半导体工艺之光刻 刻蚀
半导体工艺lp-概述说明以及解释

半导体工艺lp-概述说明以及解释1.引言1.1 概述半导体工艺(LP)是指在半导体制造过程中使用的一种工艺流程,旨在将半导体材料转化为各种电子器件,例如集成电路(IC)和二极管等。
随着人们对电子产品需求的不断增长,半导体工艺也在不断发展和完善。
半导体工艺(LP)的核心目标是控制半导体材料的结构和性质,以确保电子器件的可靠性和性能优良。
半导体材料通常是由硅(Si)等元素构成的,它们具有半导体特性,可以在一定条件下对电流进行控制。
因此,半导体工艺的关键在于如何通过不同的工艺步骤来精确地控制半导体材料的特性。
半导体工艺(LP)主要包括以下几个方面。
首先是半导体基片的准备,通过将硅片切割成适当的大小和形状,以便后续的工艺步骤。
接下来是半导体材料的清洗和化学处理,以去除表面的不纯物质,并改善材料的质量。
然后是沉积一层绝缘膜或者金属膜,以实现器件的绝缘和导电功能。
在这之后,通过光刻和蚀刻等步骤,将器件的结构和电路图案在半导体材料上进行精确的定义和制造。
最后是添加金属连接层和进行封装,以便将半导体芯片连接到外部电路系统。
尽管半导体工艺(LP)的流程非常复杂,但它是现代电子技术的重要组成部分。
通过不断优化工艺流程和开发新的半导体材料,人们能够制造出更小、更快和更高性能的半导体器件,推动了电子产品的创新和发展。
未来,随着新技术的出现,半导体工艺(LP)也将继续发展,为人们带来更多的惊喜和机遇。
1.2 文章结构文章结构部分是为了给读者提供一个整体的概览,让读者对整篇文章的结构和内容有一个清晰的了解。
在本文中,文章结构主要包括引言、正文和结论三个部分。
引言部分主要是对整篇文章的背景和目的进行简要介绍。
在这一部分中,我们将概述半导体工艺lp的重要性和应用领域,并介绍本文的结构和内容安排。
正文部分是文章的核心,主要分为四个要点。
在这些要点中,我们将详细介绍半导体工艺lp的相关概念、原理、工艺流程以及相关技术。
我们将依次介绍第一个要点、第二个要点、第三个要点和第四个要点,以期能够全面而清晰地呈现半导体工艺lp的知识。
半导体 光刻蚀刻

半导体光刻蚀刻半导体光刻蚀刻是半导体工艺中非常重要的一步。
光刻蚀刻技术是指通过光刻技术和化学蚀刻技术将光罩上的图形转移到半导体表面,用于制造微电子器件。
本文将介绍光刻蚀刻的原理、步骤以及在半导体制造中的应用。
光刻蚀刻是半导体工艺中的关键步骤之一,用于将光罩上的图形转移到硅片表面,形成微电子器件的结构。
光刻蚀刻的原理是利用光敏胶的光学性质和化学蚀刻的特性,将光罩上的图形投影到硅片上,并通过化学蚀刻将不需要的部分去除,最终形成所需的器件结构。
光刻蚀刻的步骤通常分为光刻和蚀刻两个阶段。
首先,将光敏胶涂覆在硅片表面,形成一层均匀的光敏胶膜。
接下来,将光罩对准硅片,并通过紫外光照射光罩,将图形投影到光敏胶膜上。
光敏胶在光照后会发生化学反应,形成暴露区和未暴露区。
然后,将硅片浸入化学溶液中进行蚀刻。
化学溶液会选择性地溶解未暴露区的硅片,从而形成所需的器件结构。
光刻蚀刻在半导体制造中具有重要的应用价值。
首先,光刻蚀刻可以实现微电子器件的微米级精度制造,使得芯片的尺寸越来越小,性能越来越强。
其次,光刻蚀刻可以实现多层结构的制造,使得芯片具有更复杂的功能。
此外,光刻蚀刻还可以用于制造各种传感器、光电子器件等。
然而,光刻蚀刻也面临一些挑战和限制。
首先,光刻蚀刻的精度受到光学系统和化学蚀刻溶液的限制,难以实现纳米级别的制造。
其次,光刻蚀刻的成本较高,需要昂贵的设备和材料。
此外,光刻蚀刻还存在一些工艺问题,如光刻胶的选择、光刻胶的曝光剂选择等。
