减治算法
5-第五章 减治法

2.比较v和 A[x]
确定查找范围
5.6.3 二叉查找树的查找和插入
• 二叉查找树:左子树的值小于根顶点,右 子树大于根顶点。
小结
5.4 生成组台对象的算法
• 组合问题 1、计数 2、结构
组合问题
5.4.1 生成排列
用减一思想生成{1,2,…,n}所有排列。
Johnson-trotter算法
• 字典序---增序排队
5.4.2 生成子集
1、挤压序: 所 2、是否存在—种生成比特串的最小变化算法,使得每
一个比特串和它的直接前趋之间仅仅相差一 个比特 位。
n / 2 ,它要求找出这样一个元素,该元素比列表中的—半元素大,又比另—半元素
小。这个中间的值被称为中值,它在数理统计中是—个非常重要的量。
• 类似快速排序的分区做法
• 例
15 15
效率分析: 1)平均效率 2)最差效率
5.6.2 插值查找
插值查找用于有序数组,“插值”代替了折 半查找中的中间值 1.计算
• 最坏输入是一个严格递减的数组,这种输 入的比较次数是
• 最好的情况下(升序),在外部循环的每 次送代中,比较操作只执行一次
• 平均
5.2深度优先查找和广度忧先查找
• 什么叫图的遍历 从图的任意点出发沿着一些边访问图中的 所有顶点,且使每个顶点仅被访问一次,这就 叫图的遍历. • 我们来看一下图的遍历的两种方法: 1.深度优先搜索 2.广度优先搜索
第一种算法是深度优先查找的一个简单应用:执行一次DFS遍 历,并记住顶点变成死端(即退出遍历栈)的顺序。将该次序反过来 就得到了拓扑排序的一个解。
第二种算法基于减(减一)治技术的一个直 接实现:不断地做这样—件事,在余下的有向 图中求出一个源,它是一个没有输入边的顶点, 然后把它和所有从它出发的边都删除。
算法设计与分析部分算法伪代码

第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
减治法

子问题 的规模是n/2 子问题的解
原问题的解
图5.1 减治法的典型情况(减半技术)
对于给定的整数a和非负整数n,计算an的值。
利用减治法,如果n=1,可以简单地返回a的值,如果n是偶数并且n>1,可 以把该问题的规模减半,即计算an/2的值,而且规模为n的解an和规模减半 的解an/2之间具有明显的对应关系:an=(an/2)2,如果n是奇数并且n>1,可 以先用偶指数的规则计算a(n-1),再把结果乘以a。所以,应用减治技术得到 如下计算方法:
排序问题中的减治法
堆排序
选择问题
堆排序
例
28 25 36 18 32 28 36 25 18 16 32 25 16 36 25 18 16 36 28 32
28
18 16
32
堆排序是利用堆(假设利用大根堆)的特性进 行排序的方法,其基本思想是:首先将待排序 的记录序列构造成一个堆,此时,选出了堆中 所有记录的最大者即堆顶记录,然后将它从堆 中移走(通常将堆顶记录和堆中最后一个记录 交换),并将剩余的记录再调整成堆,这样又 找出了次大的记录,以此类推,直到堆中只有 一个记录为止。
n 1 n 1
查找问题中的减治法
折半查找
二叉查找树
折半查找
在有序表{ 7, 14, 18, 21, 23, 29, 31, 35, 38, 42, 46, 49, 52 }中查找值为14的 记录的过程如图所示。
0 1
7
2
14
3
18
4
21
5
23
6
29
7
31
8
35
9
38
10
42
第 五 章 减治法

