【半导体芯片制造】集成电路制造工艺之光刻与刻蚀工艺
集成电路制造工艺流程

集成电路制造工艺流程
《集成电路制造工艺流程》
集成电路制造是一项复杂而精密的工艺,涉及到多个环节和工序。
下面将简要介绍集成电路制造的工艺流程。
第一步是晶圆制备。
晶圆是集成电路的基础材料,通常由硅单晶材料制成。
制备晶圆需要经过多道工序,包括原料准备、晶体生长、切割和研磨等。
第二步是光刻。
光刻是将图形投射到已涂覆光刻胶的晶圆表面,然后用化学蚀刻的工艺技术将光刻胶图形转移到晶圆表面的技术。
这个步骤是制造电路芯片的关键环节,能决定芯片的最小线宽和密度。
第三步是蚀刻。
蚀刻是将已经暴光的光刻胶图形转移到晶圆表面以形成集成电路的图案,利用酸或者碱溶液来去除光刻胶所没有覆盖的物质。
这个步骤可以根据需要多次重复,以形成多层电路结构。
第四步是离子注入。
离子注入是用高能离子轰击晶圆表面,改变晶格结构和材料的电学性质,从而形成电子器件的掺杂区域。
第五步是金属化。
金属化是在晶圆表面喷镀或者蒸发一层金属薄膜,并通过光刻和蚀刻形成电极和连接线。
第六步是封装测试。
将单个芯片切割成独立的芯片,然后进行
封装和测试。
封装是把芯片封装在塑料或者陶瓷封装体内,并连接外部引脚。
测试是验证芯片性能和功能是否符合规格要求。
以上就是集成电路制造的主要工艺流程,这些工艺流程中每一个步骤都非常关键,需要高度的精密度和稳定性。
只有严格控制每一个环节,才能生产出高质量的集成电路产品。
半导体七大核心工艺步骤

半导体七大核心工艺步骤
1. 晶圆生长,晶圆是制造芯片的基础,晶圆生长是指在高温下
将单晶硅材料生长成圆形晶圆。
2. 晶圆清洗,晶圆在生长过程中会附着各种杂质和污染物,因
此需要进行严格的清洗,以确保表面的干净和平整。
3. 晶圆扩散,在这一步骤中,通过高温处理将掺杂物质(如硼、磷等)扩散到晶圆表面,改变硅的导电性能。
4. 光刻,光刻技术是将光敏胶涂覆在晶圆表面,然后使用光刻
机将芯片图案投影到光敏胶上,形成光刻图案。
5. 蚀刻,蚀刻是利用化学反应将未被光刻覆盖的部分材料去除,从而形成芯片上的线路和结构。
6. 沉积,在芯片制造过程中,需要在特定区域沉积金属或者绝
缘材料,以形成导线、电容等元件。
7. 清洗和测试,最后一步是对芯片进行清洗和测试,确保芯片
的质量和性能符合要求。
这七大核心工艺步骤构成了半导体制造的基本流程,每一步都至关重要,任何一处的错误都可能导致芯片的失效。
半导体工艺的不断创新和完善,为现代电子技术的发展提供了坚实的基础。
光刻与刻蚀工艺流程 PPT

驻波效应
入射光与反射光干涉 周期性过曝光和欠曝光 影响光刻分辨率
光刻胶中的驻波效应
光刻7-曝光后烘焙(后烘,PEB)
机理:光刻胶分子发生热运动,过曝光 和欠曝光的光刻胶分子发生重分布;
作用:平衡驻波效应,提高分辨率。
PEB减小驻波效应
光刻8-显影(Development)
光刻胶热流动填充针孔
坚膜(Hard Bake)
热板最为常用 检测后可在烘箱中坚膜 坚膜温度: 100 到130 °C 坚膜时间:1 到2 分钟 坚膜温度通常高于前烘温度
坚膜的控制
坚膜不足
-光刻胶不能充分聚合 -造成较高的光刻胶刻蚀速率 -黏附性变差
过坚膜
-光刻胶流动造成分辨率变差
光刻基本步骤
• 涂胶 Photoresist coating • 对准和曝光 Alignment and exposure • 显影 Development
光刻工序
1、清洗硅片 Wafer Clean
2、预烘和底膜涂覆 Pre-bake and Primer Vapor
3、光刻胶涂覆 Photoresist Coating
基本步骤 – 化学清洗 – 漂洗 – 烘干
光刻2-预烘
脱水烘焙--去除圆片表面的潮气 增强光刻胶与表面的黏附性 通常大约100 °C 与底胶涂覆合并进行 底胶广泛使用: Hexamethyldisilazane (HMDS,六甲基
乙硅氮烷) HMDS的作用:去除SiO2表面的-OH基。
离子注入Ion Implantation
快速热退火Rapid Thermal Annealing
刻蚀术语
集成电路制造工艺之光刻与刻蚀工艺

任意粒子曝光的最高的分辨率
关于光束的线宽限制,对其他的粒子束同样适用。任何粒子束都具有波动性,即 德布罗意物质波,其波长λ与质量m、动能E的关系描述如下。粒子束的动能E为
