绿色荧光蛋白(GFP) 的特性及其在分子生物学研究中 的应用教学资料

合集下载

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列概述及解释说明1. 引言1.1 概述GFP(绿色荧光蛋白)是一种具有独特发光特性的蛋白质,被广泛应用于细胞和分子生物学领域。

其绿色荧光可以通过外源激活而观察到,使得科学家们能够可视化细胞内发生的过程,并实时跟踪靶标分子的定位与转移。

GFP的序列是理解其结构、功能以及应用关键的基础。

1.2 文章结构本文将从多个方面对GFP绿色荧光蛋白序列进行概述及解释说明。

首先,我们将介绍GFP的历史和发现过程,以及其在现代生物学中的重要性。

随后,我们将详细探讨GFP序列的组成和编码基因信息,并解析与功能相关性方面的研究进展。

最后,我们将阐述GFP序列在生物学研究中的广泛应用,并就目前存在的问题和未来发展进行思考。

1.3 目的本文旨在提供有关GFP绿色荧光蛋白序列的全面概述及解释说明,深入探讨其组成、结构、功能和应用,并对其未来发展进行展望。

通过本文的阐述,读者将能够更好地理解和应用GFP序列在生物学领域中的价值,为相关研究提供指导和启示。

同时,我们也希望通过此文促进对GFP技术的探索和创新,推动生物科学的不断发展。

2. GFP绿色荧光蛋白序列概述2.1 GFP简介GFP(Green Fluorescent Protein)绿色荧光蛋白是一种来自于海洋水母的蛋白质。

它的主要特点是能够发出绿色荧光,并且在非生物致死条件下仍然保持稳定。

由于这些特性,GFP成为了生物学领域中一种广泛使用的标记工具。

2.2 GFP的发现历程GFP最早是在1960年代末期由奥斯汀·盖因斯、罗德南·麦迪安和道格拉斯·普里肯特等科学家在研究水母Aequorea victoria时发现的。

他们观察到当GFP暴露在紫外线下时会发出绿色荧光,并且将其提取出来进行进一步研究。

随后,科学家们发现GFP能够自身形成一个染色体,而不需要其他辅助物质。

2.3 GFP的结构特征GFP的序列长约238个氨基酸残基,具有高度保守性。

绿色荧光蛋白GFP

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述生命科学学院 2010级李积锋 1241410007【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。

其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。

它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。

在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。

【关键词】水母绿色荧光蛋白生色团变种1绿色荧光蛋白简介绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。

其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。

水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。

GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。

由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。

2绿色荧光蛋白的表达和成熟GFP的表达水平受多种因素的影响。

在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。

目前适用于哺乳动物的表达系统不受影响。

GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。

用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。

这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如何帮助GFP折叠和成熟的线索。

另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。

3绿色荧光蛋白的应用3.1报告基因和细胞标记GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。

绿色荧光蛋白作为报告基因在分子生物学中的应用

绿色荧光蛋白作为报告基因在分子生物学中的应用

绿色荧光蛋白作为报告基因在分子生物学中的应用绿色荧光蛋白作为报告基因在分子生物学中的应用摘要:随着科学技术的不断更新和发展,绿色荧光蛋白在动物学、植物学、微生物学等领域的应用研究越来越广泛。

绿色荧光蛋白(green fluorescent protein,GFP)可作为报告基因,且具有分子量较小、荧光性质稳定、对生物体无毒性作用、检测时不需要底物等的特点。

本文就对荧光蛋白在分子生物学中的应用做一综述。

关键词:绿色荧光蛋白;报告基因;应用The Application of GFP As Reporter Gene In the Molecular Biology Abstract: With the upgrade and development of science and technology, the application of green fluorescent protein used in Zoology, Botany and microbiology is more extensive. As a reporter gene, GFP have some characteristics, such as low molecular weight, good fluorescent stability, non- toxicity to organisms. This paper reviews the application of GFP in the molecular biology. Key words: green fluorescent protein, reporter gene, application of GFP绿色荧光蛋白(green fluorescent protein,GFP)是一类来自于海洋生物如水母、水螅和珊瑚等腔肠动物内的一种生物发光蛋白,当受到紫外或蓝光激发时,能发射出绿色荧光。

