 为航天器提供稳定 的电源
航空电子设备:为 航空电子设备提供 稳定的电源
导弹武器系统:为 导弹武器系统提供 稳定的电源
用于控制系统的电源供应 电机驱动和控制 传感器信号处理 工厂自动化设备的能源管理
数字化控制技术在DCDC变 换器中的应用
数字化控制技术的发展趋 势和挑战
软开关技术的概念:通过控制开关的导通和关断时间,实现开关的软切换,降低开关损耗。 软开关技术的分类:包括零电压开关(ZVS)、零电流开关(ZCS)和零电压零电流开关 (ZVZCS)。
软开关技术的应用:在DCDC变换器中,软开关技术可以提高变换器的效率和稳定性。
DCDC变换器广泛应用于各种 电子设备和电源系统中
它具有效率高、体积小、重 量轻等优点
实现直流电压的转换
为负载提供稳定的直流电压
添加标题
添加标题
用于分布式电源系统
添加标题
添加标题
提高电源利用效率和可靠性
按工作原理分类: 升压型、降压型 和升降压型
按输入输出电压 关系分类:隔离 式和非隔离式
按控制方式分类: 脉宽调制(PWM) 和脉冲频率调制 (PFM)
DCDC变换器的技 术发展
提高转换 效率:采 用新型拓 扑结构、 控制策略 等
降低损耗: 优化电路 设计、材 料选择等
提高稳定 性:采用 先进的控 制算法、 保护措施 等
提高可靠 性:采用 冗余设计、 故障诊断 等
提高集成 度:采用 模块化设 计、集成 电路等
《DCDC变换器》PPT课件

可控硅用于过压保护
• Dz稳压管、D1可控硅、R3偏置电阻
光耦过压保护框图(结合芯片)
参考电压
输出电压
UC3842 相应引脚
三极管
光耦
稳压管
MAX6495/6499/6397/6398
• 专用集成芯片控制MOS的门极
过流保护
• 限流型过流保护 • 减流型过流保护 • 节流型过流保护
– 传统的熔断保险丝/玻璃管 – 自恢复保险丝PPTC – PTC/NTC热敏电阻
引脚功能
• Pin4——定时端,内部振荡器的工作频率由外接的阻容时间常数确定 • Pin8——5V基准电压输出端,具有50mA的负载能力
3842会关闭的情况
• Pin7电压过高或过低 • Pin1误差放大器输出电压低至1V以下 • Pin3脚电压高至1V以上
工作频率
f 1.72 RT CT
图腾驱动
• 多用于驱动MOS和IGBT • 提升电流提供能力,迅速完成对门极电荷的充电过程,利用两个管子交替导
通评分电流I,用以驱动更大的MOS或IGBT
MOS管的其他驱动
• IR2110等专用驱动芯片
PWM
驱动芯片
MOS/IGBT
UC3842典型电路图
UC3842典型电路图
类似型号的开关电源控制器
引脚功能
• Pin1——误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和 频率特性
• Pin2——反馈电压输入端,与误差放大器同相端的2.5V基准电压比较,产生 误差电压,从而控制脉宽
• Pin3——电压检测输入端,当检测电压超过1V时,缩小脉宽使电源处于间歇 工作状态
• Pin6——推挽输出端,内部为图腾柱式驱动,上升下降时间仅5型DC-DC控制器UC3842
哈工大现代电力电子技术课件1-DC-DC

iL iO
R
L
Ui
D
C
Uo
S 导通
Ui
C
R
Uo
L
iL 0
电感电流: 连续 (CCM-Continuous Current Mode) 临界 断续(DCM-Discontiuous Current Mode) 电压纹波、谐波、内阻 ……
S 阻断
iL 0
C
R
Uo
C
R
Uo
1 电流的不同状态 ★ 电流连续状态: 稳定状态下:
iS ii
S
L
iL iO
R
★ 电流断续状态:
uL
(1-D)T
D对UO的调节规律?
