纺织材料学第二章
纺织材料学第二章_植物纤维

主要成份:纤维素(葡萄糖剩基以苷键反转180°相连)
约95%。
纤维素的化学结构:
纤维素分子式:
n:6000-15000
伴生物:蜡质、糖份、果胶、灰分,占5%左右
17
2. 化学性质
(1)水的作用:不溶于水,但会膨胀。纵向:1%-2%; 横向:40%-45%(织物变厚导致缩水)。 (2)碱的作用:在碱中较稳定,不会被破坏。 丝光:通常是指棉制品(纱、布)在张紧状态 下经碱液(NaOH或液氨)处理,以获得持久的光泽, 并提高对染料吸附能力的加工过程。
39
将棉纤维成熟程度分为18组后所规定的18个 数值,最不成熟的棉纤维成熟度系数定为零,最 成熟的棉纤维成熟度系数定为5,用以表示棉纤 维成熟度的高低。棉纤维成熟度系数与腔宽壁厚 比值间的对应关系见下表。
40
一般正常成熟的细绒棉成熟度系数为1.5~2.0 左右,长绒棉成熟度系数2.0左右,从纺纱角度考 虑成熟度系数为1.7 ~ 1.8较为理想。 (2)测试方法 A. 中腔胞壁对比法:最基本的测试方法 B. 偏振光法 偏光显微镜法:用干涉的颜色判别 偏光成熟度仪:成熟度不同偏振光透过率不 同,得平均成熟度等数。 C. NaOH膨胀法(显微镜法):18%NaOH D. 气流仪法
与纤维轴倾斜呈螺旋形,在纤维长度方 向上有左有右,使得棉纤维有天然转 曲。) 日轮
中腔:影响颜色、保暖性等
(1)纤维停止生长后,胞壁内遗留下来的空隙。 同一品种的棉纤维,外周长大致相等,次生层 厚时中腔就小,次生层薄时中腔就大。 (2)含有少量原生质和细胞核残余,对棉纤维的 颜色有影响。
16
四、棉纤维的组成及;C-周长;
43
测量方法:显微镜切片法。
纺织材料学(于伟东-中国纺织出版社)课后答案

纺织材料学(于伟东-中国纺织出版社)课后答案第一章纤维的分类及发展2、棉,麻,丝,毛纤维的主要特性是什么?试述理由及应该进行的评价。
棉纤维的主要特性:细长柔软,吸湿性好(多层状带中腔结构,有天然扭转),耐强碱,耐有机溶剂,耐漂白剂以及隔热耐热(带有果胶和蜡质,分布于表皮初生层);弹性和弹性恢复性较差,不耐强无机酸,易发霉,易燃。
麻纤维的主要特性:麻纤维比棉纤维粗硬,吸湿性好,强度高,变形能力好,纤维以挺爽为特征,麻的细度和均匀性是其特性的主要指标。
(结构成分和棉相似单细胞物质。
)丝纤维的特性:具有高强伸度,纤维细而柔软,平滑有弹性,吸湿性好,织物有光泽,有独特“丝鸣”感,不耐酸碱(主要成分为蛋白质)毛纤维的特性:高弹性(有天然卷曲),吸湿性好,易染色,不易沾污,耐酸不耐碱(角蛋白分子侧基多样性),有毡化性(表面鳞片排列的方向性和纤维有高弹性)。
3、试述再生纤维与天然纤维和与合成纤维的区别,其在结构和性能上有何异同?在命名上如何区分?答:一、命名再生纤维:“原料名称+浆+纤维” 或“ 原料名称+黏胶”。
天然纤维:直接根据纤维来源命名,丝纤维是根据“植物名+蚕丝”构成。
合成纤维:以化学组成为主,并形成学名及缩写代码,商用名为辅,形成商品名或俗称名。
二、区别再生纤维:已天然高聚物为原材料制成浆液,其化学组成基本不变并高纯净化后的纤维。
天然纤维:天然纤维是取自植物、动物、矿物中的纤维。
其中植物纤维主要组成物质为纤维素,并含有少量木质素、半纤维素等。
动物纤维主要组成物质为蛋白质,但蛋白质的化学组成由较大差异。
矿物纤维有SiO2 、Al2O3、Fe2O3、MgO。
合成纤维:以石油、煤、天然气及一些农副产品为原料制成单体,经化学合成为高聚物,纺制的纤维7、试述高性能纤维与功能纤维的区别依据及给出理由。