算 分 析 与 设 计
西南科技大学
金块问题
有一个老板有一袋金块。每个月将有两 名雇员会因其优异的表现分别被奖励一 个金块。按规矩,排名第一的雇员将得 到袋中最重的金块,排名最后的雇员将 得到袋中最轻的金块。如果每个月都有 新的金块周期性的加入袋中,则每个月 都必须找出最轻和最重的金块。假设有 一台比较重量的仪器,我们希望用最少 的比较次数找出最轻和最重的金块。
算 分 析 与 设 计
西南科技大学
直接插入排序实现方法
减一技术下,该方法遵循的思路是:假设对较 小数组 A[0..n-2]排序问题已经解决了,得到一 个大小为n-1的有序数组。然后将要排序的第n 个元素,插入到数组的适合位置上,得到大小 为n的有序数组 A[0..n-1]。伪代码如下: void InsertionSort(a[]) {for(i=1;i<n-1;i++) //从第二个记录起进行插入 for (j=i-1; j>=0;j--) if a[j+1]-(a[j]) < 0 Swap(a[j+1], a[j]); }
算 分 析 与 设 计
西南科技大学
俄式乘法☺ 俄式乘法☺
算法思想:两个A和B数相乘,把数A每 次除以2,直到为0为止,另一个数B则不 断加倍,若第数A未除尽时,则数B应加 上自己。 7×8的计算步骤: 7 8 3 16+ 8 1 32+ 16 + 8
算 分 析 与 设 计
西南科技大学
约瑟夫斯问题( 约瑟夫斯问题(一)
算 分 析 与 设 计
西南科技大学
减常数因子减治法
减常数因子减治法的一个 典型算法就是折半查找 (Bin_Search)。它搜索 一个排序好的数组,将查 找目标与数组的中间位置 的元素相比,比它大则递 归查找数组的左边,反之 亦然。这个每次迭代都将 问题减小为原来的1/2。 折半查找每次都消去一个 常数因子2,因此其时间 效率为O(logn)。
C++减治法查找范围整数

while(x<k1-1||y>k2-1) { int temp; int f1,f2;//存储最小和最大数的下标 f1=x; f2=y; for(int i=x; i<=y; i++) { if(a[f1].data>a[i].data) f1=i; if(a[f2].data<a[i].data) f2=i; } if(x<k1-1) { temp=a[x].data; a[x].data=a[f1].data; a[f1].data=temp; a[x].flag=0; x++; } if(y>k2-1) { temp=a[y].data; a[y].data=a[f2].data; a[f2].data=temp; a[y].flag=0; y--; } } } void Show(Mat &a,int n,int k1,int k2)
四、实验结果:
该算法的时间复杂度取决于n的大小和输入的 K1、K2的情况,最好情况是K1、K2恰好在输入的 无序列表的两端,此时不做运算,直接输出,时间 复杂度为O(0)。最坏情况是K1=K2=n/2时,此时做 n/2次运算,时间复杂度为O(n/2)。
{ cout<<"第"<<k1<<"小到"<<k2<<"小之间的所有整数有:"; for(int i=0; i<n; i++) { if(a[i].flag) cout<<a[i].data<<" "; } cout<<endl; } void main() { int choice; cout<<" 1: 执行程序! 2: 退出程序!"<<endl; do { cout<<"请选择你的操作:"; cin>>choice; switch(choice) { case 1: { int n; int k1,k2; cout<<"请输入无序列表n的大小:"; cin>>n; cout<<"请输入无序列表中的所有整数:"; for(int i=0; i<n; i++) { a[i].flag=1; cin>>a[i].data; } cout<<"请输入k1,k2的值:"; cin>>k1>>k2;
算法笔记_004:8枚硬币问题【减治法】