为了克服这些问题,科研人员不断进行研究和改进。
他们开发了更先进的光刻蚀刻技术,如多重光刻、纳米光刻等,以提高制造精度。
同时,他们还研究新型的光刻胶和曝光剂,以改善光刻胶的性能。
此外,还研究了新型的蚀刻溶液和工艺条件,以提高蚀刻的选择性和均匀性。
半导体光刻蚀刻是半导体制造中至关重要的一步。
它通过光刻和蚀刻技术将光罩上的图形转移到硅片表面,用于制造微电子器件。
光刻蚀刻具有精度高、多层结构制造能力强等优点,但也面临着成本高、精度受限等挑战。
八大半导体工艺顺序剖析

八大半导体工艺顺序剖析八大半导体工艺顺序剖析在现代科技领域中,半导体材料和器件扮演着重要的角色。
作为电子设备的基础和核心组件,半导体工艺是半导体制造过程中不可或缺的环节。
有关八大半导体工艺顺序的剖析将会有助于我们深入了解半导体制造的工作流程。
本文将从简单到复杂,逐步介绍这八大工艺的相关内容。
1. 排版工艺(Photolithography)排版工艺是半导体制造过程中的首要步骤。
它使用光刻技术,将设计好的电路图案转移到硅晶圆上。
排版工艺需要使用光刻胶、掩膜和曝光设备等工具,通过逐层叠加和显影的过程,将电路图案转移到硅晶圆上。
2. 清洗工艺(Cleaning)清洗工艺在排版工艺之后进行,用于去除光刻胶和其他污染物。
清洗工艺可以采用化学溶液或高纯度的溶剂,保证硅晶圆表面的干净和纯净。
3. 高分辨率电子束刻蚀(High-Resolution Electron BeamLithography)高分辨率电子束刻蚀是一种先进的制造技术。
它使用电子束在硅晶圆表面进行刻蚀,以高精度和高分辨率地制作微小的电路图案。
4. 电子束曝光系统(Electron Beam Exposure Systems)电子束曝光系统是用于制造高分辨率电子束刻蚀的设备。
它具有高能量电子束发射器和复杂的控制系统,能够精确控制电子束的位置和强度,实现微米级别的精细曝光。
5. 高能量离子注入(High-Energy Ion Implantation)高能量离子注入是半导体器件制造中的一项重要工艺。
通过将高能量离子注入到硅晶圆表面,可以改变硅晶圆的电学性质,实现电路中的控制和测量。
6. 薄膜制备与沉积(Film Deposition)薄膜制备与沉积是制造半导体器件的关键工艺之一。
这个工艺将薄膜材料沉积在硅晶圆表面,包括化学气相沉积、物理气相沉积和溅射等方法。
这些薄膜能够提供电介质、导电材料或阻挡层等功能。
7. 设备和工艺完善(Equipment and Process Optimization)设备和工艺完善的步骤是优化半导体制造工艺的关键。
半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。
这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。
下面将逐一介绍这些工艺步骤的顺序及其作用。
1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。
在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。
这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。
2. 光刻光刻是半导体制造中的关键工艺步骤之一。
在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。
然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。