高性能纤维(HPF)主要指高强、高模、耐高温和耐化学作用纤维,是高承载能力和高耐久性的功能纤维。
功能纤维是满足某种特殊要求和用途的纤维,即纤维具有某特定的物理和化学性质。
纺织材料学 第二章 纤维的结构特征

24
1)聚合度与力学性质的关系:
n→n临,纤维开始具有强力; n↑,纤维强力↑(∵n↑;大分子间的结合
键↑结合能量变大); 但n增加至一定程度,强力趋于不变。 n低时,一般来说,纤维的强度低些,湿
强度也低些,脆性明显些。
2020/6/28
25
聚合度与力学性质的关系
强 度
P
no
2020/6/28
即聚合物的相对分子质量具有多分散性,每个聚合物试 样都有其相对分子质量分布,其相对分子质量只具有统 计平均的意义。
2020/6/28
22
高分子链的形态
高分子链的形态有微构象与宏构象之分:
微构象:指高分子主链键构象 宏构象:指整个高分子链的形态
构象:由于高分子链上的化学键的不同取向引 起的结构单元在空间的不同排布。
2020/6/28
6
(3)原纤 由若干基原纤或含若干根微原纤大致平行组合
在一起的更为粗大的大分子束,直径10-30nm。
(4)巨原纤 由多个微原纤或原纤堆砌而成的结构体,直径
100-600nm。
(5)细胞 由巨原纤或微原纤直接堆砌而成的,并有明显
的细胞边界。
2020/6/28
7
二、纤维的聚集态结构(超分子结构,分子 间结构)
的化学键
是化学键中作用力较弱 的一种,能量30~50千
卡/克分子
少数纤维的大分子之间存在这桥式 侧基。化学键主要包括共价键、离 子键和金属键
能量50~200千卡/克分
子
9
四种结合力的能量大小:
– 化学键>盐式键>氢键>范德华力
四种结合力的作用距离:
– 化学键<盐式键<氢键<范德华力
2020/6/28
纺织材料学第二章

4
• (2) 各层次原纤的特征
• 基原纤(proto-fibril或elementary fibril)是原 纤中最小、最基本的结构单元,亦称晶须, 无缺陷。
• 微原纤(micro-fibril)是由若干根基原纤平行 排列组合在一起的大分子束,亦称微晶须, 带有在分子头端不连续的结晶缺陷,是结 晶结构。
2021/9/21
25
2021/9/21
26
• 2. 羊毛纤维的结构特征
• (1) 羊毛纤维的组成 • 羊毛纤维的基本组成是α氨基酸螺旋大分子,
α氨基酸是哺乳动物组织的基本组成。羊毛 角蛋白大分子的构成及相互链接作用,是 多交联的结构,尤其是二硫键(-S-S-)。
• 由C、H、O、N、S元素组成。 • 侧基多而复杂,约25种氨基酸。 • 空间形态: 羊毛的稳定结构是α型,α型加外力—
• 体积结晶度:纤维内结晶区的体积占纤维总体
2021积/9/21的百分率。 (p48 式2-8)
9
W W a W ca V a c V ca V a V c c V c
VV V
V
Wc a •c W c a
2021/9/21
10
• 结晶度对纤维结构与性能的影 响:
• 结晶度↑ →纤维的拉伸强度、初始模量、 硬度、尺寸稳定性、密度↑;
取向和无序排列的缨状微胞结构
2021/9/21
12
• 3. 纤维的取向结构
• 取向度:大分子排列方向与纤维轴向符合的 程度.
• 纤维的取向结构使纤维许多性能产生各向 异性。
• 取向度与纤维性能间的关系:
• 取向度大——大分子可能承受的轴向拉力 也大,拉伸强度较大,伸长较小,模量较 高,光泽较好,各向异性明显.