算法笔记_004:8枚硬币问题【减治法】⽬录1 问题描述(1)实验题⽬在8枚外观相同的硬币中,有⼀枚是假币,并且已知假币与真币的重量不同,但不知道假币与真币相⽐较轻还是较重。
可以通过⼀架天平来任意⽐较两组硬币,设计⼀个⾼效的算法来检测这枚假币。
(2)实验⽬的1)深刻理解并掌握减治法的设计思想并理解它与分治法的区别;2)提⾼应⽤减治法设计算法的技能。
3)理解这样⼀个观点:建⽴正确的模型对于问题的求解是⾮常重要的。
(3)实验要求1)设计减治算法实现8枚硬币问题;2)设计实验程序,考察⽤减治技术设计的算法是否⾼效;3)扩展算法,使之能处理n枚硬币中有⼀枚假币的问题。
(4)实现提⽰假设⽤⼀个数组B[n]表⽰硬币,元素B[i]中存放第i枚硬币的重量,其中n-1个元素的值都是相同的,只有⼀个元素与其他元素值不同,则当n=8时即代表8枚硬币问题。
由于8枚硬币问题限制只允许使⽤天平⽐较轻重,所以,算法中只能出现元素相加和⽐较的语句。
2 解决⽅案2.1 减治法原理叙述在说减法法原理之前,我们先来简单看看分治法原理:分治法是把⼀个⼤问题划分为若⼲⼦问题,分别求解⼦问题,然后再把⼦问题的解进⾏合并得到原问题的解。
⽽减治法同样是把⼤问题分解成为若⼲个⼦问题,但是这些⼦问题不需要分别求解,只需求解其中的⼀个⼦问题,也⽆需对⼦问题进⾏合并。
换种说法,可以说减治法是退化的分治法。
减治法原理正式描述:减治法(reduce and conquer method)将原问题的解分解为若⼲个⼦问题,并且原问题的解与⼦问题的解之间存在某种确定关系,如果原问题的规模为n,则⼦问题的规模通常是n/2 或n-1。
2.2 8枚硬币规模解法求解思路:(1)⾸先输⼊8枚硬币重量,存放在⼀个长度为8的⼀维数组中。
(2)定义a,b,c,d,e,f,g,h⼋个变量,分别对应⼀枚硬币的重量。
然后把这8枚硬币分成三组,分别为abc(abc = a+b+c)、def(def =d+e+f)、gh。
第7章 减治法(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)

比较对象,若 k 与中间元素相等,则查找成功;若 k 小于中间元素,则在中间元
算 法 设
计
素的左半区继续查找;若 k 大于中间记录,则在中间元素的右半区继续查找。不
与 分
析
断重复上述过程,直到查找成功,或查找区间为空,查找失败。
( 第
版 )
k
清 华
大
学
[ r1 … … … rmid-1 ] rmid [ rmid+1 … … … rn ] (mid=(1+n)/2)
Page 4
3
7.1.2 一个简单的例子——俄式乘法
【问题】俄式乘法(russian multiplication)用来计算两个正整数 n 和 m 的乘积
,运算规则:如果 n 是偶数,计算 n/2×2m;如果 n 是奇数,计算(n-1)/2×2m+
m;当 n 等于 1 时,返回 m 的值。
算
法
俄式乘法的优点?
与 分 析
2. 测试查找区间[low,high]是否存在,若不存在,则查找失败,返回 0;
( 第
3. 取中间点 mid = (low+high)/2; 比较 k 与 rmid,有以下三种情况:
版 )
3.1 若 k < rmid,则 high = mid - 1;查找在左半区进行,转步骤2;
清 华
3.2 若 k > rmid,则 low = mid + 1;查找在右半区进行,转步骤2;
Page 12
7.2.2 选择问题
【想法】假定轴值的最终位置是 s,则: (1)若 k=s,则 rs 就是第 k 小元素; (2)若 k<s,则第 k 小元素一定在序列 r1 ~ rs-1 中; (3)若 k>s,则第 k 小元素一定在序列 rs+1 ~ rn 中。
背包问题(修改)