3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。
这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。
常用的沉积方法包括化学气相沉积和物理气相沉积。
4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。
在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。
5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。
这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。
常用的扩散方法包括固体扩散和液相扩散。
6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。
这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。
离子注入通常在扩散之前进行。
7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。
这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。
8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。
这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。
半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。
每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。
希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。
光刻与刻蚀工艺

涂胶/显影技术
01
02
03
涂胶
在晶圆表面涂上一层光敏 胶,以保护非曝光区域并 提高图像对比度。
显影
用适当的溶剂去除曝光区 域的光敏胶,以形成所需 的图案。
控制胶厚
保持胶厚均匀,以避免图 像的扭曲和失真。
烘烤与曝光技术
烘烤
通过加热去除晶圆表面的湿气,以提高光敏胶的灵敏度和图像质 量。
曝光
将掩模图像投影到光敏胶上,通过光化学反应将图像转移到晶圆 上。
非接触式光刻
投影式非接触
利用光学系统将掩膜板上的图像投影到光刻胶涂层上,优点是无需直接接触,缺点是难度较高,需要精确的控 制系统。
电子束光刻
利用电子束在光刻胶上直接曝光,优点是分辨率高、无需掩膜板,缺点是生产效率低。
投影式光刻
接触式投影
掩膜板与光刻胶涂层之间保持接触,通过投影系统将图像投影到光刻胶上,优点是操作简单、高效, 缺点是图像质量可能受到掩膜板损伤和光刻胶污染的影响。
要点二
损伤控制
是指在刻蚀过程中避免对材料产生损伤。对于某些特殊 材料,如脆性材料,损伤控制尤为重要。如果刻蚀过程 中产生过多损伤,可能会导致材料性能下降甚至破裂。
感谢您的观看
THANKS
光刻工艺的基本步骤
涂胶
将光刻胶涂敷在硅片表面,以形成 光刻胶层。
烘烤
通过烘烤使光刻胶层干燥并固化。
曝光
将掩膜版上的图形对准硅片上的光 刻胶层,并使用曝光设备将图形转 移到光刻胶上。
显影
使用显影液将曝光后的光刻胶进行 化学处理,使图形更加清晰地展现 出来。
光刻工艺的重要性
光刻工艺是半导体制造中的关键环节,直接影响芯片的制造 质量和性能。
