2018年中考数学总复习阶段检测10统计与概率试题2

合集下载

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。

2018年深圳中考复习概率与统计单元测试卷-最新学习文档

2018年深圳中考复习概率与统计单元测试卷-最新学习文档

福苑学校九年级数学总复习——概率与统计总分:100分答题时间:60分钟班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(共12小题;共36分)1. 下列调查中,最适合用普查方式的是A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查广州市初中学生锻炼所用的时间情况D. 调查广州市初中学生利用网络媒体自主学习的情况2. 为了解某市参加中考的名学生的身高情况,抽查了其中名学生的身高进行统计分析.下面叙述正确的是A. 名学生是总体B. 名学生的身高是总体的一个样本C. 每名学生是总体的一个个体D. 以上调查是全面调查3. 下列调查中,最适合采用全面调查(普查)的是A. 对重庆市居民日平均用水量的调查B. 对一批LED节能灯使用寿命的调查C. 对重庆新闻频道“天天”栏目收视率的调查D. 对某校九年级(1)班同学的身高情况的调查4. 小明想了解全校名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱状况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,估计全校喜欢娱乐类节目的学生大约有人.A. B. C. D.5. 甲、乙两人进行射击比赛,他们次射击的成绩(单位:环)如下图所示:设甲、乙两人射击成绩的平均数依次为、,射击成绩的方差依次为、,那么下列判断中正确的是A. ,B. ,C.,D. ,6. 某企业1 5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A. 1 2月份利润的增长快于2 3月份利润的增长B. 1 4 月份利润的极差与1 5 月份利润的极差不同C. 1 5 月份利润的众数是万元D. 1 5 月份利润的中位数为万元7. 若一组数据,,,的众数和平均数相等,则这组数据的中位数为A. B. C. D.8. 一组数据:,,,,若添加一个数据,则发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差9. 在围棋盒中有颗白色棋子和颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子A. 颗B. 颗C. 颗D. 颗10. 把一枚均匀的骰子连续抛掷两次,则两次朝上面的点数之积为的倍数的概率是B. C.11. 一项“过关游戏”规定:在过第关时要将一颗质地均匀的骰子(六个面上分别刻有到的点数)抛掷次,若次抛掷所出现的点数之和大于,则算过关;否则不过关,则能过第二关的概率是B.12. 设,是两个任意独立的一位正整数,则点在抛物线图象上方的概率是A. B. C. D.二、填空题(共4小题;共12分)13. 从不同职业的居民中抽取户,调查各自的年消费额,在这个问题中,总体是;个体是;样本是.14. 若一组数据,,,的平均数是,则这组数据的方差是.15. 如图是某足球队全年比赛情况的统计图:根据图中信息,该队全年胜了场.16. 如图,一只蚂蚁在正方形区域爬行,点是对角线的交点,,,分别交线段,于,两点,则蚂蚁停在阴影区域的概率为.三、解答题(共6小题;共52分)17. 袋中装有大小相同的个红球和个绿球.(1)先从袋中摸出个球后放回,混合均匀后再摸出个球.(i)求第一次摸到绿球,第二次摸到红球的概率;(ii)求两次摸到的球中有个绿球和个红球的概率;(2)先从袋中摸出个球后不放回,再摸出个球,则两次摸到的球中有个绿球和个红球的概率是多少?请直接写出结果.18. 深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车,私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共人,,;(2)补全条形统计图;(3)若该校共有人,骑共享单车的有人.19. 深圳市政府计划投资万亿元实施东进战略,为了解深圳市民对东进战略的关注情况,某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:(1)根据上述统计图表可得此次采访的人数为人,,;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在名深圳市民中,高度关注东进战略的深圳市民约有人.20. 11 月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有万学生,三本以上有万人.21. 随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义.某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样试验:即在同一条件下,被抽样的该型号汽车,在耗油的情况下,所行驶的路程(单位:)进行统计分析,结果如下图所示:(注:记为,为,为,为,为)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油的情况下可以行使以上?22. 某校初三(1)班名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有名男生,名女生,为了了解学生的训练效果,从这名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.答案第一部分1. B2. B3. D4. A5. B6. C7. A8. D9. B 10. D 11. A 12. D第二部分13. 不同职业的居民各自年消费额状况的全体,每一个居民各自年消费额状况,所抽取的户不同职业的居民年消费额状况14. 15. 16.第三部分17. (1)(i)画树状图得共有个等可能结果,第一次摸到绿球,第二次摸到红球的结果有种情况,第一次摸到绿球,第二次摸到红球的概率.(ii)两次摸到的球中有个绿球和个红球的结果有种情况,两次摸到的球中有个绿球和个红球的概率[LatexErr].(2)先从袋中摸出个球后不放回,再摸出个球,共有等可能的结果为(种),且两次摸到的球中有个绿球和个红球的有种情况,两次摸到的球中有个绿球和个红球的概率是.18. (1)[LatexErr];;【解析】(人),,,,.(2)如图(3)【解析】(人).19. (1);;;(2)如下图所示;(3)20. (1)[LatexErr];补全统计图如图所示,(2)(3)21. (1)因为的频数为,且占整个样本的,所以进行该试验的车辆数为(辆),(2)频数在范围内的车辆数为(辆),频数在范围内的车辆数为(辆),补全的频数分布直方图为:(3)由()中的频数分布直方图可知:耗油的情况下可以行使以上的汽车数为(辆),耗油的情况下可以行使以上的汽车所占比例为,所以该市约有辆该型号的汽车耗油可以行使以上.22. (1)根据题意得:;.(2)作出扇形统计图,如图所示.根据题意得.(3)男生编号为,,,女生编号为,,由枚举法可得:[LatexErr],,,[LatexErr],[LatexErr],,,,,共种,其中为女女组合,所以抽取的两名学生中至多有一名女生的概率为.。