Io I L
t
Ui
D
C
Uo
Ui -UO DT -UO
∆1T ∆2T
Uo D U i D 1 D D I o / 4 I LCM D D2 2 D I o / 4 I LCM
1
Uo 1T ( D 1 ) 2L U iT D 1 2L TU i I LCM 4 I LCM D 1
t
IL
iL ILm uo
I LM
1 (1 D )T U I L 0 uLdt o (1 D)T L L
(1 D )T 2 U o Uo 8 LC
Q
IO
T/2
UO
UO
fC
1 f S 2 LC
2 2
放电
充电
放电
充电
fC U o (1 D) Uo 2 fS
uC
L1 iO D C1 R UO
D C S Ui iS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在开关模式的直流电源系统中,输出电压纹波的百分 比通常小于1%,因此,在前面的分析中假定uo= Uo是 不会影响分析结果的。
4.4 升压变换器
图4-11 升压变换器电路原理图
升压变换器也称为Boost变换器。正如名字所指的,升 压变换器的输出电压总是高于输入电压。图4-11是升 压变换器的电路图。
Boost Converter) 4. 丘克直流-直流变换器 5. 全 桥 式 直 流 - 直 流 变 换 器 (Full Bridge
Converter)
4.2 直流-直流变换器的控制
基本的直流-直流变换器和它的输出波形
开关管导通时,输出电压等于输入电压Ud;开关管断 开时,输出电压等于0。输出电压波形如上图所示,输
2.开关管导通时间ton保持不变,改变开关周期Ts。 3. 改变开关管导通时间ton,同时也改变开关周期Ts。
方式1的PWM是最常见的调制方式,这主要是因为后2 ,显然,方式1有较好的滤波效果。
图4-2(a)是脉宽调制方式的控制原理图。给定电压与实 际输出电压经误差放大器得到误差控制信号uco,该信 号与锯齿波信号比较得到开关控制信号,控制开关管 的导通和关断,得到期望的输出电压。图4-2(b)给出了 脉宽调制的波形。锯齿波的频率决定了变换器的开关
出电压的平均U o 值 UT 1 so为0 toU nd d ttT o s0 n d ttT o sU nd D U d
(4-1)
式中 Ts—开关周期 D t on
D—开关占空比,
Ts
改变负载端输出电压有3种调制方法:
1.开关周期Ts保持不变,改变开关管导通时间ton。也称 为脉宽调制(PWM)。
由式(4-6)有,输入电流平均值Id与输出电流Io是变比的 关系,但当开关管断开时,瞬时输入电流从峰值跳变 到0,这样对输入电源会有较大的谐波存在,因此,在 输入端加入一个适当的滤波器用来消除不必要的电流 谐波。
4.3.4 输出电压纹波
在前面的分析中,假设输出电容足够大从而使uo=Uo。 然而,实际上,输出电容值是有限的,因此输出电压 是有纹波的。在电流连续模式下的输出电压的波形如 图4-10所示。
设输出端的滤波电容足够大,则输出电压的瞬时值不变, 即uo=Uo。在稳态情况下,因为电容电流平均值为0,所 以电感电流平均值等于输出电流平均值Io。
4.3.1 电流连续模式时的工作情况
在开关管导通期间ton,输入电源经电感流过电流,二 极管反偏。这导致在电感端有一个正向电压uL=Ud-Uo, 如图4-5(a)所示。这个电压引起电感电流iL的线性增加; 当开关管关断时,由于电感中储存电能,产生感应电 势,使二极管导通,iL经二极管继续流动,uL= -Uo, 电感电流下降,如图4-5(b)所示。
电压纹波的峰-峰值△Uo为:
U U oo8 1Ts2(L 1C D)22(1D)ffc s2
(4-24)
式使在(f电c4<-流<2f4s连),表续就明模可:式以通时抑过,制选电输择压出输脉电出动压端与的低输纹通出波滤负。波载当器功变的率换角无器频关工率作。fc, 对电流断续模式的情况也可做类似的分析。
4.3 降压变换器
降压变换器也称为Buck变换器,正如名字所定义的, 降压变换器的输出电压Uo低于输入电压Ud。
在实际应用中,有如下问题: 1.实际的负载应该是感性的。即使是阻性负载,也总有
