光刻与刻蚀工艺

合集下载

集成电路制造工艺之光刻与刻蚀工艺

集成电路制造工艺之光刻与刻蚀工艺
胶和工艺的误差等,因此这是纯理论的分辨率。
任意粒子曝光的最高的分辨率
关于光束的线宽限制,对其他的粒子束同样适用。任何粒子束都具有波动性,即 德布罗意物质波,其波长λ与质量m、动能E的关系描述如下。粒子束的动能E为
其动量p 粒子束的波长
E 1 mV 2 2
phmV 2mE
由此,用粒子束可得到的 最 细线h 条为
、对比度
为了测量光刻胶的对比度,将一定厚度的光刻胶膜在不同的辐照剂量下曝光,然 后测量显影之后剩余光刻胶的膜厚,利用得到的光刻胶膜厚-曝光剂量响应曲线进行 计算就可以得到对比度。
光刻胶的对比度:不同的光刻胶膜厚-曝光剂量响应曲线的外推斜率。
Y2 Y1
X2 X1 光刻胶的对比度会直接影响到曝光后光刻胶膜的倾角和线宽。
根据对比度定义, Y2=0,Y1=1.0,X2=log10Dc,X1= log10Do。
正胶的对比度
p
1 log10 (Dc
Do )
Dc为完全除去正胶膜所需要的最小曝光剂量, Do为对正胶不产生曝光效果所允许的最大曝光剂量。
光刻胶的侧墙倾斜
在理想的曝光过程中,投到光刻胶上的辐照区域应该 等于掩模版上的透光区域,在其他区域应该没有辐照能 量。
显影方式与检测
目前广泛使用的显影的方式是喷洒方法。 可分为三个阶段: ①硅片被置于旋转台上,并且在硅片表面上喷洒显影液; ②然后硅片将在静止的状态下进行显影; ③显影完成之后,需要经过漂洗,之后再旋干。
喷洒方法的优点在于它可以满足工艺流水线的要求。
显影之后,一般要通过光学显微镜、扫描电镜(SEM)或者激光系统来检查图形的 尺寸是否满足要求。
8.3、光刻胶的基本属性
光学光刻胶通常包含有三种成份: ①聚合物材料(树脂):附着性和抗腐蚀性 ②感光材料:感光剂 ③溶剂:使光刻胶保持为液态

