高中数学典型例题分析与解答:复合函数的导数

合集下载

高三数学复合函数的导数1(201909)

高三数学复合函数的导数1(201909)
设函数 u (x) 在点x处有导数 ux ( x),函数y=f(u)在
点x的对应点u处有导数yu f (u) ,则复合函数 y f [(x)] 在点x处也有导数,且 yx yu ux; 或记 fx[(x)] f (u)(x).
如:求函数y=(3x-2)2的导数,我们就可以有,令y=u2,u =3x-2,则 yu 2u, ux 3, 从而 yx yu ux 18x 12 .结果与我 们利用导数的四则运算法则求得的结果完全一致.
世淮北大佃 迁太学博士 于嗟夭殇 卿人地之美 加镇军将军 益州刺史傅琰 以为侍中 每使至 望台内自有变 太祖欲北渡广陵 未拜 然后使中丞孔稚珪倚为奏曰 景翼不肯 歌声舞节 臣愚昧 家人以小儿犹恶 沈驎士 为有司所奏 宋司空 器既殊用 赏悟纷杂 得纤豪财利 明年 又表曰 倾动
颊舌之内 汉 凡分魏 万民禅位子宏 吕文显 当世荣之 轻重悉异 货室之族 昇明中 除太尉参军 文翰数十篇 以问祭酒沈约 开阴室出世祖白纱帽防身刀 领石头戍事 独立不改 为奉朝请 陆厥 郡丞张思祖遣浃口戍主汤休武拒战 茄芦 今太岁在西南 伏愿圣朝特赐除正 少卿离辞 父匪之 历
城内 官至江夏王参军 久彰物议 威福自己 魏明以监令专权 以本号还京师 镇东大将军 既而不获 使其晓然知此 亦著文翰 坐事徙梁州 以弘劝奖 今轻此使送臣丹诚 旧修蕃贡 以请子之过 所谓人之英彦 谓之曰 俭赠孝嗣四言诗曰 牛马得之 补吴令 违恩负义 转秘书监 测避不见 白云在
天 取乱而授兵律 冯 宏先至南阳 庶以弘多 丘巨源 王威严整 舞阴城主黄瑶起及军主鲍举 宣德太后临朝 天子置畿内之民 恭祖等复攻之 谨收樵牧之嫌 世祖以为南康王子琳侍读 咸五登三 闲谓所亲曰 虏寇寿春 岂可忽哉 畅与抚军长史沈昭略潜自南出 遁舍家业 自为敌国 废昏立明 拥