2018年全国各地中考数学真题汇编:统计与概率(贵州专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(贵州专版)(解析卷)

2018年全国各地中考数学真题汇编(贵州专版)统计与概率参考答案与试题解析一.选择题(共5小题)1.(2018•贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D.2.(2018•遵义)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.3.(2018•贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.解:共有5+4+3=12,所以恰好摆放成如图所示位置的概率是,故选:A.4.(2018•安顺)要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生解:A、在某中学抽取200名女生,抽样具有局限性,不合题意;B、在安顺市中学生中抽取200名学生,具有代表性,符合题意;C、在某中学抽取200名学生,抽样具有局限性,不合题意;D、在安顺市中学生中抽取200名男生,抽样具有局限性,不合题意;故选:B.5.(2018•铜仁市)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.解:由题意可得,点数为奇数的概率是:,故选:C.二.填空题(共5小题)6.(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为10人.解:∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10.故答案为:10.7.(2018•安顺)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是乙.2=0.035>S乙2=0.015,方差小的为乙,解:因为S甲所以本题中成绩比较稳定的是乙.故答案为乙.8.(2018•黔西南州)若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是.解:∵100个产品中有2个次品,∴从中随机抽取一个,抽到次品的概率是=,故答案为:.9.(2018•铜仁市)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取她的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.解:,∴=6,故答案为:6.10.(2018•黔西南州)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是丙.甲乙丙丁7887s21 1.20.9 1.8解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为:丙.三.解答题(共7小题)11.(2018•贵阳)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为97.5分,补全表格如下:初二92.89920%(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共300×25%+300×20%=135人,故答案为:135;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.12.(2018•遵义)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160人,扇形统计图中A部分的圆心角是54度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54°(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.13.(2018•贵阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,故答案为:;(2)共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.14.(2018•遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.15.(2018•安顺)某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节人目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了200名观众;图②中最喜爱“新闻节目”的人数占调查总人数新闻体育综艺科瞽节目的百分比为25%;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.解:(1)本次问卷调查的总人数为45÷22.5%=200人,图②中最喜爱“新闻节目”的人数占调查总人数的百分比为×100%=25%,故答案为:200、25%;(2)“体育”类节目的人数为200﹣(50+35+45)=70人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.16.(2018•铜仁市)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.17.(2018•黔西南州)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=100,n=35;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.。