集成电路制造工艺之光刻与刻蚀工艺

任意粒子曝光的最高的分辨率
关于光束的线宽限制,对其他的粒子束同样适用。任何粒子束都具有波动性,即 德布罗意物质波,其波长λ与质量m、动能E的关系描述如下。粒子束的动能E为
其动量p 粒子束的波长
E 1 mV 2 2
phmV 2mE
由此,用粒子束可得到的 最 细线h 条为
、对比度
为了测量光刻胶的对比度,将一定厚度的光刻胶膜在不同的辐照剂量下曝光,然 后测量显影之后剩余光刻胶的膜厚,利用得到的光刻胶膜厚-曝光剂量响应曲线进行 计算就可以得到对比度。
光刻胶的对比度:不同的光刻胶膜厚-曝光剂量响应曲线的外推斜率。
Y2 Y1
X2 X1 光刻胶的对比度会直接影响到曝光后光刻胶膜的倾角和线宽。
根据对比度定义, Y2=0,Y1=1.0,X2=log10Dc,X1= log10Do。
正胶的对比度
p
1 log10 (Dc
Do )
Dc为完全除去正胶膜所需要的最小曝光剂量, Do为对正胶不产生曝光效果所允许的最大曝光剂量。
光刻胶的侧墙倾斜
在理想的曝光过程中,投到光刻胶上的辐照区域应该 等于掩模版上的透光区域,在其他区域应该没有辐照能 量。
显影方式与检测
目前广泛使用的显影的方式是喷洒方法。 可分为三个阶段: ①硅片被置于旋转台上,并且在硅片表面上喷洒显影液; ②然后硅片将在静止的状态下进行显影; ③显影完成之后,需要经过漂洗,之后再旋干。
喷洒方法的优点在于它可以满足工艺流水线的要求。
显影之后,一般要通过光学显微镜、扫描电镜(SEM)或者激光系统来检查图形的 尺寸是否满足要求。
8.3、光刻胶的基本属性
光学光刻胶通常包含有三种成份: ①聚合物材料(树脂):附着性和抗腐蚀性 ②感光材料:感光剂 ③溶剂:使光刻胶保持为液态
半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序是指半导体器件制造过程中的八个主要工艺步骤。
这些工艺步骤的顺序严格按照一定的流程进行,确保半导体器件的质量和性能。
下面将逐一介绍这八大工艺顺序。
第一步是晶圆清洁工艺。
在半导体器件制造过程中,晶圆是最基本的材料。
晶圆清洁工艺旨在去除晶圆表面的杂质和污染物,确保后续工艺步骤的顺利进行。
第二步是光刻工艺。
光刻工艺是将图形模式转移到晶圆表面的关键步骤。
通过光刻工艺,可以在晶圆表面形成所需的图形结构,为后续工艺步骤提供准确的参考。
第三步是沉积工艺。
沉积工艺是将材料沉积到晶圆表面的过程,包括化学气相沉积、物理气相沉积和溅射等技术。
通过沉积工艺,可以在晶圆表面形成所需的材料结构。
第四步是刻蚀工艺。
刻蚀工艺是将多余的材料从晶圆表面去除的过程,以形成所需的图形结构。
刻蚀工艺通常使用化学刻蚀或物理刻蚀的方式进行。
第五步是离子注入工艺。
离子注入工艺是向晶圆表面注入掺杂物质的过程,以改变晶体的电学性质。
通过离子注入工艺,可以实现半导体器件的掺杂和调控。
第六步是热处理工艺。
热处理工艺是将晶圆置于高温环境中进行退火、烘烤或氧化等处理的过程。
通过热处理工艺,可以改善晶体的结晶质量和电学性能。
第七步是清洗工艺。
清洗工艺是在制造过程中对晶圆进行清洗和去除残留污染物的过程,以确保半导体器件的质量和可靠性。
第八步是封装测试工艺。
封装测试工艺是将完成的半导体器件封装成最终产品,并进行性能测试和质量检验的过程。
通过封装测试工艺,可以确保半导体器件符合规格要求,并具有稳定可靠的性能。
总的来说,半导体八大工艺顺序是半导体器件制造过程中的关键步骤,每个工艺步骤都至关重要,任何一环节的不慎都可能影响整个制造过程的质量和性能。
通过严格按照八大工艺顺序进行制造,可以确保半导体器件具有优良的性能和可靠性,从而满足现代电子产品对半导体器件的高要求。