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用近几十年来,绿色荧光蛋白(GFP)被广泛用于生物学的研究,特别是在细胞生物学领域,它在基因表达分析、膜蛋白研究,以及定位和追踪细胞外状态变化等方面提供了有力的工具。

绿色荧光蛋白最初是从拟南芥中分离出来的,它是一种可以在生物细胞中发出可见的绿光的蛋白质。

GFP可以与其他蛋白质结合在一起,可以用来检测特定蛋白质的表达和定位。

利用绿色荧光蛋白的特性,我们可以实现转基因技术的可视化,同时实现基因的定位,这使得细胞的动态变化以及基因调控可以被直观定量地观察出来。

在GFP的研究过程中,科学家发现GFP本身也有可以改进的特性,不仅可以让它发出绿色的光,也可以被用来实现转基因技术的可视化。

它的发光强度与温度变化和环境改变有关,当温度提升或温度较高时,GFP的发光强度会增强。

GFP还可以用来检测特定的一种或多种蛋白质,能够实现精确的蛋白质定位。

同时,研究人员还发现GFP的表达能力可以被亚细胞定位,发现细胞内部基因表达的动态变化。

GFP也被用于膜蛋白研究,可以很好地实现膜蛋白在细胞表面的定位,从而有助于我们更好地分析膜结构和功能,为细胞生物学研究带来新的视角。

此外,GFP还可以被用于探索和分析细胞外状态变化,它能够通过显示细胞的迁移、聚类、分离等状态变化来揭示细胞的行为和表型特征,成功地帮助了许多细胞生物学研究。

绿色荧光蛋白是一种重要的细胞生物学研究工具,它的出现使得细胞的研究变得更加容易,提高了生物学研究的效率。

它不仅可以被用于基因表达分析和定位,也可以用于膜蛋白研究,使我们更好地了解细胞的行为和表型特征,实现细胞外状态变化的追踪,进而发现基因调控的模式,目前,GFP的技术已经成为细胞生物学研究技术的重要组成部分,将为未来更多的细胞生物学研究带来更多的帮助。

综上所述,GFP在细胞生物学研究中具有重要的意义,它提供了一种强大的分析工具,可以实现基因表达分析、膜蛋白研究和细胞外状态变化的定量观察。

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用

绿色荧光蛋白及其在细胞生物学研究中的应用绿色荧光蛋白(Green Fluorescent Protein, GFP)是一种从水母Aequorea victoria中分离出来的荧光蛋白质,可以发射绿色荧光。