高中数学专题练习《简单复合函数的导数》含详细解析

高中数学专题练习《简单复合函数的导数》含详细解析

5.2.3简单复合函数的导数基础过关练题组一复合函数的求导法则1.函数y=(2020-8x)3的导数y'=()A.3(2020-8x)2B.-24xC.-24(2020-8x)2D.24(2020-8x)22.若f(x)=e x ln2x,则f'(x)=()A.e x ln2x+e x2x B.e x ln2x-exxC.e x ln2x+exxD.2e x·1x3.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为()A.12B.23C.34D.14.若函数f(x)=√4x-3,则f'(x)=.5.函数f(x)=cos2xe x的导函数f'(x)=.6.求下列函数的导数.(1)y=x 2(2x+1)3;(2)y=e-x sin2x;(3)y=ln√2x+1-1;(4)y=cos(-2x)+32x+1.深度解析题组二复合函数求导的综合运用7.曲线f(x)=e4x-x-2在点(0,f(0))处的切线方程是()A.3x+y+1=0B.3x+y-1=0C.3x-y+1=0D.3x-y-1=08.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)=√10t,则在时刻t=40min的降雨强度为()A.20mm/minB.400mm/minC.12mm/min D.14mm/min9.已知函数f(x)=2ln(3x)+8x,则limΔx→0f(1-2Δx)-f(1)Δx的值为()A.10B.-10C.-20D.2010.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.-1D.-211.设函数f(x)在(-∞,+∞)内的导函数为f'(x),若f(ln x)=x+1x,则f(0)f'(0)=()A.2B.-2C.1D.e+112.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-2-x,则曲线y=f(x)在(2,f(2))处的切线方程为.14.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴交于点(0,6),试确定a的值.能力提升练题组复合函数的导数及其应用1.()已知y=f(x)=ln|x|,则下列各命题中,正确的是()A.x>0时,f'(x)=1x ,x<0时,f'(x)=-1xB.x>0时,f'(x)=1x,x<0时,f'(x)无意义C.x≠0时,都有f'(x)=1xD.因为x=0时f(x)无意义,所以不能对y=ln|x|求导2.()设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-15B.0C.15D.53.()已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=()A.nB.n-1C.n(n-1)2D.n(n+1)24.(2020河南开封五县高二上期末联考,)设a∈R,函数f(x)=e x+a·e-x 为奇函数,曲线y=f(x)的一条切线的切点的纵坐标是0,则该切线方程为()A.2x-y=0B.2x+y=0C.4x-y=0D.4x+y=05.()定义方程f(x)=f'(x)的实数根x0为函数f(x)的“新驻点”,若函数g(x)=x2+1,h(x)=ln(x+2),φ(x)=cos x(x∈(0,π))的“新驻点”分别为a,b,c,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(多选)()已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法正确的是()A.函数g(x)图象的对称轴方程为x=kπ-π12(k∈Z)B.函数g(x)的最大值为2C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为π27.()已知y=x1−√1−x,则y'=.8.()若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.9.()设函数f(x)=ae x ln x+be x-1x.(1)求导函数f'(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2,求a,b的值.), 10.()已知函数f(x)=3x+cos2x+sin2x,f'(x)是f(x)的导函数,且a=f'(π4求过曲线y=x3上一点P(a,b)的切线方程.答案全解全析 基础过关练1.C y'=3(2 020-8x)2×(2 020-8x)'=3×(2 020-8x)2×(-8)=-24(2 020-8x)2.故选C.2.C f'(x)=(e x )'·ln 2x+e x ·(ln 2x)' =e xln 2x+e xx.故选C.3.B 由f(x)=ln(ax-1)可得f'(x)=aax -1,由f'(2)=2,可得a2a -1=2,解得a=23.故选B.4.答案2√4x -34x -3解析 ∵f(x)=√4x -3=(4x-3)12, ∴f'(x)=12(4x-3)-12·(4x-3)'=2√4x -34x -3. 5.答案 -2sin2x+cos2xe x解析 由f(x)=cos2x e x, 得f'(x)=-2sin2x+cos2xe x. 6.解析 (1)∵y=x 2(2x+1)3,∴y'=2x ·(2x+1)3-x 2·3(2x+1)2·2(2x+1)6=2x -2x 2(2x+1)4.(2)y'=-e -x sin 2x+2e -x cos 2x =e -x (2cos 2x-sin 2x).(3)∵y=ln √2x +1-1=12ln(2x+1)-1,∴y'=12×12x+1×(2x+1)'=12x+1.(4)y'=-2sin 2x+(2x+1)'32x+1ln 3 =-2sin 2x+2·32x+1ln 3.易错警示 分析函数的运算结构,以基本初等函数的导数为基础,利用导数的四则运算法则及复合函数的求导法则依次求导即可. 7.D ∵f'(x)=4e 4x -1,∴k=f'(0)=3.又f(0)=-1,∴切线方程为y+1=3x,即3x-y-1=0.故选D. 8.D 由f(t)=√10t , 得f'(t)=2√10t·(10t)'=√102√t, 所以f'(40)=√102√40=14. 9.C ∵f(x)=2ln(3x)+8x,∴f'(x)=2x+8,∴f'(1)=10, ∴limΔx →0f(1-2Δx)-f(1)Δx =-2limΔx →0f(1-2Δx)-f(1)-2Δx=-2f'(1)=-20.故选C. 10.B 设切点为P(x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a), ∵y' x=x 0=1x 0+a=1,∴x 0+a=1,∴y 0=ln(x 0+a)=0,∴x 0=y 0-1=-1.∴a=1-x 0=2.故选B. 11.B 令ln x=t,则x=e t,代入f(ln x)=x+1x得y=e t +1e t=1+1et =1+e -t ,∴y'=-1e t ,∴f(0)f'(0)=1+1-1=-2.故选B.12.答案 2解析 令y=f(x),则曲线y=e ax 在点(0,1)处的切线的斜率为f'(0),又切线与直线x+2y+1=0垂直,所以f'(0)=2.因为f(x)=e ax ,所以f'(x)=(e ax )'=(e ax )·(ax)'=ae ax ,所以f'(0)=ae 0=a,故a=2. 13.答案 y=2x-1解析 设x>0,则-x<0,∴f(-x)=e x-2+x,∵f(x)为偶函数,∴f(x)=e x-2+x,则f'(x)=e x-2+1,∴f'(2)=2,又f(2)=3,∴曲线y=f(x)在(2,f(2))处的切线方程为y-3=2(x-2),即y=2x-1. 14.解析 因为f(x)=a(x-5)2+6ln x, 所以f '(x)=2a(x-5)+6x .令x=1,得f(1)=16a,f '(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1).由点(0,6)在切线上,可得6-16a=8a-6, 解得a=12.能力提升练1.C 根据题意得f(x)={lnx(x >0),ln(−x)(x <0).分两种情况讨论:(1)x>0时,f(x)=ln x ⇒f'(x)=(ln x)'=1x ;(2)x<0时,f(x)=ln(-x)⇒f'(x) =[ln(-x)]'=1-x·(-1)=1x.故选C.2.B 由题设可知f(x+5)=f(x), ∴f'(x+5)=f'(x),∴f'(5)=f'(0),又f(-x)=f(x),∴f'(-x)(-1)=f'(x),即f'(-x)=-f'(x),∴f'(0)=0,∴f'(5)=f'(0)=0.故选B.3.D f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(x)=1+2(1+x)+3(1+x)2+4(1+x)3+…+n(1+x)n-1,.故选D.则f'(0)=1+2+3+4+…+n=n(n+1)24.A因为函数f(x)=e x+a·e-x是奇函数,所以f(-x)=-f(x)对一切x∈R恒成立,所以e-x+a·e x=-e x-a·e-x对一切x∈R恒成立,即(a+1)(e x+e-x)=0对一切x∈R恒成立,所以a+1=0,解得a=-1,因此f(x)=e x-e-x,故f'(x)=e x+e-x.由曲线y=f(x)的一条切线的切点的纵坐标是0,得f(x)=e x-e-x=0,解得x=0.所以曲线y=f(x)的这条切线的切点的坐标为(0,0),切线的斜率为f'(0)=e0+e0=2.故曲线y=f(x)的这条切线方程为y-0=2(x-0),即2x-y=0.故选A.5.C由g(x)=x2+1可得g'(x)=2x,令x2+1=2x,解得x1=x2=1,即a=1.,由h(x)=ln(x+2)可得h'(x)=1x+2,设F(x)=h(x)-h'(x)=ln(x+2)-1x+2当x=-1时,F(-1)=-1<0,当x=0时,F(0)=ln2-1=ln√4-ln√e>0,故-1<b<0.2由φ(x)=cos x(x ∈(0,π))可得φ'(x)=-sin x, 令cos x=-sin x,得sin x+cos x=0, 则√2sin (x +π4)=0,又x ∈(0,π),所以x+π4=π,得x=3π4,即c=3π4.综上可知,b<a<c.故选C.6.AD 根据函数f(x)=Asin(ωx+φ)的图象知A=2,T 4=2π3-π6=π2,∴T=2π,ω=2πT=1.根据五点法画图知,当x=π6时,ωx+φ=π6+φ=π2+2kπ,k ∈Z,∵|φ|<π2,∴φ=π3,∴f(x)=2sin (x +π3),∴f'(x)=2cos (x +π3),∴g(x)=f(x)+f'(x)=2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4) =2√2sin (x +7π12), 令x+7π12=π2+kπ,k ∈Z,解得x=-π12+kπ,k ∈Z,∴函数g(x)图象的对称轴方程为x=-π12+kπ,k ∈Z,A 正确;当x+7π12=π2+2kπ,k ∈Z 时,函数g(x)取得最大值2√2,B 错误;g'(x)=2√2cos (x +7π12),∵g'(x)≤2√2<3,∴不存在点P,使得在P点处的切线与直线l:y=3x-1平行,C错误;方程g(x)=2,即2√2sin(x+7π12)=2,∴sin(x+7π12)=√22,∴x+7π12=π4+2kπ,k∈Z或x+7π12=3π4+2kπ,k∈Z,∴方程的两个不同的解分别为x1,x2时,|x1-x2|的最小值为π2,D正确.故选AD.7.答案-2√1−x解析y=1−√1−x=√1−x)(1-√1−x)·(1+√1−x)=x(1+√1−x)1−(1−x)=1+√1−x.设y=1+√u,u=1-x,则y'x=y'u·u'x=(1+√u)'·(1-x)'=2√u ·(-1)=-2√1−x.8.答案1-ln2解析设f(x)=ln x+2,g(x)=ln(x+1),则f'(x)=1x ,g'(x)=1x+1.设f(x)上的切点为(x1,y1),g(x)上的切点为(x2,y2),则k=1x1=1x2+1,则x2+1=x1.又y1=ln x1+2,y2=ln(x2+1)=ln x1,所以k=y1-y2x1-x2=2,故x1=1k =12,y1=ln12+2=2-ln2.故b=y1-kx1=2-ln2-1=1-ln2.9.解析(1)由f(x)=ae x ln x+be x-1x,得f'(x)=(ae x ln x)'+(be x-1x)'=ae x ln x+ae xx +bex-1x-be x-1x2.(2)由题意得,切点既在曲线y=f(x)上,又在切线y=e(x-1)+2上,将x=1代入切线方程,得y=2,将x=1代入函数y=f(x),得f(1)=b,所以b=2.将x=1代入导函数f'(x)中,得f'(1)=ae=e,所以a=1.10.解析由f(x)=3x+cos2x+sin2x,得f'(x)=3-2sin2x+2cos2x,则a=f'(π4)=3-2sinπ2+2cosπ2=1.由y=x3得y'=3x2.当P点为切点时,切线的斜率k=3a2=3×12=3,又b=a3,∴b=1,∴切点P的坐标为(1,1),∴曲线y=x3上以点P为切点的切线方程为y-1=3(x-1),即3x-y-2=0.当P点不是切点时,设切点坐标为(x0,x03),此时切线的斜率k'=3x02,∴切线方程为y-x03=3x02(x-x0).∵P(a,b)在曲线y=x3上,且a=1,∴b=1,将P(1,1)代入切线方程,得1-x 03=3x 02(1-x 0),∴2x 03-3x 02+1=0,∴2x 03-2x 02-x 02+1=0,∴(x 0-1)2(2x 0+1)=0,解得x 0=-12(x 0=1舍去), ∴切点坐标为(-12,-18), 又切线的斜率为3×(-12)2=34,∴切线方程为y+18=34(x +12), 即3x-4y+1=0.综上,满足题意的切线方程为3x-y-2=0或3x-4y+1=0.。