纺织材料学第二章

2021年7月21日星期三
第二章:天然纤维素纤维
内容提要:
天然纤维素纤维(棉、麻)的分类;形态结构
特征;主要性能的概念、指标,检验方法。
重点难点:
重点的形态结构和指标。指标体系及表述是难
点。
解决方法:
建立清晰的概念,讲课速度放慢一些,对在后
面章节还会出现的长度、细度、强度等的概念
和指标可采用螺旋上升的方法教学。成熟度要
2021/7/21
纺织与材料学院纺织工程系
(3)测量: ①摆锤式(Y162)束纤维强力机(注意:实 测值、真实值、断裂不同时性,学习一种思 维方式) ②卜氏强度机 ③斯特洛强力仪 ④单纤维强力仪
2021/7/21
纺织与材料学院纺织工程系
5、天然转曲: 棉纤维的外形特征之一,转曲的存在,使
抱合力增大,有利于纺纱,提高产品的质量。 形成的原因主要在于:棉纤维生长发育过程中 微原纤集体性沿纤维轴向的螺旋变向所致。 其指标的应用和测量在企业中很少见。
纺织与材料学院纺织工程系
(一)商业检验(业务检验)
四项内容:品级、长度、水分、杂质疵点,检验
突出一个‘快’字。
1、品级检验:按成熟度、色泽特征、轧工质量
将细绒棉分为七级,1级最好,1-5级为纺用棉。
细绒棉分五级,一级最好。实物标准是最低标准。
2、长度检验:用手扯法来测定,以手扯长度为
计价的依据,每2mm为一价格差。(误差由国家
纺织与材料学院纺织工程系
(4)细度测定:(原理、指标) ①中段切断称重法(注意教材第25页图1-4的 介绍) ②气流仪法 ③其它方法: A:测长称重法(单根)B显微放大投影法 (宽度、截面积)
2021/7/21
《纺织材料学》第五版网课题库附答案

第一章:纤维的结构1.大分子中的单基结构会影响纤维的哪些的性能(ABCD)A.耐酸性B.染色性C.吸湿性D.耐光性2.初生纤维的断裂强度可以通过拉伸工序提高,这是由于结晶度得到提高。
×(拉伸工序是取向度的提高。
)3.羊毛纤维是多细胞纤维,所以不存在原纤结构。
×(只要是纤维基本具备原纤结构,但具备完整的原纤结构的只有棉、毛纤维,合成纤维都不具有完整的原纤结构)4.(识记)纺织纤维的结晶度越高,纤维力学性能越好。
×(结晶度越高,纤维力学性能是越好,但是如果过高就会力学性能变差,就会成为脆性纤维,所以不是结晶度越高越好。
)第二章:纺织纤维的形态及基本性质5.其他条件不变,纤维越细,细纱强度()DA.没有规律B.越低C.不变D.越强6.纤维越长,纱线中的毛羽()CA.越多B.没有规律C.越少D.没有关系(在保证纺纱具有一定强度下,纤维越长,整齐度高,则可纺纱线性好,细纱条干均匀度好,纱面表面光洁,毛羽较少。
)7.纤维和纱线的特数越高,()AA.细度越粗B.长度越短C.细度越细D.长度越长(线密度、纤度是正相关,公制支数是负相关。
)8.纺纱工艺设计时使用主体长度。
×(纺纱工艺设计使用品质长度作为参考参数。
)第三章:植物纤维9.(1)棉纤维的长度仅取决于纤维品种。
×(纤维的化学组成、物理性质和长度大小主要取决于生长的部位和本身结构)(2)棉纤维长度较长,即使有较多短绒,也不影响纱线条干均匀度。
(只要短绒的存在就会影响条干均匀度)(3)棉纤维越细,所纺纱线越细,条干均匀度越好,但纱线强力不好。
(纤维越细,所纺纱线越细,条干均匀度越好,纱线强力也会越好,因为细纤维间抱合力大,增加纱线的断裂强力)(4)(识记)棉纤维的成熟系数大小仅与次生层厚度有关。
√(5)正常成熟时,长绒棉成熟度系数比细绒棉的成熟度系数低。
×(两种不同品种的纤维成熟度没有可比性)(6)棉纤维成熟度系数越高,纤维强力越高,有利于成纱条干均匀度。
纺织材料学第2章纤维结构特征

呈平面锯齿形。纤维弹性好。
超分子结构:
? 分子间有范德华力、氢键力; ? 结晶度比涤纶略低 。
3、腈纶
大分子结构:
单体:
第一单体:丙烯腈(超过85%),纯丙烯腈纤维脆
第二单体:丙烯酸甲酯、甲醛丙烯酸甲酯、醋酸乙烯酯 等,改善弹性和手感。
S