光刻与刻蚀工艺流程

光刻与刻蚀工艺流程

光刻与刻蚀工艺流程光刻和刻蚀是微电子加工过程中常用的两个工艺步骤。

光刻用于创建芯片上的图案,而刻蚀则用于移除不需要的材料。

以下是光刻和刻蚀的工艺流程。

光刻工艺流程:1.沉积光刻胶:首先,在硅片上沉积一层光刻胶。

这是一个具有高度选择性和可重复性的光敏聚合物材料,能够在曝光过程中改变化学性质。

2.乾燥和前处理:将光刻胶乾燥,然后对其进行前处理,例如去除表面的污垢和残留物。

3.涂布光刻胶:用涂胶机将光刻胶均匀地涂布在硅片的表面。

4.烘烤:将涂覆有光刻胶的硅片进行烘烤,以去除溶剂并使光刻胶层变得坚硬和耐久。

5.对位:将掩模对位仪对准硅片上的光刻胶层,确保光刻胶上的图案与所需的芯片图案完全一致。

6.曝光:通过紫外线照射机将光传递到光刻胶上,使其形成与掩模图案相同的图案。

7.显影:使用显影液处理光刻胶,显影液会将未曝光的部分光刻胶溶解掉,只留下曝光过的部分。

刻蚀工艺流程:1.腐蚀栅极:首先,通过化学腐蚀将栅极区域的金属材料去除,只保留未覆盖的部分,以便后续步骤。

2.沉积绝缘层:然后,在晶圆上沉积一层绝缘层材料,用以隔离电路的不同层次。

3.涂胶和曝光:使用同样的光刻胶工艺,在绝缘层表面涂覆光刻胶,并将掩模对位仪对准绝缘层上的光刻胶层。

4.显影:通过显影液处理光刻胶,保留所需的图案,暴露绝缘层。

5.刻蚀绝缘层:使用化学腐蚀或物理刻蚀技术,将未被光刻胶保护的绝缘层材料去除,使其与下方的层次保持相同的图案。

6.清洗和检验:最后,对晶圆进行清洗,以去除残留的光刻胶和刻蚀剂。

然后,对刻蚀图案进行检验,确保其质量和精确度。

这就是光刻和刻蚀的工艺流程。

通过这些步骤,可以在微电子芯片上创建复杂的电路和结构,以实现功能丰富的科技产品。

光刻与刻蚀工艺流程ppt

光刻与刻蚀工艺流程ppt

硅片准备
涂胶种类
根据光刻掩膜版的要求,选择合适的涂胶材料。
涂胶厚度
控制涂胶的厚度,一般要求均匀、无气泡、无杂质。
涂胶
曝光方式
根据光刻掩膜版图形设计要求,选择合适的曝光方式。
曝光时间
控制曝光时间,保证光刻胶充分反应且不过度曝光。
曝光
显影液选择
根据光刻胶的性质,选择合适的显影液。
控制显影时间
显影时间要适当,以充分溶解光刻胶,同时避免损伤硅片表面。
纳米科技领域需要借助光刻和刻蚀技术来制造纳米级结构,从而进一步探索纳米世界的奥秘。
在生物医学工程领域,光刻和刻蚀技术可以制造出复杂的微纳结构,用于药物输送、组织工程等应用。
纳米科技
生物医学工程
建议与展望
06
优化工艺参数
通过严格控制实验参数,如波长、功率、曝光时间等,以提高工艺稳定性和效率。
引入先进设备
xx年xx月xx日
光刻与刻蚀工艺流程ppt
CATALOGUE
目录
光刻和刻蚀工艺简介光刻工艺详细流程刻蚀工艺详细流程光刻和刻蚀工艺的控制因素光刻和刻蚀工艺的未来发展建议与展望
光刻和刻蚀工艺简介
01
1
光刻工艺发展历程
2
3
最早的光刻工艺,分辨率较低,制程技术限制较大。
接触式光刻工艺
改善了分辨率和制程技术限制的问题,但仍然存在接触式光刻工艺的一些缺点。
采用先进的自动控制系统和智能化设备,实现工艺过程的实时监控和精准调控。
改进工艺流程
简化工艺流程,减少重复步骤,降低工艺时间和成本。
提高工艺稳定性与效率的措施
技术交叉融合
加强光刻和刻蚀工艺与材料科学、物理学、化学等学科的交叉融合,引入新技术,如纳米压印、离子束刻蚀等,提高工艺水平和效率。