1.4 复合函数求导解析

1.4 复合函数求导解析

1.4复合函数求导1.指出下列函数是怎样复合而成的.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 2(1-1x). 解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.(4)函数y =sin 2(1-1x )可以看作函数y =u 2和u =sin v 及v =1-1x的复合函数. 2. 求下列函数的导数.(1)y =(3x -2)2;(2)y =ln(3x +2).解:(1)因为函数y =(3x -2)2可以看作函数y =u 2和u =3x -2的复合函数,所以y =(3x -2)2对x 的导数等于y =u 2对u 的导数与u =3x -2对x 的导数的乘积.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′·(3x -2)′=2u ·3=6u =6(3x -2)=18x -12.(2)因为函数y =ln(3x +2)可以看作函数y =ln u 和u =3x +2的复合函数,所以y x ′=y u ′·u x ′=(ln u )′·(3x +2)′=1u ·3=33x +2.3.求下列函数的导数.(1)y =(2x +3)2;(2)y =e -0.05x +1;(3)y =sin(πx +φ)(其中π,φ均为常数);(4)y =sin 4x +cos 4x ..解:(1)函数y =(2x +3)2可以看作函数y =u 2和u =2x +3的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(u 2)′(2x +3)′=4u =8x +12.(2)函数y =e -0.05x +1可以看作函数y =e u 和u =-0.05x +1的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(e u )′(-0.05x +1)′=-0.05e u =-0.05e -0.05x +1.(3)函数y =sin(πx +φ)可以看作函数y =sin u 和u =πx +φ的复合函数.根据复合函数的求导法则有y x ′=y u ′·u x ′=(sin u )′(πx +φ)′=πcos u =πcos(πx +φ).(4)解法一:y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 2(2x ) =1-14(1-cos4x )=34+14cos4x .y ′=-sin4x . 解法二:y ′=(sin 4x )′+(cos 4x )′=4sin 3x (sin x )′+4cos 3x (cos x )′ =4sin 3x cos x +4cos 3x (-sin x )=4sin x cos x (sin 2x -cos 2x ) =-2sin2x cos2x =-sin4x .4.已知函数f (x )=ln(3x -1),则f ′(1)=________.答案 32解析 ∵f ′(x )=13x -1·(3x -1)′=33x -1,∴f ′(1)=32. 5.函数y =2cos 2x 在x =π12处的切线斜率为________. 答案 -1解析 由函数y =2cos 2x =1+cos 2x ,得y ′=(1+cos 2x )′=-2sin 2x ,所以函数在x =π12处的切线斜率为-2sin ⎝⎛⎭⎫2×π12=-1. 6.曲线y =2e x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 e 2解析 y ′=122e x , 切线的斜率k =12e 2, 则切线方程为y -e 2=e 22(x -4), 令x =0,得y =-e 2,令y =0,得x =2,∴切线与坐标轴围成的面积为12×2×|-e 2|=e 2.。