:与S
3
结构相似。含有非纤维物质。
1
中腔:棉纤维生长停止后遗留下的内部空隙。有少数原
生质和细胞核残余物质。
二、蛋白质纤维结构特征
1、大分子结构 图 基本链节 :α-氨基酸剩基
R侧基—羊毛:多、复杂,约25种氨基酸; 蚕丝:少、简单,约18种氨基酸。
大分子链空间构型 : 羊毛:α螺旋卷曲型长链分子
如羊毛纤维大分子间的—S—S—。
? 四种结合力的能量大小: 共价键>盐式键>氢键>范德华力
209.3~837.36J/mol 126~209.3J/mol 5.4 ~ 42.3J/mol 2.1~23j/mol;
? 四种结合力的作用距离: 共价键<盐式键<氢键<范德华力
分子间力的大小取决于: 1.单基化学组成 2.聚合度 3.分子间距离
非晶区:纤维大分子无规律地紊乱排列的区域。 非晶区特点:
a.大分子链段排列混乱,无规律; b.结构松散,有较多的缝隙、孔洞; c.相互间结合力小,互相接近的基团结合力没饱和。
结晶度—结晶部分占整根纤维的百分比。
重量结晶度:纤维内结晶区的重量占纤维总重量的百分率。 体积结晶度:纤维内结晶区的体积占纤维总体积的百分率。
? 正、偏皮质细胞分布形式有“ 双边结构”和 “皮芯结构”。
? 双边结构:细羊毛的正副皮质细胞(结构与 性能不同)分布于纤维的两侧,并在长度方 向上不断转换位置,正皮质一般在纤维卷曲 处的外侧,而副皮质处于卷曲的内侧,使羊 毛具有天然卷曲。 图
纺织材料学第二章(07)

纺织材料学第二章(07)
• (2) 复合与超细 • 复合纤维的常见结构如图2-28所示,主要
为双组份的,但也可以是多组份的,此时 结构将变得复杂。
纺织材料学第二章(07)
• 对环芯多层结构的夹 层大量掺入碳黑,并 在纤维主体中,并在 纤维主体中也掺入碳 黑,制成耐久性抗静 电、导电纤维。
纺织材料学第二章(07)
• 超细纤维
纺织材料学第二章(07)
• (3) 弹性结构 • 弹性结构的获得主要是通过纤维的分子结
构聚集态结构获得,分子结构中最为主要 的是分子链的柔性和构象。
纺织材料学第二章(07)
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/30
纺织材料学第二章(07)
纺织材料学第二章(07)
• 二、纤维的聚集态结构 • 具体所指纤维高聚物的结晶与非晶结构、
取向与非取向结构 . • 1. 纤维的结晶结构 • 将纤维大分子以三维有序方式排列,形成
稳定点阵,形成有较大内聚能和密度并有 明显转变温度的稳定点阵结构,称为结晶 结构。
纺织材料学第二章(07)
结晶态:纤维大分子有规律地整齐排列的状态。
纺织材料学第二章(07)
常用纤维的单基
• 纤维素纤维:-葡萄糖剩基 • 蛋白质纤维:-氨基酸剩基 • 涤纶:对苯二甲酸乙二酯 • 锦纶:己内酰胺 • 丙纶:丙烯 • 腈纶:丙烯腈
纺织材料学第二章(07)
• 单基的化学结构、官能团的种类决定了纤 维的耐酸、耐碱、耐光、吸湿、染色性等, 单基中极性官能团的数量、极性强弱对纤 维的性质影响很大。
为基原纤→微原纤→原纤→巨原纤→细胞。
纺织材料学第二章(07)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范德华力
存在于一切分子之间的一种吸引力。 包括定向力、诱导力、色散力。
作用范围小于1纳米,作用能比化学键小1-2个数量 级。
氢键
极性很强的X-H键上的氢原子,与另一个键 上电负性很大的原子Y上的孤对电子相互吸引 而形成的一种键(X—H· · · Y)。
立体异构不同材料性能不同 全同聚苯乙烯:结构规整,能结晶,熔点 240°。 无规聚苯乙烯:不能结晶,熔点80°。 全同或间同聚丙烯:结构规整易结晶,可 纺丝成纤。 无规同聚丙烯:不能结晶,是胶状粘弹体。
2)几何异构(顺反异构)
几何异构——内双键上的基团在双键两侧 排列方式不同而引起的异构(因为内双键 中键是不能旋转的)。