其动量p 粒子束的波长
E 1 mV 2 2
phmV 2mE
由此,用粒子束可得到的 最 细线h 条为
、对比度
为了测量光刻胶的对比度,将一定厚度的光刻胶膜在不同的辐照剂量下曝光,然 后测量显影之后剩余光刻胶的膜厚,利用得到的光刻胶膜厚-曝光剂量响应曲线进行 计算就可以得到对比度。
光刻胶的对比度:不同的光刻胶膜厚-曝光剂量响应曲线的外推斜率。
Y2 Y1
X2 X1 光刻胶的对比度会直接影响到曝光后光刻胶膜的倾角和线宽。
根据对比度定义, Y2=0,Y1=1.0,X2=log10Dc,X1= log10Do。
正胶的对比度
p
1 log10 (Dc
Do )
Dc为完全除去正胶膜所需要的最小曝光剂量, Do为对正胶不产生曝光效果所允许的最大曝光剂量。
光刻胶的侧墙倾斜
在理想的曝光过程中,投到光刻胶上的辐照区域应该 等于掩模版上的透光区域,在其他区域应该没有辐照能 量。
显影方式与检测
目前广泛使用的显影的方式是喷洒方法。 可分为三个阶段: ①硅片被置于旋转台上,并且在硅片表面上喷洒显影液; ②然后硅片将在静止的状态下进行显影; ③显影完成之后,需要经过漂洗,之后再旋干。
喷洒方法的优点在于它可以满足工艺流水线的要求。
显影之后,一般要通过光学显微镜、扫描电镜(SEM)或者激光系统来检查图形的 尺寸是否满足要求。
8.3、光刻胶的基本属性
光学光刻胶通常包含有三种成份: ①聚合物材料(树脂):附着性和抗腐蚀性 ②感光材料:感光剂 ③溶剂:使光刻胶保持为液态
光刻与刻蚀工艺流程ppt

硅片准备
涂胶种类
根据光刻掩膜版的要求,选择合适的涂胶材料。
涂胶厚度
控制涂胶的厚度,一般要求均匀、无气泡、无杂质。
涂胶
曝光方式
根据光刻掩膜版图形设计要求,选择合适的曝光方式。
曝光时间
控制曝光时间,保证光刻胶充分反应且不过度曝光。
曝光
显影液选择
根据光刻胶的性质,选择合适的显影液。
控制显影时间
显影时间要适当,以充分溶解光刻胶,同时避免损伤硅片表面。
纳米科技领域需要借助光刻和刻蚀技术来制造纳米级结构,从而进一步探索纳米世界的奥秘。
在生物医学工程领域,光刻和刻蚀技术可以制造出复杂的微纳结构,用于药物输送、组织工程等应用。
纳米科技
生物医学工程
建议与展望
06
优化工艺参数
通过严格控制实验参数,如波长、功率、曝光时间等,以提高工艺稳定性和效率。
引入先进设备
xx年xx月xx日
光刻与刻蚀工艺流程ppt
CATALOGUE
目录
光刻和刻蚀工艺简介光刻工艺详细流程刻蚀工艺详细流程光刻和刻蚀工艺的控制因素光刻和刻蚀工艺的未来发展建议与展望
光刻和刻蚀工艺简介
01
1
光刻工艺发展历程
2
3
最早的光刻工艺,分辨率较低,制程技术限制较大。
接触式光刻工艺
改善了分辨率和制程技术限制的问题,但仍然存在接触式光刻工艺的一些缺点。
采用先进的自动控制系统和智能化设备,实现工艺过程的实时监控和精准调控。
改进工艺流程
简化工艺流程,减少重复步骤,降低工艺时间和成本。
提高工艺稳定性与效率的措施
技术交叉融合
加强光刻和刻蚀工艺与材料科学、物理学、化学等学科的交叉融合,引入新技术,如纳米压印、离子束刻蚀等,提高工艺水平和效率。
光刻与刻蚀工艺

洁净室(1)
洁净室(2)
洁净室的等级定义方式:
(1)英制系统:
• 每立方英尺中直径大于或等于0.5um的尘埃粒子总数 不准超过设计等级数值。
(2)公制系统
• 每立方米中直径大于或等于0.5um的尘埃粒子总数不 准超过设计等级数值(以指数计算,底数为10)。
洁净室(3)
例子:
(1)等级为100的洁净室(英制),直径大于 或等于0.5um的尘埃粒子总数不超过100个/ft3
坚膜的目的
去除光刻胶中剩余的溶剂,增强光刻胶对硅片表 面的附着力
提高光刻胶在刻蚀和离子注入过程中的抗蚀性和 保护能力
5、坚膜
—显影后必须进一步增强光刻胶粘附力
(5)腐蚀
光刻胶 SiO2
Si
6、去胶
SiO2
Si (6)去胶
6、去胶
经过刻蚀或离子注入后,将光刻胶从表面除去 去胶方法
显影方式:
浸渍显影; 旋转喷雾显影
影响显影效果的因素 :
a.曝光时间; b.前烘的温度和时间; c.光刻胶的厚度; d.显影液的浓度; e.显影液的温度; f.显影液的搅拌情况
4、显影(Development)
4、显影(Development)
显影之后的检查 掩膜版选用是否正确
基本光刻技术
*实际工艺中正胶用的比较多,why?