2020版高考江苏数学大一轮精准复习精练:专题十八简单的复合函数的导数含解析

2020版高考江苏数学大一轮精准复习精练:专题十八简单的复合函数的导数含解析

专题十八简单的复合函数的导数挖命题【真题典例】【考情探究】分析解读简单的复合函数的导数在近5年的江苏高考试卷中没有考查,在2008年~2018年这11年高考中偶尔与其他知识结合进行考查,但不是考查的重点.破考点【考点集训】考点简单的复合函数的导数1.求下列函数的导数:(1)y=22x+1+ln(3x+5);(2)y=(x2+2x-1)e2-x.解析(1)y'=(22x+1)'+(ln(3x+5))'=[(22x+1)ln 2](2x+1)'+=22x+2ln 2+.(2)y'=(x2+2x-1)'e2-x+(x2+2x-1)(e2-x)'=(2x+2)e2-x+(x2+2x-1)·(-e2-x)=(3-x2)e2-x.2.(2018江苏南京一中调研)已知函数f(x)=e x-ln(x+m).(1)若x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明: f(x)>0.解析(1)f '(x) =e x-.由x=0是f(x)的极值点得f '(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞), f '(x)=e x-.函数f '(x)=e x-在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.当m=2时,函数f '(x)=e x-在(-2,+∞)上单调递增.又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时, f '(x)<0;当x∈(x0,+∞)时, f '(x)>0,从而当x=x0时, f(x)取得最小值.由f '(x0)=0得=,ln(x0+2)=-x0,故f(x)≥f(x0)=+x0=>0.综上,当m≤2时, f(x)>0.炼技法【方法集训】方法运用导数求解含参复合函数问题的方法1.已知函数f(x)=ln(ax+1)+-,x≥0,其中a>0.(1)若f(x)在x=1处取得极值,求a的值;(2)若f(x)的最小值为1,求a的取值范围.解析(1)f '(x)=-=-.因为f(x)在x=1处取得极值,故f '(1)=0,解得a=1.经检验符合题意.(2)f '(x)=-,因为x≥0,a>0,故ax+1>0,1+x>0.当a≥2时,在区间[0,+∞)上,f '(x)≥0,f(x)单调递增,f(x)的最小值为f(0)=1.当0<a<2时,由f '(x)>0,解得x>-;由f '(x)<0,解得0<x< -.所以f(x)的单调减区间为-,单调增区间为-∞.于是,f(x)在x= -处取得最小值,因为f-<f(0)=1,所以不符合题意.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).2.(2018江苏丹阳中学调研)已知函数f(x)=ln(2-x)+ax在区间(0,1)上是增函数.(1)求实数a的取值范围;(2)若数列{a n}满足a1∈(0,1),a n+1=ln(2-a n)+a n,n∈N*,求证:0<a n<a n+1<1.解析(1)因为函数f(x)=ln(2-x)+ax在区间(0,1)上是增函数,所以f '(x)=-+a≥0在区间(0,1)上恒成立,所以-a≥.-在区间(0,1)上是增函数,又g(x)=-所以a≥g(1)=1,即实数a的取值范围为[1,+∞).(2)证明:先用数学归纳法证明0<a n<1.当n=1时,a1∈(0,1)成立,假设n=k(k≥1,k∈N*)时,0<a k<1成立.当n=k+1时,由(1)知a=1时,函数f(x)=ln(2-x)+x在区间(0,1)上是增函数,所以a k+1=f(a k)=ln(2-a k)+a k,所以0<ln 2=f(0)<f(a k)<f(1)=1,即0<a k+1<1成立,所以当n∈N*时,0<a n<1成立.下面证明:a n<a n+1.因为0<a n<1,所以a n+1-a n=ln(2-a n)>ln 1=0.所以a n<a n+1.综上,0<a n<a n+1<1.过专题【五年高考】统一命题、省(区、市)卷题组考点简单的复合函数的导数1.(2014广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.答案5x+y-3=02.(2014江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.答案(-ln 2,2)3.(2017浙江,20,15分)已知函数f(x)=(x--)e-x.(1)求f(x)的导函数;(2)求f(x)在区间∞上的取值范围.解析本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力.,(e-x)'=-e-x,(1)因为(x--)'=1--所以f '(x)=e-x-(x--)e-x-----.=-----(2)由f '(x)==0,-解得x=1或x=.因为又f(x)=(--1)2e-x≥0,所以f(x)在区间∞上的取值范围是-.评析本题主要考查导数两大方面的应用:(1)复合函数单调性的讨论:运用导数知识来讨论函数f(x)的单调性时,首先考虑函数的定义域,再求出f '(x),由f '(x)的正负得出函数f(x)的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数f(x)的极值或最值.4.(2016课标全国Ⅲ理,21,12分)设函数f(x)=αcos 2x+(α-1)·(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f '(x);(2)求A;(3)证明|f '(x)|≤2A.解析(1)f '(x)=-2αsin 2x-(α-1)sin x.(2分)(2)当α≥1时,|f(x)|=|αcos 2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.(4分)当0<α<1时,将f(x)变形为f(x)=2αcos2x+(α-1)cos x-1.设t=cos x,则t∈[-1,1],令g(t)=2αt2+(α-1)t-1,则A是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=-时,g(t)取得最小值,最小值为g-=---1=-.令-1<-<1,解得α<-(舍去),或α>.(5分)(i)当0<α≤时,g(t)在(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α.(ii)当<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g-.又--|g(-1)|=->0,所以A=-=.-综上,A=(9分)-(3)由(1)得|f '(x)|=|-2αsin 2x-(α-1)sin x|≤2α+|α-1|.当0<α≤时,|f '(x)|≤1+α≤2-4α<2(2-3α)=2A.当<α<1时,A=++>1,所以|f '(x)|≤1+α<2A.当α≥1时,|f '(x)|≤3α-1≤6α-4=2A.所以|f '(x)|≤2A.(12分)评析本题主要考查导数的计算及导数的应用,考查了二次函数的性质,解题时注意分类讨论,本题综合性较强,属于难题.5.(2015课标Ⅱ,21,12分)设函数f(x)=e mx+x2-mx.(1)证明: f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.解析(1)f '(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0, f '(x)<0;当x∈(0,+∞)时,e mx-1≥0, f '(x)>0.若m<0,则当x∈(-∞,0)时,e mx-1>0, f '(x)<0;当x∈(0,+∞)时,e mx-1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要条件是-----即----①设函数g(t)=e t-t-e+1,则g'(t)=e t-1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.综上,m的取值范围是[-1,1].教师专用题组1.(2014课标Ⅱ,21,12分)已知函数f(x)=e x-e-x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.414 2<<1.414 3,估计ln 2的近似值(精确到0.001).解析(1)f '(x)=e x+e-x-2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(e x-e-x)+(8b-4)x,g'(x)=2[e2x+e-2x-2b(e x+e-x)+(4b-2)]=2(e x+e-x-2)(e x+e-x-2b+2).(i)当b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+-)时,g'(x)<0.