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序是指半导体器件制造过程中的八个主要工艺步骤。

这些工艺步骤的顺序严格按照一定的流程进行,确保半导体器件的质量和性能。

下面将逐一介绍这八大工艺顺序。

第一步是晶圆清洁工艺。

在半导体器件制造过程中,晶圆是最基本的材料。

晶圆清洁工艺旨在去除晶圆表面的杂质和污染物,确保后续工艺步骤的顺利进行。

第二步是光刻工艺。

光刻工艺是将图形模式转移到晶圆表面的关键步骤。

通过光刻工艺,可以在晶圆表面形成所需的图形结构,为后续工艺步骤提供准确的参考。

第三步是沉积工艺。

沉积工艺是将材料沉积到晶圆表面的过程,包括化学气相沉积、物理气相沉积和溅射等技术。

通过沉积工艺,可以在晶圆表面形成所需的材料结构。

第四步是刻蚀工艺。

刻蚀工艺是将多余的材料从晶圆表面去除的过程,以形成所需的图形结构。

刻蚀工艺通常使用化学刻蚀或物理刻蚀的方式进行。

第五步是离子注入工艺。

离子注入工艺是向晶圆表面注入掺杂物质的过程,以改变晶体的电学性质。

通过离子注入工艺,可以实现半导体器件的掺杂和调控。

第六步是热处理工艺。

热处理工艺是将晶圆置于高温环境中进行退火、烘烤或氧化等处理的过程。

通过热处理工艺,可以改善晶体的结晶质量和电学性能。

第七步是清洗工艺。

清洗工艺是在制造过程中对晶圆进行清洗和去除残留污染物的过程,以确保半导体器件的质量和可靠性。

第八步是封装测试工艺。

封装测试工艺是将完成的半导体器件封装成最终产品,并进行性能测试和质量检验的过程。

通过封装测试工艺,可以确保半导体器件符合规格要求,并具有稳定可靠的性能。

总的来说,半导体八大工艺顺序是半导体器件制造过程中的关键步骤,每个工艺步骤都至关重要,任何一环节的不慎都可能影响整个制造过程的质量和性能。

通过严格按照八大工艺顺序进行制造,可以确保半导体器件具有优良的性能和可靠性,从而满足现代电子产品对半导体器件的高要求。

光刻与刻蚀工艺流程

光刻与刻蚀工艺流程

光刻与刻蚀工艺流程光刻和刻蚀是半导体工艺中重要的步骤,用于制备芯片中的电路。

光刻是一种通过使用光敏剂和光刻胶来转移图案到硅片上的技术。

刻蚀则是指使用化学物质或物理能量来去除或改变表面的材料。

光刻工艺流程分为四个主要步骤:准备硅片、涂敷光刻胶、曝光和开发。

首先,准备硅片。

这包括清洗硅片表面以去除杂质和污染物,然后通过浸泡于化学溶液中或使用化学气相沉积等方法在硅片上形成一层光刻胶的基础层。

第二步是涂敷光刻胶。

将光刻胶倒入旋转涂胶机的旋转碟中,然后将硅片放置在碟上。

通过旋转碟和光刻胶的黏度控制,使光刻胶均匀地铺在硅片上。

光刻胶的厚度取决于所需的图案尺寸和深度。

第三步是曝光。

在光刻机中,将掩膜对准硅片,然后使用紫外线照射光刻胶。

掩膜是一个透明的玻璃或石英板,上面有所需的电路图案。

曝光过程中,光刻胶中的光敏剂会发生化学反应,使得光刻胶在被曝光的区域变得溶解性,而未被曝光的区域仍保持完整。