线路电感,电感电流不能突变,因此,图4-1的电路可 能由于电感上的感应电压毁坏开关管。采用图4-3的电 路,则电感中储存的电能可以通过二极管续流释放给 负载; 2.在大多数应用中需要的是平稳的直流电压。而图4-1 的电路输出电压在0和Ud间变化。采用由电感和电容组 成的低通滤波器可以得到平稳的输出电压。
当开关管导通时,输入电源的电流流过电感和开关管, 二极管反向偏置,输出与输入隔离。当开关管断开时, 电感的感应电势使二极管导通,电感电流iL通过二极管 和负载构成回路,由输入电源向负载提供能量。在下 面的稳态分析中,输出端的滤波电容器被假定为足够 大以确保输出电压保持恒定,即uo= Uo。
图4-3 降压变换器电路原理图
图(a)所示的输入电压Uoi的波形,可以分解成直流分 量Uo、具有开关频率fs的谐波分量,如图(b)所示。
采用由电感和电容组成的低通滤波器的特性如图(c)所示。 低通滤波器的角频率fc应大大低于开关频率fs,经过滤波 器后的输出电压基本上消除了开关频率造成的纹波。假
输出电压
Uo ton D Ud Ts
(4-5)
因此,在电流连续模式中,当输入电压不变时,输出
电压Uo随占空比而线性改变,而与电路其他参数无关。
忽略电路所有元件的能量损耗,则
因此 故有
UdId UoIo
Io Ud 1 Id Uo D
Pd Po (4-6)
因此,在电流连续模式下,降压变换器相当于一个直流 变压器,通过控制开关的占空比,可以得到要求的直 流电压。
频率。一般选择开关频率在几千赫兹到几百千赫之间。
按照控制电压和锯齿波幅值的关系,开关占空比D可以 表示成:
D
to n Ts
uco Uˆst
(4-2)
直流-直流变换器有两种不同的工作模式: 1. 电感电流连续模式
2. 电感电流断续模式
在不同的情况下,变换器可能工作在不同的模式。因 此,设计变换器和它的控制器参数时,应该考虑这两 种不同的工作模式的特性。
直流直流变换器优 秀课件
主要内容:
降压变换器、升压变换器、降压-升压变换器的 拓扑结构、工作原理、在电流连续和断续模式 下的各物理量之间的函数关系;
全桥式直流-直流变换器在单极性和双极性控制 方式时的工作原理;
影响直流-直流变换器输出电压纹波的因素; 几种不同变换器的开关利用率。
4.1 简 介
直流-直流变换器也称为斩波器,通过对电力电子 器件的通断控制,将直流电压断续地加到负载 上,通过改变占空比改变输出电压平均值。
直流-直流变换器主要有如下几种基本型式: 1. 降压直流-直流变换器(Buck Converter) 2. 升压直流-直流变换器(Boost Converter) 3. 降压-升压复合型直流-直流变换器(Buck-
4.4 升压变换器
图4-11 升压变换器电路原理图
升压变换器也称为Boost变换器。正如名字所指的,升 压变换器的输出电压总是高于输入电压。图4-11是升 压变换器的电路图。
Boost Converter) 4. 丘克直流-直流变换器 5. 全 桥 式 直 流 - 直 流 变 换 器 (Full Bridge
Converter)
4.2 直流-直流变换器的控制
基本的直流-直流变换器和它的输出波形
开关管导通时,输出电压等于输入电压Ud;开关管断 开时,输出电压等于0。输出电压波形如上图所示,输
2.开关管导通时间ton保持不变,改变开关周期Ts。 3. 改变开关管导通时间ton,同时也改变开关周期Ts。
方式1的PWM是最常见的调制方式,这主要是因为后2 ,显然,方式1有较好的滤波效果。
图4-2(a)是脉宽调制方式的控制原理图。给定电压与实 际输出电压经误差放大器得到误差控制信号uco,该信 号与锯齿波信号比较得到开关控制信号,控制开关管 的导通和关断,得到期望的输出电压。图4-2(b)给出了 脉宽调制的波形。锯齿波的频率决定了变换器的开关
出电压的平均U o 值 UT 1 so为0 toU nd d ttT o s0 n d ttT o sU nd D U d
(4-1)
式中 Ts—开关周期 D t on
D—开关占空比,
Ts
改变负载端输出电压有3种调制方法:
1.开关周期Ts保持不变,改变开关管导通时间ton。也称 为脉宽调制(PWM)。