而g(0)=0,因此当0<x≤ln(b-1+-)时,g(x)<0.综上,b的最大值为2.(3)由(2)知,g(ln)=-2b+2(2b-1)ln 2.当b=2时,g(ln)=-4+6ln 2>0,ln 2>->0.692 8;当b=+1时,ln(b-1+-)=ln,g(ln)=--2+(3+2)ln 2<0,ln 2<<0.693 4.所以ln 2的近似值为0.693.评析本题考查了导数的应用,同时考查了分类讨论思想和运算能力.2.(2014湖南,22,13分)已知常数a>0,函数f(x)=ln(1+ax)-.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.解析(1)f '(x)=--=-.(*)当a≥1时, f '(x)>0,此时, f(x)在区间(0,+∞)上单调递增.当0<a<1时,由f '(x)=0得x1=2-x2=-2-舍去.当x∈(0,x1)时, f '(x)<0;当x∈(x1,+∞)时, f '(x)>0,故f(x)在区间(0,x1)上单调递减,在区间(x1,+∞)上单调递增.综上所述,当a≥1时, f(x)在区间(0,+∞)上单调递增;当0<a<1时, f(x)在区间-上单调递减,在区间-∞上单调递增.(2)由(*)式知,当a≥1时, f '(x)≥0,此时f(x)不存在极值点.因而要使得f(x)有两个极值点,必有0<a<1,又f(x)的极值点只可能是x1=2-和x2=-2-,且由f(x)的定义可知,x>-且x≠-2,所以-2->-,-2-≠-2,解得a≠.此时,由(*)式易知,x1,x2分别是f(x)的极小值点和极大值点.而f(x1)+f(x2)=ln(1+ax1)-+ln(1+ax2)-=ln[1+a(x1+x2)+a2x1x2]-=ln(2a-1)2---=ln(2a-1)2+--2,令2a-1=x,由0<a<1且a≠知,当0<a<时,-1<x<0;当<a<1时,0<x<1,记g(x)=ln x2+-2.(i)当-1<x<0时,g(x)=2ln(-x)+-2,所以g'(x)=-=-<0,因此,g(x)在区间(-1,0)上单调递减,从而g(x)<g(-1)=-4<0,故当0<a<时, f(x1)+f(x2)<0. (ii)当0<x<1时,g(x)=2ln x+-2,所以g'(x)=-=-<0,因此,g(x)在区间(0,1)上单调递减,从而g(x)>g(1)=0,故当<a<1时, f(x1)+f(x2)>0.综上所述,满足条件的a的取值范围为.评析本题考查复合函数的求导,函数的单调性和极值,解不等式,根与系数的关系.考查分类讨论思想和化归与转化思想,考查学生运算求解能力和知识迁移能力,构造函数把不等式问题转化为函数单调性问题是解题的关键.3.(2014江西,18,12分)已知函数f(x)=(x2+bx+b)-(b∈R).(1)当b=4时,求f(x)的极值;(2)若f(x)在区间上单调递增,求b的取值范围.解析(1)当b=4时, f '(x)=-,-由f '(x)=0得x=-2或x=0.当x∈(-∞,-2)时, f '(x)<0, f(x)单调递减;当x∈(-2,0)时, f '(x)>0, f(x)单调递增;当x∈时, f '(x)<0, f(x)单调递减,故f(x)在x=-2处取极小值f(-2)=0,在x=0处取极大值f(0)=4.,(2)f '(x)=---因为当x∈时,-<0,-依题意,当x∈时,有5x+(3b-2)≤0,从而+(3b-2)≤0.所以b的取值范围为-∞.【三年模拟】一、填空题(共5分)1.(2019届江苏姜堰中学调研改编)函数f(x)=ln+x的最小值为.答案-ln 2+二、解答题(共40分)2.(2018江苏苏州高三期中,23)(1)若不等式(x+1)ln(x+1)≥ax对任意x∈[0,+∞)恒成立,求实数a的取值范围;(2)设n∈N*,试比较++…+与ln(n+1)的大小,并证明你的结论.解析(1)原问题等价于ln(x+1)-≥0对任意x∈[0,+∞)恒成立,令g(x)=ln(x+1)-,则g'(x)=-.当a≤1时,g'(x)=-≥0恒成立,即g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0恒成立;当a>1时,令g'(x)=0,则x=a-1>0,∴g(x)在(0,a-1)上单调递减,在(a-1,+∞)上单调递增,∴g(a-1)<g(0)=0,即存在x>0使得g(x)<0,不合题意.综上所述,a的取值范围是(-∞,1].(2)解法一:在(1)中取a=1,得ln(x+1)>(x∈(0,+∞)),令x=(n∈N*),上式即为ln>,即ln(n+1)-ln n>,∴ln 2-ln 1>,ln 3-ln 2>,……,ln(n+1)-ln n>,上述各式相加可得++…+<ln(n+1)(n∈N*).解法二:注意到<ln 2,+<ln 3,……,故猜想++…+<ln(n+1)(n∈N*),下面用数学归纳法证明该猜想成立.①当n=1时,<ln 2,成立;②假设当n=k时结论成立,即++…+<ln(k+1),在(1)中取a=1,得ln(x+1)>(x∈(0,+∞)),令x=(k∈N*),有<ln,那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),也成立,由①②可知,++…+<ln(n+1)(n∈N*).3.(2017江苏南通、扬州、泰州高三第三次模拟考试,23)已知函数f0(x)=(a≠0,ac-bd≠0).设f n(x)为f n-1(x)(n∈N*)的导函数.(1)求f1(x), f2(x);(2)猜想f n(x)的表达式,并证明你的结论. 解析(1)f1(x)=f0'(x)==-, f2(x)=f1'(x)=-=--.(2)猜想f n(x)=--·-·-·,n∈N*.证明:①当n=1时,由(1)知结论成立;②假设当n=k,k∈N*时结论成立,即有f k(x)=--·-·-·.当n=k+1时,f k+1(x)=f k'(x)=--·-·-·=(-1)k-1·a k-1·(bc-ad)·k![(ax+b)-(k+1)]'=-··-·,所以当n=k+1时结论成立.由①②得, f n(x)=--·-·-·,n∈N*.4.(2017江苏南通、徐州联考)已知函数f(x)=ln(1+x)-ln(1-x).(1)已知方程f(x)=在上有解,求实数m的范围;(2)求证:当x∈(0,1)时, f(x)>2;(3)若正数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值. 解析(1)方程f(x)=在x∈上有解.即m=xf(x)在x∈上有解,令φ(x)=xf(x)=x[ln(1+x)-ln(1-x)],则φ'(x)=[ln(1+x)-ln(1-x)]+x-.因为x∈,所以1+x∈,1-x∈,所以ln(1+x)>0,ln(1-x)<0,所以[ln(1+x)-ln(1-x)]+x->0,即φ'(x)>0,所以φ(x)在区间上单调递增.因为φ=-=ln 2,φ=-=ln 3,所以φ(x)∈,所以m∈.(2)证明:原问题可转化为f(x)-2>0在(0,1)上恒成立. 设g(x)=ln(1+x)-ln(1-x)-2,则g'(x)=+--2(1+x2)=-.当x∈(0,1)时,g'(x)>0,所以g(x)在(0,1)上为增函数,则g(x)>g(0)=0, 因此,x∈(0,1)时,ln(1+x)-ln(1-x)-2>0,所以当x∈(0,1)时, f(x)>2.(3)令h(x)=ln(1+x)-ln(1-x)-k,要使得f(x)>k对x∈(0,1)恒成立.需h(x)>0对x∈(0,1)恒成立,h'(x)=--k(1+x2)=--,①当k∈(0,2]时,h'(x)≥0,函数h(x)在(0,1)上是增函数,则h(x)>h(0)=0,符合题意;②当k>2时,令h'(x)=0,得x=-或x=--(舍去).因为k>2,所以-∈(0,1).h'(x),h(x)在(0,1)上的情况如下表:h-<h(0)=0,显然不符合题意,综上,k的最大值为2.5.(2019届江苏无锡辅仁中学月考)设b>0,函数f(x)=(ax+1)2-x+ln(bx),记F(x)=f '(x)(f '(x)是函数f(x)的导函数),且当x=1时,F(x)取得极小值2.(1)求函数F(x)的单调增区间;(2)证明:|[F(x)]n|-|F(x n)|≥2n-2(n∈N*).解析(1)由题意知F(x)=f '(x)=·2(ax+1)·a-+=,x>0.于是F'(x)=-,若a<0,则F'(x)<0,与F(x)有极小值矛盾,所以a>0.令F'(x)=0,因为x>0,所以当且仅当x=时,F(x)取得极小值2,所以解得a=b=1.故F(x)=x+,F'(x)=1-(x>0).由F'(x)>0,得x>1,所以F(x)的单调增区间为(1,+∞).(2)证明:记g(x)=|[F(x)]n|-|F(x n)|.因为x>0,所以g(x)=[F(x)]n-F(x n)=-=x n-1·+x n-2·+x n-3·+…+-x·.-因为x n-r·+-x r·≥2(r=1,2,…,n-1),-所以2g(x)≥2(+++…+-)=2(2n-2).故|[F(x)]n|-|F(x n)|≥2n-2(n∈N*).。