最后一步是开发。

在开发过程中,使用盐酸、溶液或者有机溶剂等化学溶液将未曝光的光刻胶从硅片上溶解掉。

溶解后就会出现光刻胶的图案,这相当于将掩膜中的图案转移到硅片上。

在完成开发后,再对硅片进行清洗和干燥的处理。

刻蚀工艺流程通常根据需要的深度和形状来选择不同的刻蚀技术。

常见的刻蚀技术有湿刻蚀和干刻蚀。

湿刻蚀是将硅片浸泡在一个含有化学溶液的反应槽中,溶液会去除不需要的材料。

刻蚀速度取决于化学溶液中的浓度和温度以及刻蚀时间。

湿刻蚀通常用于较浅的刻蚀深度和简单的结构。

干刻蚀是使用物理能量如等离子体来去除材料。

等离子体刻蚀分为反应离子束刻蚀(RIE)和电感耦合等离子体刻蚀(ICP)。

在等离子体刻蚀中,通过加热到高温的氩气等离子体释放离子,离子会以高速束流撞击竖立在硅片表面的物质,去除不需要的材料。

干刻蚀通常用于深刻蚀和复杂的纳米级结构。

在刻蚀过程中,为了保护不需要刻蚀的区域,通常会将硅片用光刻胶进行覆盖。

在刻蚀结束后,光刻胶可以去除,暴露出所需要的图案。

光刻与刻蚀工艺

光刻与刻蚀工艺

光刻工艺的基本步骤
涂胶
将光刻胶涂敷在硅片表面,以形成 光刻胶层。
烘烤
通过烘烤使光刻胶层干燥并固化。
曝光
将掩膜版上的图形对准硅片上的光 刻胶层,并使用曝光设备将图形转 移到光刻胶上。
显影
使用显影液将曝光后的光刻胶进行 化学处理,使图形更加清晰地展现 出来。
光刻工艺的重要性
光刻工艺是半导体制造中的关键环节,直接影响芯片的制造 质量和性能。
非接触式光刻
投影式非接触
利用光学系统将掩膜板上的图像投影到光刻胶涂层上,优点是无需直接接触,缺点是难度较高,需要精确的控 制系统。
电子束光刻
利用电子束在光刻胶上直接曝光,优点是分辨率高、无需掩膜板,缺点是生产效率低。
投影式光刻
接触式投影
掩膜板与光刻胶涂层之间保持接触,通过投影系统将图像投影到光刻胶上,优点是操作简单、高效, 缺点是图像质量可能受到掩膜板损伤和光刻胶污染的影响。
涂胶/显影技术
01
02
03
涂胶
在晶圆表面涂上一层光敏 胶,以保护非曝光区域并 提高图像对比度。
显影
用适当的溶剂去除曝光区 域的光敏胶,以形成所需 的图案。
控制胶厚
保持胶厚均匀,以避免图 像的扭曲和失真。
烘烤与曝光技术
烘烤
通过加热去除晶圆表面的湿气,以提高光敏胶的灵敏度和图像质 量。
曝光
将掩模图像投影到光敏胶上,通过光化学反应将图像转移到晶圆 上。
扫描投影
利用扫描系统将掩膜板上的图像投影到光刻胶上,优点是分辨率高、生产效率高,缺点是需要精确的 控制系统和高质量的掩膜板。
03
光刻工艺中的关键技术
光学系统
紫外光源
产生短波长的光,以获得更好的分辨率和更来自的 特征尺寸。反射镜和透镜

第八章光刻与刻蚀工艺模板

第八章光刻与刻蚀工艺模板

第八章光刻与刻蚀工艺模板光刻与刻蚀工艺是现代集成电路制造中的重要工艺环节之一、光刻技术用于在硅片上制作电路图形,而刻蚀技术则用于去除不需要的材料,以形成所需的电路结构。