由式(4-6)有,输入电流平均值Id与输出电流Io是变比的 关系,但当开关管断开时,瞬时输入电流从峰值跳变 到0,这样对输入电源会有较大的谐波存在,因此,在 输入端加入一个适当的滤波器用来消除不必要的电流 谐波。
4.3.4 输出电压纹波
在前面的分析中,假设输出电容足够大从而使uo=Uo。 然而,实际上,输出电容值是有限的,因此输出电压 是有纹波的。在电流连续模式下的输出电压的波形如 图4-10所示。
设输出端的滤波电容足够大,则输出电压的瞬时值不变, 即uo=Uo。在稳态情况下,因为电容电流平均值为0,所 以电感电流平均值等于输出电流平均值Io。
4.3.1 电流连续模式时的工作情况
在开关管导通期间ton,输入电源经电感流过电流,二 极管反偏。这导致在电感端有一个正向电压uL=Ud-Uo, 如图4-5(a)所示。这个电压引起电感电流iL的线性增加; 当开关管关断时,由于电感中储存电能,产生感应电 势,使二极管导通,iL经二极管继续流动,uL= -Uo, 电感电流下降,如图4-5(b)所示。
电压纹波的峰-峰值△Uo为:
U U oo8 1Ts2(L 1C D)22(1D)ffc s2
(4-24)
式使在(f电c4<-流<2f4s连),表续就明模可:式以通时抑过,制选电输择压出输脉电出动压端与的低输纹通出波滤负。波载当器功变的率换角无器频关工率作。fc, 对电流断续模式的情况也可做类似的分析。
4.3 降压变换器
降压变换器也称为Buck变换器,正如名字所定义的, 降压变换器的输出电压Uo低于输入电压Ud。
在实际应用中,有如下问题: 1.实际的负载应该是感性的。即使是阻性负载,也总有
线路电感,电感电流不能突变,因此,图4-1的电路可 能由于电感上的感应电压毁坏开关管。采用图4-3的电 路,则电感中储存的电能可以通过二极管续流释放给 负载; 2.在大多数应用中需要的是平稳的直流电压。而图4-1 的电路输出电压在0和Ud间变化。采用由电感和电容组 成的低通滤波器可以得到平稳的输出电压。
当开关管导通时,输入电源的电流流过电感和开关管, 二极管反向偏置,输出与输入隔离。当开关管断开时, 电感的感应电势使二极管导通,电感电流iL通过二极管 和负载构成回路,由输入电源向负载提供能量。在下 面的稳态分析中,输出端的滤波电容器被假定为足够 大以确保输出电压保持恒定,即uo= Uo。
图4-3 降压变换器电路原理图
图(a)所示的输入电压Uoi的波形,可以分解成直流分 量Uo、具有开关频率fs的谐波分量,如图(b)所示。
采用由电感和电容组成的低通滤波器的特性如图(c)所示。 低通滤波器的角频率fc应大大低于开关频率fs,经过滤波 器后的输出电压基本上消除了开关频率造成的纹波。假
输出电压
Uo ton D Ud Ts
(4-5)
因此,在电流连续模式中,当输入电压不变时,输出
电压Uo随占空比而线性改变,而与电路其他参数无关。
忽略电路所有元件的能量损耗,则
因此 故有
UdId UoIo
Io Ud 1 Id Uo D
Pd Po (4-6)
因此,在电流连续模式下,降压变换器相当于一个直流 变压器,通过控制开关的占空比,可以得到要求的直 流电压。
频率。一般选择开关频率在几千赫兹到几百千赫之间。
按照控制电压和锯齿波幅值的关系,开关占空比D可以 表示成:
D
to n Ts
uco Uˆst
(4-2)
直流-直流变换器有两种不同的工作模式: 1. 电感电流连续模式
2. 电感电流断续模式
在不同的情况下,变换器可能工作在不同的模式。因 此,设计变换器和它的控制器参数时,应该考虑这两 种不同的工作模式的特性。
直流直流变换器优 秀课件
主要内容:
降压变换器、升压变换器、降压-升压变换器的 拓扑结构、工作原理、在电流连续和断续模式 下的各物理量之间的函数关系;
全桥式直流-直流变换器在单极性和双极性控制 方式时的工作原理;
影响直流-直流变换器输出电压纹波的因素; 几种不同变换器的开关利用率。
4.1 简 介
直流-直流变换器也称为斩波器,通过对电力电子 器件的通断控制,将直流电压断续地加到负载 上,通过改变占空比改变输出电压平均值。
直流-直流变换器主要有如下几种基本型式: 1. 降压直流-直流变换器(Buck Converter) 2. 升压直流-直流变换器(Boost Converter) 3. 降压-升压复合型直流-直流变换器(Buck-