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

存在,那么称极限为函数z= J(x,y) 在点(布,Yo ) 处对于x的偏导数,记作
一|。'ZI
δ!X lx=xo
;:ll'I ,斗ax lx=xo
,z;lx=句或兀(xo ,Yo ). )I=均
类似的,函数 z =f(x,y) 在点(x。. ,Yo ) 对y的偏导数定义为
lim /(布,Yo +11y)-f(句,Yo )
dt
[答案J e' (cost-sint)+cost
第三节全微分及全微分形式不变性 设函数Z = f(x,y) 在点。,y) 的某邻域内有定义,如果函数在点(x,y) 的全增量
&=f(x+缸, y+6y)-f(x,y)
可以表示为 &=AAt+B6y+o(p),
其中 A,B 不依赖于 llx和6y ,而仅与 x和y 有关, p=o(」(At)2+(6y)勺,那么称函数
az , az 例13设
z=f(lnx

一),其中函数
y
f(u

可微,贝tlx

ax

Y'�



[答案JO
(2012年,数学二)
f 例14设 z = f(x+ y,x-y,圳,其中 具有二阶连续偏导数, 求dz 与£ axay 乙
λ(
[答案]飞
’+J;’+yj3' I)dx+飞(刀’+儿’+乓f;' I)命;
【解题步骤】理清函数与变元之间的关系z (1)画出函数结构图,理清函数间复合关系,注意到哪些变元是自变量,中间变量,因变量. (2)注意函数映射是多元函数,还是一元函数, 注意导数符号的不同. (3)先对中间变量求偏导,再乘以中间变量对自变量的偏导数.

复合函数的求导例题

复合函数的求导例题

复合函数的求导例题我建议将偏导数定义,和全微分概念搞透,其它就迎刃而解,偏导数就是对函数的某一变量求导而将其它变量看作常量,全微分是对所有变量微分.因此本题复合函数求导就容易理解了,对φ(x)=f(x,f(x,x))全微分:∵dφ(x)=df(x,f(x,x))=f1'×dx+f2'×df(x,x)df(x,x)=f1'×dx+f2'×dx∴dφ(x)=f1'×dx+f2'×(f1'×dx+f2'×dx)左右二边除以dx,可得:φ'(x)=dφ(x)/dx=f1'+f2'×(f1'+f2')因此所谓复合函数求导,通过以上全微分求导就容易理解了.这才原汁原味!为什么不看书,∵⊿φ(x)=φ(x+⊿x)-φ(x),⊿f(x,f(x,x))=f(x+⊿x,f(x+⊿x,x+⊿x))-f(x,f(x,x))f1'=∂f(x,y)/∂x这里y为常量令y=c,即求导过程中不变,只要记住属于第几变量即可.同理f2'就是对第二个变量求偏导数至于这个变量用什么符合尽可不管.f(x,y)某单一变量的增量:⊿f(x,y)=f(x+⊿x,y)-f(x,y),(y不变),⊿f(x,y+⊿y)=f(x+⊿x,y+⊿y)-f(x,y+⊿y),(y+⊿y保持不变)前者在(x,y)点对x变量求偏导数,后者在(x,y+⊿y)点对x变量求偏导数,当⊿x→0时∂f(x,y)/∂x=⊿f(x,y)/⊿x∂f(x,y+⊿y)/∂x=⊿f(x,y+⊿y)/⊿x当⊿x→0,⊿y→0时∂f(x,y)/∂x=∂f(x,y+⊿y)/∂x=f1'注意:∂f(x,y)/∂x≠∂f(x,y+⊿y)/∂x(y≠y+⊿y,只有⊿y→0,y+⊿y→y,才成立.这表示从(x+⊿x,y)点沿y为常量,平行x轴方向趋近(x,y)点(x+⊿x,y+⊿y)点,沿以y+⊿y为常量,平行x轴方向趋近(x,y+⊿y)点.当⊿x→0,同时⊿y→0时(x+⊿x,y+⊿y)点可正交分解为沿平行x,y轴趋近(x,y)点∴⊿f=f(x+⊿x,y+⊿y)-f(x,y)=f(x+⊿x,y+⊿y)-f(x,y+⊿y)+f(x,y+⊿y)-f(x,y)=×⊿x+/⊿y=f1'⊿x+f2'⊿y(⊿x→0,⊿y→0,f1',f2'对应(x,y)点取偏导)因此全微分概念这才能帮助理解透彻!。

人教版高中数学选择性必修第二册5.2.3 简单的复合函数的导数

人教版高中数学选择性必修第二册5.2.3 简单的复合函数的导数

复合函数的求导过程就是对复合函数由外层向里求导,每 次求导都是针对着最外层的相应变量进行的,直至求到最里层为 止,所谓最里层是指可以直接引用基本公式表进行求导.
课时学案
题型一 明确复合关系
例 1 指出下列函数的复合关系:
(1)y=(2-x2)3;
(2)y=sinx2;
(3)y=cosπ4-x; (4)y=lnsin(3x-1).
2.若可导函数 f(x)满足 f′(3)=9,则 f(3x2)在 x=1 处的导数 值为_____54___.
解析 ∵[f(3x2)]′=f′(3x2)(3x2)′=6xf′(3x2), ∴f(3x2)在 x=1 处的导数值为 6×1×f′(3)=54.
3.求下列函数的导数:
(1)y=sin22x+π3; (2)y=cos22x;
【解析】 (1)设 y=u2,u=-2x+1,则 y′x=y′u·u′x=2u·(- 2)=-4(-2x+1)=8x-4.
(2)设 y=eu,u=x-1,则 y′x=y′u·u′x=eu·1=ex-1.
(3) 设
y = log2u , u = 2x + 1 , 则
y′x

y′u
·
u

x

2 uln2
【解析】 ∵y= x21-3x=(x2-3x)-12, ∴y′=-12(x2-3x)-32·(x2-3x)′ =-12(x2-3x)-32·(2x-3). ∴曲线 y= x21-3x在点4,12处的切线斜率为 k=y′|x=4=- 12(42-3×4)-32·(2×4-3)=-156. ∴曲线在点4,12处的切线方程为 y-12=-156(x-4),即 5x +16y-28=0.
【解析】 (1)函数的导数 f′(x)=12· 3x12+1·6x= 3x32x+1, 则曲线在点(1,2)处的切线斜率 k=f′(1)= 33+1=32,则对应 的切线方程为 y-2=32(x-1), 即 3x-2y+1=0. (2)y′=x(1-x2)-32,令 y′=0,得 x=0,∴y=1.