贪心法的一般过程
Greedy(C) //C是问题的输入集合即候选集合 {
S={ }; //初始解集合为空集 while (not solution(S)) //集合S没有构成问题的一个解 {
例:付款问题: 超市的自动柜员机(POS机)要找给顾客数量最少的现金。
假 定 POS 机 中 有 n 张 面 值 为 pi(1≤i≤n) 的 货 币 , 用 集 合 P={p1, p2, …, pn}表示,如果POS机需支付的现金为A,那么, 它必须从P中选取一个最小子集S,使得
m
pi S , pi = A (m =| S |) i =1
an=a×a×…×a n次
蛮力法所赖的基本技术——扫描技 术
关键——依次处理所有元素 基本的扫描技术——遍历
(1)集合的遍历 (2)线性表的遍历 (3)树的遍历 (4)图的遍历
虽然巧妙和高效的算法很少来自于蛮力法,基于 以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题蛮力法可以产生一些合理的算 法,他们具备一些实用价值,而且不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能的底限,来衡量 同样问题的更高效算法。
减治法
普卢塔克说,萨特斯为了告诉他的士兵坚韧和 智慧比蛮力更重要的道理,把两匹马带到他们面前, 然后让两个人扒光马的尾毛.一个人是魁梧的大力 士,他抓住尾巴扒了又扒,但一点效果也没有;另 一个人是一个精明的、长相狡黠的裁缝,他微笑着, 每次扒掉一根毛,很快就把尾巴拔得光秃秃的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
俄式乘法
n n * m= — * 2 * m 2
• 两个大整数m和n乘法
n为偶数
n -1 n * m= —— * 2 * m + m 2
n为奇数
an=(a(n-1)/2)2 *a n是奇数
an =a
子问题的解
n=1
原始问题的解Leabharlann 7减常因子法 减治法的第 2 种变化。折半查找 —— 常因子 = 2 , 注意与分治法区别 这类算法效率常常是对数型,速度非常快,不要指望 有很多此类算法,常因子 ≠ 2 的情况更是少之又少。 常因子 = 3,每次规模减 2 / 3 . 假币问题 有n 枚外观相同的硬币,其中有一枚假币。设假币较 轻,用一架天平将这枚假币检测出来 减常因子策略 (多种方法,这里仅用减治策略) 把 n 枚硬币等分为两堆 —— n 为奇数:留下一枚硬币,把两堆放天平上。若两 堆硬币重量相同,留下这枚即为假币 n 为偶数:较轻的一堆含假币,继续分解它,丢弃 较重的那一堆 —— 常因子 = 2 ,减半法
解此递推式,得 本算法并非最高效的算法!更高效的策略是: 每次把 n 个硬币分为 3 堆,常因子 = 3,每次减去问题 规模的2/3 . 称重次数约为 log3n, 比 log2n 更小。
减常因子法算例 —— 俄式乘法(俄国农夫法) 问题:两个正整数相乘。十九世纪,俄国农 民广泛采用该算法,不需使用九九乘法表。 算法策略 n 和 m 为两个正整数,计算它们的乘积。 问题规模选择 n ,采用减治 策略,可得递推式:(规模减半,常因子 = 2) n为偶数: n为奇数: 算法停止: n = 1 时停止:1×m = m 算法实现:递归法、非递归法
分治法和减治法区别
分治法是对分解的子问题分别求解,需要 对子问题的解进行合并,而减治法只对一个子问 题求解,并且不需要进行解的合并。应用减治法 (例如减半法)得到的算法通常具有如下递推式:
0 T (n) T (n / 2) 1
n 1 n 1
算法的三个变形
减常量法:常量通常为1(每此迭代规模减小n→n-1 ) 减常因子法:常因子通常为 2(每此迭代规模减半 n→ n/2 ) 减可变规模法:每次减去的规模不同
减治算法
Decrease and Conquer减治算法
☆基本思想 ☆三个变形及实现 ☆几个实例
减治法的基本思想
将规模为n的问题递减为规模为 n-1或n/2的子问题,反复递减后对子问 题分别求解,再建立子问题的解与原问 题的解的关系。 减治法:利用给定规模与较小规 模问题解之间的关系求解问题的方法。
当n>1时,W(n)=W([n/2])+1
, W(1)=0
时间效率分析 输入规模:硬币数 n 基本操作:称重(比较操作) 效率类别:有最佳、最差、平均效率情况 增长函数:称重次数与硬币数 n 的函数关系 T(n) = ? 1. 最佳效率 T(n) = 1 ( n 为奇数 ) 需要作 1 次称重 2. 最差效率 将问题规模减半
实现 —— 从顶向下:规模减小(递归) 从底向上:规模增大(非 递归)
减(一)治技术
规模为n 的问题
规模为n-1 的子问题
例如: f(n)=an
f(n)=f(n-1)*a
n>1
n=1
子问题的解
f(n)=a
原始问题的解
减(半)治技术
规模为n的问题 规模为n/2 的子问题
an=(an/2)2
n是偶数