2018年全国各地中考数学真题汇编:统计与概率(湖北专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(湖北专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(湖北专版)(解析卷)
2018年全国各地中考数学真题汇编(湖北专版)
统计与概率
参考答案与试题解析
一.选择题(共10小题)
1.(2018?宜昌)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()
A.B.C.D.
解:这句话中任选一个汉字,这个字是“绿”的概率=.
故选:B.
2.(2018?武汉)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()
A.2、40 B.42、38 C.40、42 D.42、40
解:这组数据的众数和中位数分别42,40.
故选:D.
3.(2018?天门)下列说法正确的是()
A.了解某班学生的身高情况,适宜采用抽样调查
B.数据3,5,4,1,1的中位数是4
C.数据5,3,5,4,1,1的众数是1和5
D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定
解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;
B、数据3,5,4,1,1的中位数是:3,故此选项错误;
C、数据5,3,5,4,1,1的众数是1和5,正确;
D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.
故选:C.
4.(2018?武汉)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字
1 / 19。

2018年中考数学试题分项版解析汇编:专题07+统计与概率(第02期)(山东专版)

2018年中考数学试题分项版解析汇编:专题07+统计与概率(第02期)(山东专版)

一、选择题:1.(山东烟台,第5题,3分)李华根据演讲比赛中九位评委所给的分数制作了如下表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数 B. 众数 C. 方差 D.中位数2.(山东济南,第8题,3分)济南某中学足球队的18名队员的年龄如表所示:这18名队员年龄的众数和中位数分别是()A. 13岁,14岁 B. 14岁,14岁 C. 14岁,13岁 D. 14岁,15岁3.(山东日照,第4题,3分)某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A. 众数是35B. 中位数是34C. 平均数是35D. 方差是64.(山东泰安,第6题)(3分)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.15B.25C.35D.455.(山东泰安,第10题)(3分)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如7 96就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.356.(山东泰安,第11题)(3分)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分 B.96分,96分 C.94分,96.4分 D.96分,96.4分7.(3分)(2015•聊城,第3题)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A. 2400名学生B. 100名学生C. 所抽取的100名学生对“民族英雄范筑先”的知晓情况D. 每一名学生对“民族英雄范筑先”的知晓情况8.(3分)(2015•聊城,第8题)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是()A. 众数是80千米/时,中位数是60千米/时B. 众数是70千米/时,中位数是70千米/时C. 众数是60千米/时,中位数是60千米/时D. 众数是70千米/时,中位数是60千米/时9.(山东威海,第10题,3分)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是()A. B. C. D.二、填空题1.(山东济南,第19题,3分)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.2.(山东潍坊,第13题,3分)“植树节”时,九年级一班6个小组的植树棵树分别是:5,7,3,x ,6,4,已知这组数据的众数是5,则该组数据的平均数是 .3.(山东枣庄,第16题,4分)在一个不透明的盒子中装12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是31,则黄球的个数________. 4.(山东烟台,第15题,3分)如图,有四张不透明的卡片除正面的函数关系式不同,其余相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数图像不经过第四象限的卡片的概率为____________。

(完整版)2018全国中考数学统计概率题真题汇总,推荐文档

(完整版)2018全国中考数学统计概率题真题汇总,推荐文档
海壁教育 - 2 - 只教 数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中 考
南 宁 | 柳 州 400-070-20 05
【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况, 随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数统计表
学生借阅图书的次数统计图
4上上上上
3上 26% 0上
2上
1上 26%
请你根据统计图表中的信息,解答下列问题:(1)a=,b=
(2)该调查统计数据的中位数是
,众数是
3 请计算扇形统计图中“3 次”所对应扇形的圆心角的度数 4 若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4 次及以上”的人数.
课程
平均数
中位数
众数
海壁教育 - 1 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题: 1 写出表中 m 的值 2 在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是 (填“A“或“B“),理由是
海壁教育 - 4 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
完整的统计图.
根据所给信息,解答以下问题
1 在扇形统计图中,C 对应的扇形的圆心角是

2018年中考数学真题专题汇编:统计与概率(解析版)

2018年中考数学真题专题汇编:统计与概率(解析版)
三、解答题
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:





的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2018•嘉兴)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D错误,故选:D.8.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2018•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2018•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2018•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2018•衢州)数据5,5,4,2,3,7,6的中位数是 5 .解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2018•金华)如图是我国2013~2019年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2019年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2019年机动车的拥有量,分别计算2010年~2019年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2019年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2019年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2018•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好..(2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).淡若清风。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段检测10 统计与概率一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查2.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁3.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是( )第3题图A.棋类 B.书画C.球类 D.演艺4.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子里,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A.12个 B.16个 C.20个 D.30个5.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A.80分 B.82分 C.84分 D.86分6.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时第6题图第8题图7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x-4|,则其结果恰为2的概率是( )A.16B.14C.13D.128.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,159.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.1210.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如图的条形与扇形统计图.第10题图依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°;(3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110.其中正确的结论个数为( )A.4 B.3 C.2 D.1二、填空题(本大题有6小题,每小题5分,共30分)11.一组数据4,0,1,-2,2的标准差是____________________.12.某校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是____________________.13.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是____________________.第13题图14.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有____________________人.每周课外阅读时间(小时)0~1 1~2(不含1)2~3(不含2)超过3人数7 10 14 19 15.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为____________________.第15题图第16题图16.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_________场.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:命中环数(环)7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?18.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为____________________;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色不相同的概率.19.2017年6月18日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.第19题图请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2016年父亲节当天甲品牌剃须刀的销售额.20.交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.第20题图(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:第21题图根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.22.如图所示,A、B两个旅游点从2013年至2017年“五一长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:第22题图(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2013年到2017年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?23.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如右统计图.第23题图请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为____________________度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为____________________.24.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.参考答案阶段检测10 统计与概率一、1—5.CACAD 6—10.BCDDA二、11.2 12.35 13.92% 14.240 15.1316.22三、17.x 甲=8(环);x 乙=8(环),∴S 2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,S 2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵S 2甲>S 2乙,∴乙同学的射击成绩比较稳定.18.(1)12(2)设白球为A ,蓝球为B ,红球为C 1、C 2,列表如下:A B C 1 C 2 A (A ,B)(A ,C 1) (A ,C 2) B (B ,A) (B ,C 1)(B ,C 2) C 1 (C 1,A) (C 1,B) (C 1,C 2)C 2(C 2,A)(C 2,B)(C 2,C 1)由表可知共有12种可能情况,颜色不相同的情况有10种,∴P(颜色不同)=12=6.∴两次摸到的球颜色不相同的概率是56.19.(1)2014年父亲节当天剃须刀的销售额为5.8-1.7-1.2-1.3=1.6(万元),补全条形图如图: (2)1.3×17%=0.221(万元).答:该店2016年父亲节当天甲品牌剃须刀的销售额为0.221万元.第19题图20.(1)由纵坐标看出畅通的天数为7天,严重拥堵的天数为2天; (2)此人到达当天的交通为严重拥堵的概率P =214=17; (3)由方差越大,数据波动越大,得5、6、7三天数据波动最大,故从5日开始.21.(1)补全频数分布直方图,如图所示. (2)∵10÷10%=100人,∴40÷100=40%,∴m =40,∵4÷100=4%,∴“E ”组对应的圆心角度数=4%×360°=14.4°. (3)3000×(25%+4%)=870(人).答:估计该校3000名学生中每周的课外阅读时间不少于6小时的人数是870人.第21题图22.(1)B 旅游点的旅游人数相对上一年,增长最快的是2016年, (2)x A =3(万人),x B =3(万人),S 2A =2,S 2B =0.4,从2013至2017年五一长假期间,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动更大一些. (3)由y =5-x100≤4,得x≥100,x -80≥20,A 旅游点门票至少要提高20元. 23.(1)144 (2)成绩在90分以上的占比为1650×100%=32%,∴估计该校约有2000×32%=640名同学获奖. (3)2324.(1)画树状图:共有9种等可能的结果,它们是:(0,-1),第24题图(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); (2)在直线y =-x +1的图象上的点有:(1,0),(2,-1),所以点M(x ,y)在函数y =-x +1的图象上的概率为29; (3)在⊙O 上的点有(0,-2),(2,0),在⊙O 外的点有(1,-2),(2,-1),(2,-2),所以过点M(x ,y)能作⊙O 的切线的点有5个,所以过点M(x ,y)能作⊙O 的切线的概率为59.。

相关文档
最新文档