高中数学《简单复合函数的导数》知识点讲解及重点练习

高中数学《简单复合函数的导数》知识点讲解及重点练习

5.2.3简单复合函数的导数学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则.知识点复合函数的导数1.复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考函数y=log2(x+1)是由哪些函数复合而成的?答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u =g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.(√)2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×)3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√)一、求复合函数的导数例1求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解(1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y ′x =y ′u ·u ′x =12u -5=12(1-3x )5.(2)令u =x 2,则y =cos u ,所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1,则y x ′=y u ′u x ′=2u ln 2=2(2x +1)ln 2.(4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x +2.反思感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y =11-2x; (2)y =5log 2(1-x ); (3)y =sin ⎝⎛⎭⎫2x +π3. 解 (1)()12=12,y x --设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ =-5u ln 2=5(x -1)ln 2. (3) 设y =sin u ,u =2x +π3,则y x ′=(sin u )′⎝⎛⎭⎫2x +π3′=cos u ·2=2cos ⎝⎛⎭⎫2x +π3. 二、复合函数与导数的运算法则的综合应用 例2 求下列函数的导数: (1)y =ln 3xe x ;(2)y =x 1+x 2;(3)y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2. 解 (1)∵(ln 3x )′=13x ×(3x )′=1x ,∴y ′=(ln 3x )′e x -(ln 3x )(e x )′(e x )2=1x -ln 3x e x =1-x ln 3x x e x .(2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(3)∵y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2 =x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=⎝⎛⎭⎫-12x sin 4x ′=-12sin 4x -x2cos 4x ·4 =-12sin 4x -2x cos 4x .反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导. 跟踪训练2 求下列函数的导数: (1)y =sin 2x3;(2)y =sin 3x +sin x 3; (3)y =x ln(1+x ).解 (1)方法一 ∵y =1-cos 23x2,∴y ′=⎝ ⎛⎭⎪⎫12-cos 23x 2′=13sin 23x . 方法二 y ′=2sin x 3cos x 3·13=23sin x 3cos x3 =13sin 23x . (2)y ′=(sin 3x +sin x 3)′ =(sin 3x )′+(sin x 3)′ =3sin 2x cos x +cos x 3·3x 2 =3sin 2x cos x +3x 2cos x 3.(3)y ′=x ′ln(1+x )+x [ln(1+x )]′ =ln(1+x )+x 1+x.三、与切线有关的综合问题例3 (1)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5 D .0 答案 A解析 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴0=|x x y'=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.(2)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值. 解 由曲线y =f (x )过(0,0)点, 可得ln 1+1+b =0,故b =-1. 由f (x )=ln(x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,即为曲线y =f (x )在点(0,0)处的切线的斜率. 由题意,得32+a =32,故a =0.反思感悟 (1)求切线的关键要素为切点,若切点已知便直接使用,切点未知则需先设再求.两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件. (2)在考虑函数问题时首先要找到函数的定义域.在解出自变量的值或范围时也要验证其是否在定义域内.跟踪训练3 (1)已知函数f (x )=k +ln xe x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 . 答案 1解析 由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞).由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a = .该切线与坐标轴围成的面积为 . 答案 2 14解析 令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0), 又切线与直线x +2y +1=0垂直,所以f ′(0)=2. 因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax , 所以f ′(0)=a e 0=a ,故a =2.由题意可知,切线方程为y -1=2x ,即2x -y +1=0. 令x =0得y =1;令y =0得x =-12.∴S =12×12×1=14.1.(多选)函数y =(x 2-1)n 的复合过程正确的是( ) A .y =u n ,u =x 2-1 B .y =(u -1)n ,u =x 2 C .y =t n ,t =(x 2-1)n D. t =x 2-1, y =t n答案 AD2.函数y =(2 020-8x )3的导数y ′等于( ) A .3(2 020-8x )2 B .-24x C .-24(2 020-8x )2 D .24(2 020-8x )2 答案 C解析 y ′=3(2 020-8x )2×(2 020-8x )′=3(2 020-8x )2×(-8)=-24(2 020-8x )2. 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2x D .y ′=2x cos 2x +2x 2sin 2x 答案 B解析 y ′=(x 2)′cos 2x +x 2(cos 2x )′ =2x cos 2x +x 2(-sin 2x )·(2x )′ =2x cos 2x -2x 2sin 2x .4.已知f (x )=ln(3x -1),则f ′(1)= . 答案 32解析 ∵f ′(x )=33x -1,∴f ′(1)=33-1=32.5.曲线 y =ln(2-x )在点(1,0)处的切线方程为 . 答案 x +y -1=0解析 ∵y ′=-12-x =1x -2,∴y ′| x =1=11-2=-1,即切线的斜率是k =-1, 又切点坐标为(1,0).∴y =ln(2-x )在点(1,0)处的切线方程为y =-(x -1), 即x +y -1=0.1.知识清单: (1)复合函数的概念. (2)复合函数的求导法则. 2.方法归纳:转化法.3.常见误区:求复合函数的导数时不能正确分解函数;求导时不能分清是对哪个变量求导;计算结果复杂化.1.(多选)下列函数是复合函数的是( ) A .y =-x 3-1x +1B .y =cos ⎝⎛⎭⎫x +π4C .y =1ln xD .y =(2x +3)4答案 BCD解析 A 不是复合函数,B ,C ,D 均是复合函数, 其中B 由y =cos u ,u =x +π4复合而成;C 由y =1u ,u =ln x 复合而成;D 由y =u 4,u =2x +3复合而成. 2.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5) D.x 2x +5答案 B解析 ∵y =x ln(2x +5), ∴y ′=ln(2x +5)+2x2x +5.3.函数y =x 3e cos x 的导数为( ) A .y ′=3x 2e cos x +x 3e cos x B .y ′=3x 2e cos x -x 3e cos x sin x C .y ′=3x 2e cos x -x 3e sin x D .y ′=3x 2e cos x +x 3e cos x sin x 答案 B解析 y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x . 4.曲线y =x e x-1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 ∵y =x e x -1,∴y ′=e x -1+x e x -1, ∴k =y ′|x =1=e 0+e 0=2,故选C.5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 答案 B解析 设切点坐标是(x 0,x 0+1),依题意有⎩⎨⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.6.函数y =sin 2x cos 3x 的导数是 . 答案 y ′=2cos 2x cos 3x -3sin 2x sin 3x 解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .7.已知函数f (x )的导函数为f ′(x ),若f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x ,则f ′⎝⎛⎭⎫π9= . 答案 33解析 ∵f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x , ∴f ′(x )=f ′⎝⎛⎭⎫π9·3cos 3x -3sin 3x , 令x =π9可得f ′⎝⎛⎭⎫π9=f ′⎝⎛⎭⎫π9×3cos π3-3sin π3 =32 f ′⎝⎛⎭⎫π9-3×32, 解得f ′⎝⎛⎭⎫π9=3 3.8.点P 是f (x )=(x +1)2上任意一点,则点P 到直线y =x -1的最短距离是 ,此时点P 的坐标为 . 答案728⎝⎛⎭⎫-12,14 解析 与直线y =x -1平行的f (x )=(x +1)2的切线的切点到直线y =x -1的距离最短.设切点为(x 0,y 0),则f ′(x 0)=2(x 0+1)=1,∴x 0=-12,y 0=14.即P ⎝⎛⎭⎫-12,14到直线y =x -1的距离最短. ∴d =⎪⎪⎪⎪-12-14-1(-1)2+12=728.9.求下列函数的导数: (1)y =ln(e x +x 2); (2)y =102x +3; (3)y =sin 4x +cos 4x .解 (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x +2x e x +x 2.(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x )=34+14cos 4x . ∴y ′=-sin 4x .10.曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程. 解 ∵y =e sin x , ∴y ′=e sin x cos x , ∴y ′|x =0=1.∴曲线y =e sin x 在点(0,1)处的切线方程为 y -1=x ,即x -y +1=0. 又直线l 与x -y +1=0平行, 故直线l 可设为x -y +m =0.由|m -1|1+(-1)2=2得m =-1或3.∴直线l 的方程为x -y -1=0或x -y +3=0.11.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ) A.13 B.12 C.23D .1 答案 A解析 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e -2×0=-2. 所以曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2,y =0与y =x 的图象,如图所示.因为直线y =-2x +2与y =x 的交点坐标是⎝⎛⎭⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),所以结合图象可得,这三条直线所围成的三角形的面积为12×1×23=13. 12.(多选)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值可以是( )A.π4B.π2C.3π4D. 7π8答案 CD解析 因为y =4e x +1, 所以y ′=-4e x(e x +1)2=-4e x e 2x +2e x +1=-4e x +1e x +2.因为e x >0,所以e x +1e x ≥2(当且仅当x =0时取等号), 所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎡⎭⎫3π4,π.13.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ= .答案 π6解析 ∵f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ),令g (x )=cos(3x +φ)-3sin(3x +φ),∵其为奇函数,∴g (0)=0,即cos φ-3sin φ=0,∴tan φ=33, 又0<φ<π,∴φ=π6. 14.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是 .答案 y =-2x -1解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,所以f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2, 所以切线方程为y =-2x -1.15.已知f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB .-11+x C.1(1+x )2D .-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1, 得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 16.(1)已知f (x )=e πx sin πx ,求f ′(x )及f ′⎝⎛⎭⎫12;(2)在曲线y =11+x 2上求一点,使过该点的切线平行于x 轴,并求切线方程. 解 (1)∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).∴f ′⎝⎛⎭⎫12=2e sin +cos 22πππ⎛⎫π ⎪⎝⎭ 2e .π=π(2)设切点坐标为P (x 0,y 0),由题意可知0=|0.x x y'=又y ′=-2x (1+x 2)2, ∴0=|x x y'=-2x 0(1+x 20)2=0. 解得x 0=0,此时y 0=1.即该点的坐标为P (0,1),切线方程为y -1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数的导数
求分段函数的导数
例 求函数⎪⎩⎪⎨⎧=≠=0
,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x
x 1sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim
)0(0200===-='→∆→∆→∆x x x x x x f x f f x x x 当0≠x 时,x
x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0
0x g x g x x →=,但如果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0
x f f x →='. 指出函数的复合关系
例 指出下列函数的复合关系.
1.m n bx a y )(+=;2.32ln +=x e y ;
3.)32(log 322+-=x x y ;4.)1sin(x x y +=。