a.分辨率高 b.抗干法腐蚀的能力较强 c.抗热处理的能力强 d.可用水溶液显影,溶涨现象小 e.可涂得较厚(2-3um)不影响分辨率,有较好台
阶覆盖性 f.适合1:1及缩小的投影光刻 负胶也有一些优点,如: 粘附性好,抗湿法腐蚀
接近式曝光
• 可以减小掩膜版损伤 • 间隙会在掩膜版图案边缘造成光学衍射 • 分辨率降低至2um~5um
光刻与刻蚀工艺流程

光刻与刻蚀工艺流程光刻和刻蚀是半导体工艺中重要的步骤,用于制备芯片中的电路。
光刻是一种通过使用光敏剂和光刻胶来转移图案到硅片上的技术。
刻蚀则是指使用化学物质或物理能量来去除或改变表面的材料。
光刻工艺流程分为四个主要步骤:准备硅片、涂敷光刻胶、曝光和开发。
首先,准备硅片。
这包括清洗硅片表面以去除杂质和污染物,然后通过浸泡于化学溶液中或使用化学气相沉积等方法在硅片上形成一层光刻胶的基础层。
第二步是涂敷光刻胶。
将光刻胶倒入旋转涂胶机的旋转碟中,然后将硅片放置在碟上。
通过旋转碟和光刻胶的黏度控制,使光刻胶均匀地铺在硅片上。
光刻胶的厚度取决于所需的图案尺寸和深度。
第三步是曝光。
在光刻机中,将掩膜对准硅片,然后使用紫外线照射光刻胶。
掩膜是一个透明的玻璃或石英板,上面有所需的电路图案。
曝光过程中,光刻胶中的光敏剂会发生化学反应,使得光刻胶在被曝光的区域变得溶解性,而未被曝光的区域仍保持完整。
最后一步是开发。
在开发过程中,使用盐酸、溶液或者有机溶剂等化学溶液将未曝光的光刻胶从硅片上溶解掉。
溶解后就会出现光刻胶的图案,这相当于将掩膜中的图案转移到硅片上。
在完成开发后,再对硅片进行清洗和干燥的处理。
刻蚀工艺流程通常根据需要的深度和形状来选择不同的刻蚀技术。
常见的刻蚀技术有湿刻蚀和干刻蚀。
湿刻蚀是将硅片浸泡在一个含有化学溶液的反应槽中,溶液会去除不需要的材料。
刻蚀速度取决于化学溶液中的浓度和温度以及刻蚀时间。
湿刻蚀通常用于较浅的刻蚀深度和简单的结构。
干刻蚀是使用物理能量如等离子体来去除材料。
等离子体刻蚀分为反应离子束刻蚀(RIE)和电感耦合等离子体刻蚀(ICP)。
在等离子体刻蚀中,通过加热到高温的氩气等离子体释放离子,离子会以高速束流撞击竖立在硅片表面的物质,去除不需要的材料。
干刻蚀通常用于深刻蚀和复杂的纳米级结构。
在刻蚀过程中,为了保护不需要刻蚀的区域,通常会将硅片用光刻胶进行覆盖。
在刻蚀结束后,光刻胶可以去除,暴露出所需要的图案。
光刻与刻蚀工艺

光刻工艺的基本步骤
涂胶
将光刻胶涂敷在硅片表面,以形成 光刻胶层。
烘烤
通过烘烤使光刻胶层干燥并固化。
曝光
将掩膜版上的图形对准硅片上的光 刻胶层,并使用曝光设备将图形转 移到光刻胶上。
显影
使用显影液将曝光后的光刻胶进行 化学处理,使图形更加清晰地展现 出来。
光刻工艺的重要性
光刻工艺是半导体制造中的关键环节,直接影响芯片的制造 质量和性能。
非接触式光刻
投影式非接触
利用光学系统将掩膜板上的图像投影到光刻胶涂层上,优点是无需直接接触,缺点是难度较高,需要精确的控 制系统。
电子束光刻
利用电子束在光刻胶上直接曝光,优点是分辨率高、无需掩膜板,缺点是生产效率低。
投影式光刻
接触式投影
掩膜板与光刻胶涂层之间保持接触,通过投影系统将图像投影到光刻胶上,优点是操作简单、高效, 缺点是图像质量可能受到掩膜板损伤和光刻胶污染的影响。