光刻与刻蚀工艺流程

光刻与刻蚀工艺流程光刻和刻蚀是半导体工艺中重要的步骤,用于制备芯片中的电路。
光刻是一种通过使用光敏剂和光刻胶来转移图案到硅片上的技术。
刻蚀则是指使用化学物质或物理能量来去除或改变表面的材料。
光刻工艺流程分为四个主要步骤:准备硅片、涂敷光刻胶、曝光和开发。
首先,准备硅片。
这包括清洗硅片表面以去除杂质和污染物,然后通过浸泡于化学溶液中或使用化学气相沉积等方法在硅片上形成一层光刻胶的基础层。
第二步是涂敷光刻胶。
将光刻胶倒入旋转涂胶机的旋转碟中,然后将硅片放置在碟上。
通过旋转碟和光刻胶的黏度控制,使光刻胶均匀地铺在硅片上。
光刻胶的厚度取决于所需的图案尺寸和深度。
第三步是曝光。
在光刻机中,将掩膜对准硅片,然后使用紫外线照射光刻胶。
掩膜是一个透明的玻璃或石英板,上面有所需的电路图案。
曝光过程中,光刻胶中的光敏剂会发生化学反应,使得光刻胶在被曝光的区域变得溶解性,而未被曝光的区域仍保持完整。
最后一步是开发。
在开发过程中,使用盐酸、溶液或者有机溶剂等化学溶液将未曝光的光刻胶从硅片上溶解掉。
溶解后就会出现光刻胶的图案,这相当于将掩膜中的图案转移到硅片上。
在完成开发后,再对硅片进行清洗和干燥的处理。
刻蚀工艺流程通常根据需要的深度和形状来选择不同的刻蚀技术。
常见的刻蚀技术有湿刻蚀和干刻蚀。
湿刻蚀是将硅片浸泡在一个含有化学溶液的反应槽中,溶液会去除不需要的材料。
刻蚀速度取决于化学溶液中的浓度和温度以及刻蚀时间。
湿刻蚀通常用于较浅的刻蚀深度和简单的结构。
干刻蚀是使用物理能量如等离子体来去除材料。
等离子体刻蚀分为反应离子束刻蚀(RIE)和电感耦合等离子体刻蚀(ICP)。
在等离子体刻蚀中,通过加热到高温的氩气等离子体释放离子,离子会以高速束流撞击竖立在硅片表面的物质,去除不需要的材料。
干刻蚀通常用于深刻蚀和复杂的纳米级结构。
在刻蚀过程中,为了保护不需要刻蚀的区域,通常会将硅片用光刻胶进行覆盖。
在刻蚀结束后,光刻胶可以去除,暴露出所需要的图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√
乳 胶
手
套
尺
寸
过Байду номын сангаас
大
◆穿戴流程示意图
√√ √√
◆其他注意事项
◆有污渍的工作服要及时清洗
◆脏的工鞋要及时清洗
◆不可以在工作服上随便乱涂写
√
◆干净洁白的工作服
为什么要学习光刻?
导入—PN结的制作
氧化:高品质SiO2的成功开发,是推动硅(Si)
集成电路成为商用产品主流的一大动力。一般说来, SiO2可作为许多器件结构的绝缘体,或在器件制 作过程中作为扩散或离子注入的阻挡层。如在p-n 结的制造过程中, SiO2薄膜可用来定义结的区域。 图 (a)显示一无覆盖层的硅晶片,正准备进行氧化 步骤。在氧化步骤结束后,一层SiO2就会均匀地 形成在晶片表面。为简化讨论,图 (b)只显示被氧 化晶片的上表层。
掩模版制作过程
12. Finished
光刻胶
光刻胶是一种有机化合物,它受紫外曝光后,在显影溶液中的溶 解度会发生变化.硅片制造中所用的光刻胶以液态涂在硅片表 面,而后被干燥成膜.硅片制造中光刻胶的目的是:
1.将掩膜版图案转移到硅片表面顶层的光刻胶中; 2.在后续工艺中,保护下面的材料(例如刻蚀或离子注入阻挡层);
导入—光刻和刻蚀
图形转移(pattern transfer)是微电子工艺的重要基础,其作用是使器件和 电路的设计从图纸或工作站转移到基片上得以实现,我们可以把它看作是一个在 衬底上建立三维图形的过程,包括光刻和刻蚀两个步骤。