由于GFP具有结构简单,对细胞无毒性和较强稳定性等特点,因此被广泛应用于细胞生物学和生命科学研究中。

以下是关于GFP及其在细胞生物学研究中的应用的介绍。

一、荧光蛋白及GFP的来源荧光蛋白质是一种含有环状芳香族氨基酸残基的蛋白质,能够吸收外部能量并将其转化为荧光发射。

GFP最初是在1955年,美国南加州大学的Osamu Shimomura研究水母发光机制时发现的。

GFP由238个氨基酸组成,分子量约27kDa。

GFP基因被克隆后即可在其他生物中表达,使它成为了生物体内最常用的荧光标记物之一。

二、GFP的结构和原理GFP的荧光由3个氨基酸残基Tyr(酪氨酸)、Ser(丝氨酸)和Gly(甘氨酸)构成的环状结构决定。

当氧气与Tyr形成共轭键时,便使荧光激发能量被吸收,并在GFP分子腔内缓慢扩散,直至荧光发射。

三、GFP在细胞生物学中的应用1、荧光定位GFP被广泛用于生命科学中细胞定位的研究。

由于GFP具有细胞膜透性和结构稳定性等特性,可以将其组装到生物体内,使其具有明亮的绿色荧光。

通过转化所需的基因序列来表达GFP,可以使研究人员直接在活细胞中观察到融合GFP蛋白质的定位和空间分布状况。

2、蛋白质交互作用GFP也被用作蛋白质交互作用的研究工具。

在这种情况下,GFP被连接到研究的蛋白质上,而研究人员观察到GFP与其他蛋白质结合的情况,从而确定蛋白质之间是否相互作用。

3、表达和异常行为GFP还可用于研究蛋白质的表达和异常行为。

通过表达GFP基因,可以探究研究对象的分泌情况、活动状态、质量控制和分解情况等。

4、细胞轨迹追踪GFP被广泛应用于细胞追踪研究中。

通过转染GFP基因,可以实时跟踪特定细胞类型的运动和位置,比如细胞分裂、游走和迁移等。

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(GFP)是生物学中非常著名的一个标记蛋白,它可以帮助科学家们观察、追踪细胞内部分子的运动和位置变化。

本文将介绍GFP的结构、功能以及在细胞生物学中的应用。

GFP结构与功能GFP来自于海葵(海洋无脊椎动物)中的一种发光蛋白,它的结构中含有一个环状结构(环状柄)和一个β桶(β-barrel)。

环状柄中含有一个色素分子,称为染料环,贡献了GFP的光学特性。

β桶的作用是保护染料环,并使它的光学特性达到最佳状态。

GFP有着非常特殊的性质,它可以在自然光下发出荧光,荧光颜色为绿色。

当其暴露在213-488nm的紫外线照射下,GFP就会发射从蓝、绿到黄的荧光波长。

GFP的这种特性使得它成为了生物学家们进行光学研究的最佳工具。

1. 显微镜下的成像GFP是一种非常强的标记蛋白,通过将其融合到目标物分子上,可以非常清晰地显示该分子的位置和运动。

利用显微镜技术,研究人员可以观察到细胞器、蛋白质、RNA等生命大分子在细胞内的运动和相互作用,从而揭示其在生物学中的重要作用。

2. 基因表达与细胞注释通过将GFP基因转染到细胞中,可以实现在特定细胞和组织中进行特定基因的表达。

同时,在转染GFP的细胞中,人们也可以通过显微镜监测到特定细胞的位置和分布,用于细胞的标记与识别。

3. 胚胎发育研究GFP还可以用于观察和研究胚胎发育过程中各种细胞分子的运动和定位。

通过将GFP融合到发育过程中的标志性分子中,研究人员可以观察到该分子在胚胎发育的不同阶段中的表达和变化,从而揭示胚胎发育的机制。

总结GFP的发现和应用开创了一种全新的标记技术,使科学家们能够更深入地探究生命大分子的运动、位置和相互作用。

GFP的强烈荧光使得其在细胞生物学研究中具有广泛的应用价值,特别是在显微镜下的成像、基因表达与细胞注释以及胚胎发育研究中。

可以预见,在不久的将来,GFP的应用将会更加广泛,并将继续推动生命科学研究的进步。

GFP的简介和应用

GFP的简介和应用

GFP的简介和应用【摘要】源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP),是一种极具应用潜力的标记物,有着极其广泛的应用前景。

本文就GFP的理化性质、荧光特性、改进以及它在科学研究中发挥的作用进行了综述。

【关键词】绿色荧光蛋白(GFP)、标记物、荧光特性、进展、改进、应用、干细胞移植【正文】一、GFP的简介1. GFP的理化性质,荧光特性及其改进1.1 GFP的理化性质从水母体内分离到的GFP基因,长达2.6kD,由3个外显子组成,分别编码69、98和71个氨基酸。

GFP本身是一种酸性,球状,可溶性天然荧光蛋白。

Aequoria GFP分子量约27×103,一级结构为一个由238 个氨基酸残基组成的单链多肽;而Renilla GFP是分子量为54kD的同型二聚体。

两种GFP有不同的激发光谱,Aequoria GFP在395 nm具有最高光吸收峰,肩峰为473 nm;Renilla GFP在498 nm具有强烈的光吸收,肩峰为470 nm。

两种GFP含有相同的生色团,发射光谱基本相同(λmax= 508~ 509 nm)。

GFP性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。

其变性需在90℃或pH<4.0或pH>12.0的条件下用6mol/L盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH变化的耐受性、抗胰蛋白酶消解的能力是相同的。