涂胶/显影技术
01
02
03
涂胶
在晶圆表面涂上一层光敏 胶,以保护非曝光区域并 提高图像对比度。
显影
用适当的溶剂去除曝光区 域的光敏胶,以形成所需 的图案。
控制胶厚
保持胶厚均匀,以避免图 像的扭曲和失真。
烘烤与曝光技术
烘烤
通过加热去除晶圆表面的湿气,以提高光敏胶的灵敏度和图像质 量。
曝光
将掩模图像投影到光敏胶上,通过光化学反应将图像转移到晶圆 上。
扫描投影
利用扫描系统将掩膜板上的图像投影到光刻胶上,优点是分辨率高、生产效率高,缺点是需要精确的 控制系统和高质量的掩膜板。
03
光刻工艺中的关键技术
光学系统
紫外光源
产生短波长的光,以获得更好的分辨率和更来自的 特征尺寸。反射镜和透镜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显影方式与检测
目前广泛使用的显影的方式是喷洒方法。 可分为三个阶段: ①硅片被置于旋转台上,并且在硅片表面上喷洒显影液; ②然后硅片将在静止的状态下进行显影; ③显影完成之后,需要经过漂洗,之后再旋干。
喷洒方法的优点在于它可以满足工艺流水线的要求。
显影之后,一般要通过光学显微镜、扫描电镜(SEM)或者激光系统来检查 图形的尺寸是否满足要求。
前烘的温度和时间
前烘的温度和时间需要严格地控制。 前烘的温度太低或时间太短 光刻胶层与硅片表面的黏附性差; 由于光刻胶中溶剂的含量过高,曝光的精确度也会变差; 太高的溶剂浓度使显影液对曝光区和非曝光区光刻胶的选择性下降,导 致图形转移效果不好。 前烘温度太高 光刻胶层的黏附性也会因为光刻胶变脆而降低; 过高的烘焙温度会使光刻胶中的感光剂发生反应,使光刻胶在曝光时的 敏感度变差。
在前烘过程中,由于溶剂的挥发,ቤተ መጻሕፍቲ ባይዱ刻胶的厚度也会减薄,一般减小 的幅度为10%-20%左右。
前烘的作用
降低灰尘的玷污; 减轻因高速旋转形成的薄膜应力,从而提高光刻胶的附着性。 如果光刻胶没有经过前烘处理,对于正胶来说,非曝光区的光刻胶
由于溶剂的含量比较高,在显影液中也会溶解变簿,从而使光刻胶 的保护能力下降。
如果不能满足要求,可以返工。因为经过显影之后只是在光刻胶上形成了 图形,只需去掉光刻胶就可以重新进行上述各步工艺。
8.1.5、坚膜
硅片在经过显影之后,需要经历一个高温处理过程,简称坚膜。 坚膜的主要作用是除去光刻胶中剩余的溶剂,增强光刻胶对硅片 表面的附着力,同时提高光刻胶在刻蚀和离子注入过程中的抗蚀性 和保护能力。 通常坚膜的温度要高于前烘温度。
涂胶的过程应始终在超净环境中进行。同时喷洒的光刻胶溶液中不 能含有空气,因为气泡的作用与微粒相似,都会在光刻工艺中引起缺陷。
8.1.2、前烘
在液态的光刻胶中,溶剂的成份占65%-85%,经过甩胶之后,虽然 液态的光刻胶已经成为固态的薄膜,但仍含有10%-30%的溶剂,涂胶 以后的硅片,需要在一定的温度下进行烘烤,使溶剂从光刻胶内挥发出 来,这一步骤称为前烘。 (前烘后光刻胶中溶剂含量降至到5%左右)
涂胶
把硅片放在一个平整的金属托盘上,有小孔与真空管相连,硅片就被吸在 托盘上,硅片与托盘一起旋转。
涂胶工艺步骤: ①将光刻胶溶液喷洒到硅片表面上; ②加速旋转托盘(硅片),直至达到需要 的旋转速度; ③达到所需的旋转速度后,保持一定 时间的旋转。