本章将介绍光刻与刻蚀工艺的基本原理及常见的工艺模板。

一、光刻工艺模板在光刻工艺中,需要使用光刻胶作为图形保护层,以及光罩作为图形的模板。

光刻模板通常由硅片或光刻胶制成,可以通过不同的工艺步骤来实现具体的图形需求。

1.硅片模板硅片模板是一种常见的光刻工艺模板,它的制作过程相对简单。

首先,将一块纯净的硅片进行氧化处理,形成硅的氧化层。

然后,在氧化层上通过光刻技术制作所需的图形。

最后,使用化学刻蚀方法去除不需要的硅的氧化层,就可以得到所需的硅片模板。

硅片模板具有较好的精度和可靠性,能够满足微纳加工的要求。

然而,硅片模板制作过程复杂,成本较高。

2.光刻胶模板光刻胶模板是利用光刻胶作为模板材料的一种工艺模板。

光刻胶是一种感光性的聚合物材料,可以在光照的作用下发生化学反应。

在光刻工艺中,首先将光刻胶涂覆在硅片上,然后通过光刻曝光将所需的图形转移到光刻胶上。

接下来,使用化学方法或溶剂去除不需要的光刻胶,就可以得到所需的光刻胶模板。

光刻胶模板制作过程简单,成本较低。

同时,光刻胶模板的精度较高,可以满足微纳加工的要求。

然而,光刻胶模板的使用寿命较短,通常只能使用几次。

在刻蚀工艺中,需要使用刻蚀胶作为图形保护层,以及刻蚀模板作为图形的模板。

刻蚀模板通常由硅片或光刻胶制成,可以通过不同的工艺步骤来实现具体的图形需求。

1.硅片模板硅片模板在刻蚀工艺中的制作方法与光刻工艺类似。

首先,在硅片上通过光刻技术制作所需的图形,然后使用化学刻蚀方法去除不需要的硅材料,就可以得到所需的刻蚀模板。

硅片模板具有较高的精度和可靠性,可以满足微纳加工的要求。

然而,硅片模板制作过程复杂,成本较高。

2.光刻胶模板光刻胶模板在刻蚀工艺中的制作方法与光刻工艺类似。

首先,将光刻胶涂覆在硅片上,然后通过光刻曝光将所需的图形转移到光刻胶上。

刻蚀 沉积 光刻

刻蚀 沉积 光刻

刻蚀沉积光刻
刻蚀、沉积和光刻是半导体制造中非常重要的工艺步骤。

刻蚀是指在制造过程中去除材料的一种方式,通过化学或物理手段将不需要的材料削减。

沉积则是指在半导体表面上沉积一层薄膜,以改变半导体的性质或用于制造器件。

而光刻则是制造电路元件的关键工艺,它利用光学照射和化学反应来定义微细结构。

在刻蚀过程中,常用的技术包括干法刻蚀和湿法刻蚀。

干法刻蚀通常使用化学气相沉积的气体,如氟化物、氯化物等,通过离子轰击将这些气体转化成等离子体,再将其注入刻蚀室中与半导体表面反应。

而湿法刻蚀则是通过在溶液中浸泡半导体,利用化学反应将所需的材料去除。

沉积过程中,常用的技术包括物理蒸镀、化学气相沉积和原子层沉积等。

物理蒸镀是利用蒸发的金属或化合物形成薄膜,这种方法可以制造出非常均匀的膜。

化学气相沉积是将气体注入反应室中,通过化学反应在半导体表面上形成薄膜。

原子层沉积则是将气体分子一个个地注入反应室中,以形成非常薄且均匀的膜。

光刻技术是制造电路元件中最为关键的步骤之一。

该技术利用掩膜板在半导体表面上形成微细结构。

掩膜板通常包括金属或玻璃等材料,通过控制光的反射和透射来定义微细结构。

在制造过程中,先将掩膜板放置在半导体表面上,再使用紫外线和化学反应将掩膜板上不需要的区域去除,留下所需的结构。

光刻技术的精度非常高,可以制造出微米级甚至纳米级的电路元件。

综上所述,刻蚀、沉积和光刻技术是半导体制造中非常重要的工艺步骤。

这些技术的不断发展和改进,使得半导体制造变得更加精确和高效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这就满足了 LMIS 的要求。
对所引出的离子再进行质量分析,就可获得所需的离子。
图形转移 清洗
CMP 物理气相淀积 化学气相淀积
CMP PVD CVD
外延
EPI
光刻
Litho/photo
刻蚀
Dry etch
酸洗/碱洗 wet etch/strip
去离子水
scrubber
离子注入概述
• 最早应用于原子物理和核物理研究 • 提出于1950’s • 1970’s中期引入半导体制造领域
离子注入
离子注入是另一种对半导体进行掺杂的方法。将杂质电离成离子并聚 焦成离子束,在电场中加速而获得极高的动能后,注入到硅中(称为
“靶” )而实现掺杂。…
离子束的性质
离子束是一种带电原子或带电分子的束状流,能被电场或磁场偏转, 能在高压下加速而获得很高的动能。 离子束的用途
掺杂、曝光、刻蚀、镀膜、退火、净化、改性、打孔、切割等。不同 的用途需要不同的离子能量 E : E < 10 KeV ,刻蚀、镀膜
E1 是主高压,即离子束的加速电
压;E2 是针尖与引出极之间的电压,

E2
用以调节针尖表面上液态金属的形状,

并将离子引出;E3 是加热器电源。

E1
针尖的曲率半径为 ro = 1 ~ 5 m,改变 E2 可以调节针尖与引出极之 间的电场,使液态金属在针尖处形成一个圆锥,此圆锥顶的曲率半径 仅有
10 nm 的数量级,这就是 LMIS 能产生小束斑离子束的关键。
微电子工艺学
Microelectronic Processing
邓卫之
content
• 1.概述 • 2.薄膜 • 3.CMOS flow简介 • 4.fail module 简介 • 5.
微电子单项工 艺
1.1 概述 掺杂
扩散掺杂 diffusion 离子注入掺杂 implant
平坦化 薄膜制备
2、将离子束聚焦成亚微米数量级细束并使之偏转扫描的离子光学系 统。
7.1 离子注入系统
离子源:用于离化杂质的容器。常用的杂质源气体有 BF3、 AsH3 和 PH3 等。
质量分析器:不同离子具有不同的电荷质量比,因而在分析器磁场中偏 转的角度不同,由此可分离出所需的杂质离子,且离子束很纯。
加速器:为高压静电场,用来对离子束加速。该加速能量是决定离子注 入深度的一个重要参量。
当 E2 增大到使电场超过液态金属的场蒸发
Байду номын сангаасE3
值( Ga 的场蒸发值为 15.2V/nm)时,液态金
属在圆锥顶处产生场蒸发与场电离,发射金属
离子与电子。其中电子被引出极排斥,而金属