更重要的是,它们在很大的pH范围内的吸收、发射光谱也是相同的。

Renilla GFP的稳定性就更为显著。

它在上述一系列的变性条件下都很稳定,不易变性。

根据Sheen等的研究,GFP在受体内表达时,其稳定性并不亚于CAT 蛋白,因而可以得到持续时间较长的荧光。

1.2 GFP的荧光原理GFP的性质和发射光谱的稳定性是同其生色团结构的稳定性密不可分的。

GFP表达后折叠,在氧存在的条件下,使66位氨基酸残基的α、β键间脱氢。

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用

绿色荧光蛋白及其在细胞生物学中的应用绿色荧光蛋白(GFP)是一种由蛋白质基因编码的荧光标记物,可以在活细胞中可视化蛋白质的位置和移动。

GFP最初是从海葵中发现的,现在已被广泛应用于生物学研究中。

在细胞生物学中,GFP已成为一种重要的工具,用于研究细胞的结构、功能和信号转导。

GFP可以用于标记蛋白质,从而观察它们在细胞中的位置和运动。

通过将GFP基因与目标蛋白质基因融合,可以制造出发出绿色荧光的融合蛋白。

这种荧光标记可以在活细胞中使用显微镜观察。

因为GFP 是自发发光的,所以不需要其他化学试剂或光源,也不会伤害细胞。

此外,GFP的亚细胞定位可以通过不同的融合蛋白实现,比如细胞核、质膜、内质网、线粒体等。

除了用于观察蛋白质的位置和移动,GFP还可以被用于研究细胞的功能和信号转导。

例如,GFP可以用于标记细胞器,如细胞核、线粒体和内质网,从而研究它们的功能和相互作用。

此外,GFP还可以用于标记细胞信号分子,如钙离子和蛋白激酶,从而研究它们在信号传递中的作用。

总之,GFP已成为一个重要的工具,在细胞生物学研究中发挥着重要作用。

通过使用GFP融合蛋白标记,可以可视化细胞内蛋白质的位置和运动,研究细胞的功能和信号转导,以及研究细胞亚结构。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其稳定,在荧光显微镜强光照射下,GFP抗光漂白(Photobleaching)能力比荧光素 (fluorescein)强[19]。特别在450~490 nm蓝光波长下更稳定,但在340~390 nm或395~440 nm范围内,仍会发生光漂白现象。GFP在不同物种中稳定性不同,在果蝇和斑纹鱼(Zebra fish)中极稳定;在大肠杆菌中会有光漂白;在线虫中10 mM的NaN3将加速光漂白。GFP需要 在氧化状态下产生荧光,强还原剂如5 mM Na2S2O4或2 mM FeSO4能使GFP转变为非荧 光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂,如2% 巯基乙醇、10 mM DDT、10 mM还原谷胱甘肽、10 mM半胱氨酸等并不影响GFP荧光。 中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等,但GFP对 某些封片指甲油特别敏感,苯氧丙烷对GFP荧光也有影响。强氧化剂如1% H2O2,或硫氢基 试剂如1 mM DTNB会造成GFP不可逆性破坏[20]。大多数中等浓度的有机试剂不减弱GFP 荧光,但其最大吸收峰值会改变[21]。在高蛋白、高盐条件下,GFP通过疏水反应形成二聚体, 使470 nm吸收峰值下降近4倍。GFP很容易从细胞中分离并结晶[22]。在离体状态下,GFP 蛋白对热(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通蛋白酶(链霉蛋白酶Pronase 除外)有较强抗性[23]。GFP荧光在pH值为7~12时稳定,在pH值为5.5~7.0时开始受影响[24]。 在纳克级水平,SDS-聚丙烯酰胺电泳凝胶中仍能观察到GFP荧光。在高温、极端pH、或胍 基氯化物条件下,GFP会变性,荧光消失。一旦复性,荧光会部分恢复[25],但可能需要某些硫 醇类化合物的作用[26]。GFP在各种生物活体条件下表现稳定。