光刻 (lithography,又译图形曝光 ):使用带有某一层设计几何图形的掩模 版(mask),通过光化学反应,经过曝光和显影,使光敏的光刻胶在衬底上形成三 维浮雕图形。将图案转移到覆盖在半导体晶片上的感光薄膜层上(称为光致光刻 胶、光刻胶或光阻,resist,简称光刻胶)的一种工艺步骤。
6) 显影
7) 坚膜烘焙
8) 显影检查
1:清洗+气相成底膜处理
光刻的第一步是清洗:要成功地制造集成电路,硅片在所有的工艺步骤中都要仔细地清洗。在各 个工艺步骤间的保存和传送硅片时不可避免地要引入沾污,所以清洗步骤非常必要。硅片清洗d 的目的是:a.除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,使 基底表面由亲水性变为憎水性,增强表面的黏附性
HMDS(旋涂或喷涂)
滴浸润形成
旋转硅片去除多 余的液体
浸润
旋涂
气相方法
2:旋转涂胶
工艺小结:
硅片置于真空吸盘上
滴约5ml的光刻胶
以约500 rpm的慢速旋转
加速到约 3000 至 5000 rpm
质量指标: 时间 速度 厚度 均匀性 颗粒和缺陷
至真空泵
滴胶头
真空吸盘 与转动电机连接 的转杆
头发外露
◆工作服穿戴步骤及注意事项
√
第三步:穿戴工衣; 注意事项:
◆工帽需要被工衣完 全覆盖
◆需要扣好纽扣。
工帽外露,纽扣没有 扣好
◆工作服穿戴步骤及注意事项
第四步:穿戴工裤、工鞋; 注意事项:
◆选用合适的工鞋,穿工鞋时 不能踩到鞋跟。
√
踩
到
鞋
跟
◆工作服穿戴步骤及注意事项
第五步:戴好乳胶手套; 注意事项: ◆乳胶手套分大(L)、中 (M)、小(S),请选用尺寸 合适的手套
旋转涂布光刻胶的4个步骤
1) 滴胶
2) 慢速旋转
3) 快速甩掉 多余的胶
4) 溶剂挥发
旋转涂胶结果检查和处理
1: 表面干净,均匀,光亮; 2:无放射状线条; 3: 背面无渗胶; 4:去边处理:由中心向外越来越薄,但是最边缘特别
光刻胶的成分
溶剂: (Solvent ) 使光刻胶具有流动性
树脂: (Resin) 作为粘合剂的聚合物的混合 物,给予光刻胶机械和化学性 质
感光剂: (正胶:PAG 负胶: 环化聚异戊二烯)
光敏产酸溶剂 对于正胶:曝光后产酸使胶酸解; 对于负胶:曝光后可以促使胶发
生铰链反应。 添加剂:(稳定剂,染色剂, 表面活性剂) 控制光刻胶材料的特殊性质
半导体工艺之光刻+刻蚀
3.1概述
半导体制作工艺
刻蚀 镀膜 掺杂 封装
光刻 刻蚀 物理气相淀积 化学气相淀积
氧化 扩散掺杂 离子注入掺杂
线焊 倒装焊 TSV
生活的中类半导体工艺
掩膜+腐蚀
掩膜+光照
溅射+电镀
光刻中….
微纳器件需要怎样的加工环境?
50 um
100 um
0.01 um-5 um
粉尘 : 1-100 um 灰尘 : 2-100 um 雾霾 : > 10um
光刻胶的种类及对比
正性光刻胶和负性光刻胶,基于光刻胶材料是如何响应曝光 光源的。
正性光刻胶:曝光区域溶解,非曝光区域保留,得到和掩 膜版相同的图形。
负性光刻胶:曝光区域铰链,非曝光区域溶解,在硅片上 形成于掩膜版相反的图形。
对比:负性光刻胶在显影时容易变形和膨胀,只适用于大尺 寸的电路,而正性光刻胶则更加的优良。
sil硅ico衬n 底substrate
使光衰弱的被曝光区
光刻胶上的阴影
岛
光刻胶t
窗口
氧化层 硅衬底
光刻胶显影后的最终图形
掩膜版与光刻胶之间的关系
期望印在硅片上的光刻胶结 构
光刻胶岛 衬底
铬d 窗口
石英 岛
当使用负胶时要求掩膜版上
的图形(与想要的结构相反)
当使用正胶时要求掩膜版上
的图形(与想要的结构想同)
正性光刻胶酸解
未被曝光的光刻胶保持交联 和PAG(光敏产酸剂)未激