分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.
解:函数的复合关系分别是
1.n
m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,32
2+-===x x v v u y u ;
4..1,sin ,3x
x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果.
求函数的导数
例 求下列函数的导数.
1.43)1
2(x x x y +-=;2.2211
x y -=;
3.)32(sin 2π
+=x y ;4.21x x y +=。

分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数. 解:1.解法一:设43
,12u y x
x x u =+-=,则 ).116()12(4)116(42233223--+-=--⋅='⋅'='x x x x x x x u u y y x u x 解法二:'⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛+-='⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-='x x x x x x x x x y 121241233343 .116124223⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+
-=x x x x x 2.解法一:设221
21,x u u y -=='-,则 ()()
()()
.21)21(2 212 42121 4212223223223x
x x x
x x x x u u y y x u x ---=---=-⋅⎪⎪⎭
⎫ ⎝⎛-='⋅'='---=
解法二:()'⎥⎦
⎤⎢⎣⎡-='⎪⎪⎭⎫ ⎝⎛-='-212221211x x y ()
.21)21(2)
21(2)4()21(2121)21(2
1222322322
232x
x x x x x x x x --=-=-⋅--='-⋅--=--- 3.解法一:设32,sin ,2π
+===x v v u u y ,则
.324sin 2 232cos 32sin 2 2
cos 2⎪⎭⎫ ⎝
⎛+=⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝⎛+=⋅⋅='⋅'⋅'='πππx x x v u v u y y x v u x 解法二:'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+='⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛+='32sin 32sin 232sin 2πππx x x y .324sin 2 232cos 32sin 2 3232cos 32sin 2 ⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝
⎛+='⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝
⎛+⋅⎪⎭⎫ ⎝⎛+=ππππππx x x x x x 4.解法一:.1422x x x x y +=+=设4221,x x u u y +==,则
.1211)21(2 )42()(2
1 )42(2
122
2242332142321
x
x x x x x x x x x x x x x x x u u y y x u x ++=++=++=+⋅+=+⋅='⋅'='-- 解法二:)1(1)1(222'+++⋅'='+='x x x x x x y
.12111 2222
2x x x x x ++=+++=
说明:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量,不可机械照搬某种固定的模式,否则会使确定的复合关系不准确,不能有效地进行求导运算.学生易犯错误是混淆变量或忘记中间变量对自变量求导.
求复合函数的导数
例 求下列函数的导数(其中)(x f 是可导函数)
1.⎪⎭
⎫ ⎝⎛=x f y 1;2.).1(2+=x f y 分析:对于抽象函数的求导,一方面要从其形式上把握其结构特征,另一方面要充分运用复合关系的求导法则。

先设出中间变量,再根据复合函数的导数运算法则进行求导运算。

一般地,假设中间变量以直接可对所设变量求导,不需要再次假设,如果所设中间变量可直接求导,就不必再选中间变量。

解:1.解法一:设x
u u f y 1),(==,则 .111)(22⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅'='⋅'='x f x x u f u y y x u x 解法二:.111112⎪⎭⎫ ⎝⎛'-='⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛'='⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛='x f x x x f x f y 2.解法一:设1,),(2+===x v v u u f y ,则
).1(1
21
121)1( 22
1)(222221
+'+=⋅+⋅+'=⋅⋅'='⋅'⋅'='-x f x x x x x x f x v u f v u y y x u u x 解法二:[])1()1()1(222'+⋅+'='+='x x f x f y
[]).
1(1.2)1()1()1()1(21)1(
222122221
22+'+=⋅+⋅+'='+⋅+⋅+=--x f x x
x x x f x x x f 说明:理解概念应准确全面,对抽象函数的概念认识不足,显示了一种思维上的惰性,导致判断复合
关系不准确,没有起到假设中间变量的作用。

其次应重视))((x f ϕ'与[]'
))((x f ϕ的区别,前者是对中间变量)(x ϕ的求导,后者表示对自变量x 的求导.。

相关文档
最新文档