聚合度与力学性质的关系:
n低时,一般来说,纤维的强度低些。 n→n临,纤维开始具有强力; n↑,纤维强力↑(∵n↑;大分子间的结合 键↑结合能量变大); 但n增加至一定程度,强力趋于不变。
强 力
临界聚合度/分子量
聚合度/分子量
3、纤维大分子链的内旋性、构象
大分子链中的单键能绕着它相邻的键按一 定键角旋转,称为键的内旋转。
2) 纤维大分子结构与柔曲性的关系
主链上原子链弹性好,链节易绕主轴旋转, 柔曲性↑; 侧链较少,链节易绕主轴旋转,∴柔曲性↑ 主链四周侧基分布对称,链节易绕主轴旋 转,∴柔曲性↑; 侧基间(大分子间)作用力较少,链节易 绕主轴旋转,∴柔曲性↑; 温度↑,内旋转加剧,大分子链柔曲性↑。
大分子柔性对纤维性能的关系
分子链由于围绕单键内旋转而产生的原子 在空间的不同排列形式称为构象。
l α α β l 转动锥角 键角 链段长 l β
分子的内旋转示意图
分子的 构象
分子间的 排列
纤维大分子的典型构象示意图
4、纤维大分子链的柔曲性
1) 定义:指纤维大分子在一定条件下, 通过内旋转或振动而形成各种形状(改变 构象)的难易程度。 单键的内旋转是大分子链产生柔曲性的根 源。对于高聚物而言,其中的大分子链的 内旋转除了受分子内原子或基团相互影响 外分子间作用力及环境温度也有很大影响。
i
W
i
i
1
wi ni M i
常用的统计平均分子量有以下几种: (1)数均分子量 M n :以数量为统计权重的平均分子量。
nM w n n
i i i i i
Mn
Ni M i
i
(1-1)
(2)重均分子量 M w :以重量为统计权重的平均分子量。
Mw
2 n M i i
结晶度↓→纤维吸湿性↑;容易染色;拉伸强 度较小,变形较大,纤维较柔软,耐冲击性, 弹性有所改善,密度较小,化学反应性比较活 泼 。
对纤维甚至原纤来说,很少存在完善的结晶区, 往往是结晶与非晶区的混合体。
2.结晶度
结晶度是指纤维中结晶部分占纤维整体的比率, 不涉及晶体的形式及分布。在理论上,可分为 体积结晶度XV和质量结晶度XW 。 重量结晶度:纤维内结晶区的重量占纤维总重 量的百分率。 体积结晶度:纤维内结晶区的体积占纤维总体 积的百分率。
近程结构(一级结构):研究纤维的化学组成 (构造和构型) 1.构造:即骨架,分子中的原子和键的序列。
1)链节: 结构单元的化学组成——由什么元素组成 结构单元的键接方式——单双键 2)主链:指纤维大分子共聚物的序列结构、支化 形态 和交联。对高分子的性能有影响。 3)官能团:端基和侧基
结构单元
主链
(4)粘均分子量 M :用稀溶液粘度法测得的平均分子量。
i ni M i
定义
1
M n M M M n M
1 i i i i 1 i i
i
ni M i n M i i
1 1/ a
这里的a是指特性粘数分子量关系式
n M
i i
i
i
w M W M w
i i i i i i i
i
(1-2)
(3)z均分子量 M z :以z值为统计权重的平均分子量。 定义
Zi wi M i
Mz
zi M i
i
z
i
2 w M i i
i
w M
i i
i
3 n M i i
i
n M
i i
i
2 i
(1-3)
发生在分子极性基团之间的作用力。
键能与范德华力的数量级相同
纺织纤维中常见的氢键: O—H· · · O N—H · · ·N N—H · · ·O C—H · · ·N
盐式键
存在于部分纤维大分子间。 如羊毛、蚕丝大分子侧基上的羧基(— COOH)和氨基(—NH 2 )可形成盐式 + H 3 N— 键 —COO¯ · · · 盐式键键能大于氢键,小于化学键
远程结构(一级结构)
主要研究:分子的分子量、分子量分布、构象 及柔顺性 1.聚合度 定义:构成纤维大分子的单基的数目,或一 个 大分子中的单基重复的次数(n)。
大分子的分子量=单基的分子量×聚合度
常用纤维的n:
棉麻的聚合度很高 ,成千→上万; 羊毛 n=576; 蚕丝 n=400 再生纤维素纤维 300-600 涤纶 130 晴纶 1000-1500 维纶 n=1700 丙纶 n=310-430 一根纤维中各个大分子的n不尽相同,具有 一定的分布 → 高聚物大分子的多分散性。
前两者为微观结构,后者为宏观结构
纤维结构层次示意图
纤维的结构层次 纤维的形态结构 (三级结构)
微 观 形 态 结 构
宏 观 形 态 结 构
第一节 纺织纤维的大分子结构(一 级结构)
纺织纤维除了无机纤维(玻纤、石棉纤维、 金属纤维)等外,绝大多数都是高分子化 合物(即高聚物),分子量很大。
一、链结构
晶区特点
1)大分子链段排列规整 2)结构紧密,缝隙,孔洞较少 3)相互间结合力强,互相接近的基团结合力 饱和
结晶度↑ →纤维的拉伸强度、初始模量、 硬度、尺寸稳定性、密度↑,纤维的吸湿性、 染料吸着性、润胀性、柔软性、化学活泼性↓。
非晶区特点:
1)大分子链段排列混乱,无规律; 2)结构松散,有较多的缝隙,孔洞; 3)相互间结合力小,互相接近的基团结合力没 饱和。
纤维大分子的主链一般都具有一定的内旋转自由度, 使大分子链具有一定的柔曲性。
由于热运动,在不同条件下,纤维大分子的构象可 以不断改变。
第二节 纺织纤维的聚集态结构
一、大分子间作用力(次价键力)
高分子链的形成主要靠主价力(化学键),高分子链聚集成 高聚物主要靠次价键力(分子间的力)。
纤维大分子间的作用力使纤维中的大分子形成 一种较稳定的相对位臵,或较牢固的结合,使 纤维具有一定的物理机械性质。
Molecular weight distribution
2.平均分子量的定义 假设一个高聚物总共有 其中分子量大小不同的有 对应分子量为M i 的分子数有 分子量为 M i 的质量是 n个分子 质量为w
m1m2 m3 mi mn
n1 n2 n3 ni nn
w1 w2 w3 wi wn
二、聚集态结构
超分子结构(聚集态结构):具有一定构象
的大分子链通过分子链间的作用力而相互排列、 堆砌而成的结构。 纤维的超分子结构是在天然纤维的生长过程或 化学纤维的纺丝成形及后加工过程中形成的。
高聚物的基本性质取决于大分子结构,而实 际高聚物材料或制品的使用性能则直接取决 于在加工过程中形成的超分子结构(聚集态 结构)。
1、结晶 Crystalline regions 与非晶Amorphous regions
(1)结晶区:纤维大分子有规律地整齐排列的区域。 (2)结晶态:纤维大分子有规律地整齐排列的状态。
(3)结晶度:纤维内部结晶区占整个纤维的百分率。
(4)非晶态:纤维大分子无规律地乱排列的状态。 (5)非晶区:纤维大分子无规律地乱排列的区域。
Vc a Xv V c a
Xw Wc 1 / a 1 / W 1/ a 1/ c
结晶度的测量
2.结晶度的测定方法 1.密度法 (1) 密度法 由于测定方法不同,其结果不同,因此又称为密度结晶度 假定比容(specific volume)v 等于晶区和非晶区的线性加和
KM a 中的指数。
(1-4)
一般情况下有: M z M w M M n
分子量的分布(聚合度的分布)
平均分子量是分子量大小的平均水平,不能反 应分子量的分布情况。
N M W M
n的分布:希望n的分布集中些,分散度小些,这对 纤维的强度,耐磨性、耐疲劳性、弹性都有好处。
分子量为 M i的分子的质量占总质量的分数为
w w w1 w2 w3 i n W W W W W
分子量为 M i的分子数占总分子数的分数为
n nn n1 n 2 n3 i N N N N N
则这些量之间存在下列关系:
n
i
i
n
1
w
i
i
w
ni Ni n
wi Wi w
N
i
v X v C (1 X )v a
W C W C
W vC
va v a c va vc c a
假定试样的密度 等于晶区和非晶区密度的线性加和
V V XC C (1 X C )a
化学键
网状构造的大分子可由化学键构成交联。