UV
活
光刻胶
衬底
PAG
PAG
PAG
PAG
PAG
曝光的
H+ H+ H+
PAG PAG
未曝光的
被曝光的光刻胶溶 于显影液
氧化硅
PAG PAG
酸催化反映 (在 PEB中)
曝光前的正性光刻胶
曝光后的 光刻胶
未改变
显影后的 光刻胶
负性光刻胶交联
导入—PN结的制作
刻蚀氧化层: 图 (a)为显影
后的晶片。晶片再次于120℃~180 ℃ 之间烘烤20min,以加强对衬底的附着 力和即将进行的刻蚀步骤的抗蚀能力。 然后,使用缓冲氢氟酸作酸刻蚀液来移 除没有被光刻胶保护的氧化硅表面,如 图4(b)所示。最后,使用化学溶剂或等离 子体氧化系统剥离(stripped)光刻胶。图 (c)显示光刻步骤之后,没有氧化层区域 (一个窗户)的最终结果。晶片此时已经完 成准备工作,可接着用扩散或离子注入。 步骤形成p-n结。
线宽
间距
光刻胶
厚度
衬底 光刻胶的三维图形
光刻技术的基本要求
1、高分辨率 随着集成电路集成度的提高,特征尺寸越来越 小要求实现掩模图形高水平转移的光学系统分辨率必须越高。
2、高灵敏度的光刻胶 指光刻胶的感光速度,希望光刻工序 的周期越短越好,减小曝光所需的时间就必须使用高灵敏度 的光刻胶。
3、高对比度的光刻胶 对比度是衡量光刻胶区分掩模版上亮 区与暗区的能力大小的指标。从理论上说,光刻胶的对比度 会直接影响曝光后光刻胶图形的倾角和线宽
2. 喷涂粘附剂(HMDS 六甲基二硅胺)
3. 滴胶+甩胶 滴胶
4. 前烘
5. 装片
6.装掩膜版(光刻板)
6. 装掩膜版(光刻板)
7.对准+曝光
8. 后烘,显影+定影
显影前后
光刻的基本概念
光刻的本质:光刻处于硅片加工过程的中心,光刻常被认为 是IC制造中最关键的步骤。光刻的本质就是把临时电路/器件 结构复制到以后要进行刻蚀和离子注入的硅片上。这些结构 首先以图形的形式制作在名为掩膜版的石英膜版上。紫外光 透过掩膜版把图形转移到硅片表面的光敏薄膜上。即使用光 敏光刻胶材料和可控制的曝光在硅片表面形成三维图形。
4、套刻对准精度 在电路制造过程中要进行多次的光刻,每 次光刻都要进行严格的套刻。
光刻工艺
光刻工艺包括两种基本的工艺类型:负性光刻和正性光刻。这 两种基本工艺的主要区别在于所使用的光刻胶的类型不同。
负性光刻:所使用的是负性光刻胶,当曝光后,光刻胶会因为 交联而变得不可溶解,并会硬化,一旦硬化,交联的光刻胶就 不能在溶济中被洗掉,因为光刻胶上的图形与投影掩膜版上的 图形相反因此这种光刻胶被称为负性光刻胶。
正性光刻:与负性光刻相反
负性光刻
在掩膜版上的铬岛
紫外光
光刻胶上的阴影
光刻胶t 氧化硅 硅衬底
被曝光的区域发生交联并变成 阻止显影的化学物质
岛 光刻胶的曝光区
光刻胶
窗口
氧化层 硅衬底
光刻胶显影后的最终图 形
正性光刻
掩膜版上的铬岛
紫外光
光刻胶的曝光区
光刻ph胶otot resist 氧化ox层ide
刻蚀:在光刻胶或者阻挡层的掩蔽下,根据需要形成微图形的膜层不同,采 用不同的刻蚀物质和方法在膜层上进行选择性刻蚀。
半导体微纳工艺之-光刻工艺
光刻(lithography)是以一种被称为光刻胶的光敏感聚
合物为主要材料的照相制版技术。集成电路发明至今,
电路集成度提高了六个数量级以上,主要归功于光刻技
术的进步。
室溫
70 - 80°C 室溫 室溫 室溫
有机污染物 洗清 微粒
洗清
金属离子 洗清 自然氧化层 洗清
成底膜技术
烘焙后硅片马上要用六甲基二胺烷(HMDS)成底膜,它起到提 高使表面具有疏水性并且增强基底表面跟光刻胶的粘附力。
硅片成底膜处理的一个重要方面在于成底膜后要尽快涂胶,使 潮气问题最小化.