光刻胶的膜厚
光刻胶的膜厚与光刻胶本身的黏性有关 对于同样的光刻胶,光刻胶的膜厚由旋转速度决定,转动速度越快, 光刻胶层的厚度越薄,光刻胶的均匀性也越好。
脱水烘焙
以光刻胶在SiO2表面的附着情况为例,由于SiO2的表面是亲水性的,而 光刻胶是疏水性的,SiO2表面可以从空气中吸附水分子,含水的SiO2会使 光刻胶的附着能力降低。因此在涂胶之前需要预先对硅片进行脱水处理, 称为脱水烘焙。 ①在150-200℃释放硅片表面吸附的水分子; ②在400℃左右使硅片上含水化合物脱水; ③进行750℃以上的脱水。
目前已经开始采用线宽为0.2-0.1μm的加工技术。
ULSI中对光刻的基本要求
①高分辨率。通常把线宽作为光刻水平的标志,线宽越来越细,要求光 刻具有高分辨率。 ②高灵敏度的光刻胶。光刻胶的灵敏度通常是指光刻胶的感光速度。光 刻胶灵敏度提高,曝光时间短,但往往使光刻胶的其他属性变差。 ③低缺陷。在集成电路芯片的加工进程中,如果在器件上产生一个缺陷, 即使缺陷的尺寸小于图形的线宽,也可能会使整个芯片失效。 ④精密的套刻对准。集成电路芯片的制造需要经过多次光刻,在各次曝 光图形之间要相互套准。通常要采用自动套刻对准技术。 ⑤对大尺寸硅片的加工。为了提高经济效益和硅片利用率,一般在一个 大尺寸硅片上同时制作很多个完全相同的芯片。对于光刻而言,在大尺 寸硅片上满足前述的要求难度更大。
8.1、光刻工艺流程
曝光、显影、刻蚀(或淀积)是光刻过程中的三个主要步骤。
8.1.1、涂胶
在集成电路工艺中,光刻胶层的作用是在刻蚀或离子注入过程中,保 护被光刻胶覆盖的材料。因此,光刻胶层与硅片表面之间需要牢固地黏 附。
涂胶的目的是在硅片表面形成厚度均匀、附着性强、并且没有缺陷的 光刻胶薄膜。
在涂胶之前,硅片一般需要经过脱水烘焙并且涂上用来增加光刻胶与 硅片表面附着能力的化合物。
涂布HMDS
在涂胶之前,还应在Si片表面上涂上一层化合物,其目的也是为了增强 光刻胶与硅片之间的附着力。目前应用比较多的是六甲基乙硅氮烷(简称 HMDS) 。
在实际应用中,HMDS的涂布都是以气相的方式进行的,HMDS以气态 的形式输入到放有硅片的容器中,然后在硅片的表面完成涂布。
还可以将脱水烘焙与HMDS的气相涂布结合起来进行。硅片首先在容器 里经过100-200℃的脱水烘焙,然后直接进行气相涂布。由于避免了与大气 的接触,硅片吸附水分子的机会将会降低,涂布HMDS的效果将会更加理 想。
前烘的加热方式
前烘通常采用干燥循环热风、红外线辐射以及热平板传导等 热处理方式。
在ULSI工艺中,常用的前烘方法是真空热平板烘烤。真空热 平板烘烤可以方便地控制温度,同时还可以保证均匀加热。
8.1.4、显影
以正胶为例,在显影过程中,曝光区的光刻胶在显 影液中溶解,非曝光区的光刻胶则不会溶解。曝光后 在光刻胶层中形成的潜在图形,显影后便显现出来。
第八章 光刻与刻蚀工艺
光刻是集成电路工艺中的关键性技术。在硅片表面涂上 光刻胶薄层,经过光照、显影,在光刻胶上留下掩模版的图 形。
在集成电路制造中,利用光刻胶图形作为保护膜,对选 定区域进行刻蚀,或进行离子注入,形成器件和电路结构。
随着集成电路的集成度不断提高,器件的特征尺寸不断 减小,期望进一步缩小光刻图形的尺寸。