E2
离子则被引出极拉出,形成离子束。
若改变 E2 的极性 ,则可排斥离子而拉出 电子,使这种源改变成电子束源。
E1
1、等离子体型离子源
这里的 等离子体 是指部分电离的气体。虽然等离子体中的电离成分可 能不到万分之一,其密度、压力、温度等物理量仍与普通气体相同,正、 负电荷数相等,宏观上仍为电中性,但其电学特性却发生了很大变化,成
为一种电导率很高的流体。
产生等离子体的方法有热电离、光电离和电场加速电离。大规模集成 技术中使用的等离子体型离子源,主要是由电场加速方式产生的,如直流
而离子注入的掩蔽膜可以是 SiO2 膜,也可以是光刻胶等其他薄膜。 掩模方式用于掺杂与刻蚀时的优点是 生产效率高,设备相对简单,控
制容易,所以应用比较早,工艺比较成熟。缺点是 需要制作掩蔽膜。
2、聚焦方式(扫描方式)
聚焦方式的优点是 不需掩模,图形形成灵活。缺点是 生产效率低,设 备复杂,控制复杂。实现聚焦方式的关键技术是 1、高亮度小束斑长寿命高稳定的离子源;
E = 10 ~ 50 KeV,曝光
E > 50 KeV,注入掺杂
离子束加工方式可分为
1、掩模方式(投影方式) 2、聚焦方式(扫描方式,或聚焦离子束(
FIB)方式)
1、掩模方式(投影方式)
掩模方式是对整个硅片进行均匀的地毯式注入,同时象扩散工艺一样 使用掩蔽膜来对选择性区域进行掺杂。扩散工艺的掩蔽膜必须是 SiO2 膜,
中性束偏移器:利用偏移电极和偏移角度分离中性原子。
聚焦系统:用来将加速后的离子聚集成直径为数 毫米的离子束。
偏转扫描系统:用来实现离子束 x、y 方向的一
定面积内进行扫描。
工作室:放置样品的地方,其位置可调。
离子注入系统示意图
离子注入系统事物图
一、离子源
作用:产生所需种类的离子并将其引出形成离子束。 分类:等离子体型离子源、液态金属离子源(LMIS)。
类 型
同轴形
毛细管形
液态金属 钨针
对液态金属的要求
(1) 与容器及钨针不发生任何反应; (2) 能与钨针充分均匀地浸润;
(3) 具有低熔点低蒸汽压,以便在真空中及不太高的温度下既保持 液态又不蒸发。
能同时满足以上条件的金属只有 Ga、In、Au、Sn 等少数几种, 其中 Ga 是最常用的一种。
E3
放电式、射频放电式等。
2、液态金属离子源(LMIS)
LMIS 是近几年发展起来的一种高亮度小束斑的 离子源,其离子束经离子光学系统聚焦后,可形成 纳 米量级的小束斑离子束,从而使得聚焦离子束技术得 以实现。此技术可应用于离子注入、离子束曝光、刻
蚀等。
LMIS 的类型、结构和发射机理
针形
V形 螺旋形
共晶合金 LMIS
通常用来对各种半导体进行离子注入掺杂的元素因为熔点高或蒸汽压 高而无法制成单体 LMIS 。
根据冶金学原理,由两种或多种金属组成的合金,其熔点会大大低于 组成这种合金的单体金属的熔点,从而可大大降低合金中金属处于液态时
的蒸汽压。
例如,金和硅的熔点分别为 1063oC 和 1404oC,它们在此温度时的蒸 汽压分别为 10-3 Torr 和 10-1 Torr。当以适当组分组成合金时,其熔点降为 370 oC ,在此温度下,金和硅的蒸汽压分别仅为 10-19 Torr 和 10-22 Torr。
掩模方式需要大面积平行离子束源,故一般采用等离子体型离子源,
其典型的有效源尺寸为 100 m ,亮度为 10 ~ 100 A/cm2.sr。
聚焦方式则需要高亮度小束斑离子源,当液态金属离子源(LMIS)出
现后才得以顺利发展。LMIS 的典型有效源尺寸为 5 ~ 500 nm,亮度为 106 ~ 107 A/cm2.sr 。
相关文档
最新文档