例如氯霉素乙酰转移酶 (CAT)在生物体内很稳定,用35S-甲硫氨酸分别标记CAT和GFP,并转染玉米叶肉原生质体,用 放线菌酮处理原生质体,通过CAT检测,发现5~10μg/ml放线菌酮可完全抑制CAT在玉米原生 质体中的蛋白合成,但通过GFP观察,转染24小时后,仍未发现GFP荧光有明显减弱,仅有部分 GFP被放线菌酮降解。说明GFP在植物活体细胞中比CAT还要稳定[27]。此外,尽管GFP的 消光系数较低,但和荧光素一样,额定含量可高达80%。在荧光显微镜下,GFP融合蛋白的荧 光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。 但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋 白。由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP 是迄今为止唯一一种活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。
2 GFP 的光谱特性
❖ GFP吸收的光谱, 最大峰值为395nm(紫外),并有一个峰值为470nm的副峰(蓝 光);发射光谱最大峰值为509nm(绿光),并带有峰值为540nm的侧峰 (Shouder).GFP的光谱特性与荧光素异硫氰酸盐(FITC)很相似,因此为荧光素 FITC设计的荧光显微镜滤光片组合同样适用于GFP观察。尽管450~490 nm(蓝 光)是GFP的副吸收峰,但由于长波能量低,细胞忍受能力强,因此更适合于活体检 测。Chroma技术公司(Chroma Technology Corp.Brattlebore,VT 05301,USA)已 研制出一系列适合于GFP观察的滤光片组合。利用重组突变[10,11,12]和数字联 想分光显微镜( Digital ImagingSpectroscopy)技术[13,14,15]可以诱发GFP色基 突变,改变GFP光谱特性。Heim R等[16,17]获得了野生型GFP的一系列随机突变, 其激发波长和发射波长都发生了变化(表1)。如获得的蓝色荧光突变,就是原GFP 分子中第66个氨基酸由酪氨酸突变成的组氨酸,但荧光信号减弱了近50%。 Delagrave S获得的红色漂移(Red-shifed)突变,与野生型GFP相比,其激发波长向 红色方向漂移了近100 nm[18]。具有不同光谱特性的GFP突变体的获得,使在同 一细胞中同时分析两种不同蛋白或启动子成为可能,可以用于发育细胞学、药物 筛选、分析诊断等研究。
二GFP 在分子生物学研究中的应用
❖ 2.1 GFP 作为报告基因用于转基因研究 ❖ 自Prasher DC从水母(A.victoria)中克隆了GFP的cDNA
绿色荧光蛋白(GFP) 的特性及其 在分子生物学研究中 的应用
一 GFP 的结构、特性与功能
❖ 1 GFP 的结构
❖ P rasher DC 首 先 克 隆 了 水 母 Jellyfish(A equorea v ictoria GFP)的cDNA[ 6 ],GFP编码的238个氨 基酸的多肽单体,推导分子量Mr=26888,与先前用变性电泳测得的天然 GFP 分子量 (30 KD a ) 接近。根据DNA序列推导的氨基酸序列与大部分天然GFP的多肽片段相同。只有完整的GFP 分子才会 产生生物荧光, 但与荧光的产生直接有关的是GFP 分子中一小段被称为色基(Ch rom opho re ) 的部位 (图2。在GFP的初级氨基酸序列上, 第65~67个氨基酸(SerˉTyrˉGly)ˉˉˉˉ
❖ 形成环状六肽三体, 以共价形式与GFP蛋白肽键骨架相连 。色基形成的机理目前尚不清楚,但在有分子 氧存在的条件下, 酪氨酸氧化成脱氢酪氨酸, 并环化形成六肽, 这可能是形成色基的必然过程。Sh im om u ra 最先推导了水母GFP色基结构,后来Ward等进行了进一步验证与修改。GFP的cDNA克隆序列分析 表明,在2.6kb范围内至少分布有3个启动子,组成色基的SerˉTyrˉGly三体就位于第二个内含子3’端
相关文档
最新文档