数值分析 第六章 习题

合集下载

《数值分析》第六章答案

《数值分析》第六章答案

习题61.求解初值问题y x y +=' )10(≤≤x 1)0(=y取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解xe x y 21+-=相比较。

解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.4599242) 用改进的Euler 公式进行计算,具体形式如下: 10=y)()(1i i i D i y x h y y ++=+ )()(11)(1D i i i C i y x h y y +++++= )(21)(1)(11c i D i i y y y ++++= 4,3,2,1,0=i计算结果列表如下i i x i y )(1D i y + )(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.0311473. 对初值问题1)0(=-='y y y)0(>x ,证明用梯形公式所求得的近似值为ii hh y ih y )22()(+-=≈ ),2,1,0( =i并证明当0→h 时,它收敛于准确解ix e y -=,其中ih x i =为固定点。

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

数值分析课后参考答案06

数值分析课后参考答案06

第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。

证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。

2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。

解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。

3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。

解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。

数值分析第四版习题和答案解析

数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多大误差7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字.8. 当N 充分大时,怎样求211Ndx x +∞+⎰9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝210. 设212S gt =假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大这个计算过程稳定吗12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好3-- 13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nkkj j j x l x xk n =≡=∑ii) 0()()1,2,,).nkj j j x x l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8maxmax a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18.求一个次数不高于4次的多项式()P x,使它满足(0)(1)P P k=-+并由此求出分段三次埃尔米特插值的误差限.19.试求出一个最高次数不高于4次的函数多项式()P x,以便使它能够满足以下边界条件(0)(0)0P P='=,(1)(1)1P P='=,(2)1P=.20.设[](),f x C a b∈,把[],a b分为n等分,试构造一个台阶形的零次分段插值函数()nxϕ并证明当n→∞时,()nxϕ在[],a b上一致收敛到()f x.21.设2()1/(1)f x x=+,在55x-≤≤上取10n=,按等距节点求分段线性插值函数()hI x,计算各节点间中点处的()hI x与()f x的值,并估计误差.22.求2()f x x=在[],a b上的分段线性插值函数()hI x,并估计误差.23.求4()f x x=在[],a b上的分段埃尔米特插值,并估计误差.24.给定数据表如下:试求三次样条插值并满足条件i)(0.25) 1.0000,(0.53)0.6868; S S'='=ii)(0.25)(0.53)0. S S"="=25.若[]2(),f x C a b∈,()S x是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii)若()()(0,1,,)i if x S x i n==,式中ix为插值节点,且01na x x x b=<<<=,则[][][]()()()()()()()()()b a S x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26.编出计算三次样条函数()S x系数及其在插值节点中点的值的程序框图(()S x可用式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小r 是否唯一 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积19. 用许瓦兹不等式估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22.()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.27. 观测物体的直线运动,得出以下数据:28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(2)21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. 用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式和辛普森公式当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =,和处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

李庆扬-数值分析第五版第6章习题答案(20130819)

李庆扬-数值分析第五版第6章习题答案(20130819)

试考察解此方程组的雅可比迭代法及高斯-赛德尔迭代法的收敛性。 雅可比迭代的收敛条件是
( J ) ( D 1 ( L U )) 1
高斯赛德尔迭代法收敛条件是
(G ) (( D L) 1U ) 1
因此只需要求响应的谱半径即可。 本题仅解 a),b)的解法类似。 解:
3.设线性方程组
a11 x1 a12 x2 b1 a11 , a12 0 a21 x1 a22 x2 b2
证明解此方程的雅可比迭代法与高斯赛德尔迭代法同时收敛或发散, 并求两种方 法收敛速度之比。 解:
a A 11 a21

a12 a22
5. 何谓矩阵 A 严格对角占优?何谓 A 不可约? P190, 如果 A 的元素满足
aij aij ,i=1,2,3….
j 1 j i
n
称 A 为严格对角占优。 P190 设 A (aij )nn (n 2) ,如果存在置换矩阵 P 使得
A PT AP 11 0
x ( k 1) x ( k )

10 4 时迭代终止。
2 1 5 (a)由系数矩阵 1 4 2 为严格对角占优矩阵可知,使用雅可比、高斯 2 3 10
赛德尔迭代法求解此方程组均收敛。[精确解为 x1 4, x 2 3, x3 2 ] (b)使用雅可比迭代法:
2.给出迭代法 x ( k 1) Bx (k ) f 收敛的充分条件、误差估计及其收敛速度。 迭代矩阵收敛的条件是谱半径 ( B0 ) 1 。其误差估计为
1 k
(k) Bk (0)
R ( B) ln B k 迭代法的平均收敛速度为 k

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。

数值分析 第六章 习题

数值分析 第六章 习题

第六章 习 题1. 计算下列矩阵的1A ,2A ,A ∞三种范数。

(1)1101A −⎛⎞=⎜⎟⎝⎠,(2)312020116A ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠. 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组1231231238322041133631236x x x x x x x x x −+=⎧⎪+−=⎨⎪++=⎩ 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。

3. 用Gauss-Seidel 迭代求解1231231235163621122x x x x x x x x x −−=⎧⎪++=⎨⎪−+=−⎩ 以(0)(1,1,1)T x =−为初值,当(1)()310k k x x +−∞−<时,迭代终止。

4. 已知方程组121122,2,x x b tx x b +=⎧⎨+=⎩ (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。

(2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件.5. 设有系数矩阵122111221A −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠ , 211111112B −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛.(2)对于矩阵B ,.6. 讨论方程组112233302021212x b x b x b −⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.7. 对下列方程组进行调整,使之对Gauss-Seidel 迭代收敛,并取初始向量(0)(0,0,0)T x =,求解1213123879897x x x x x x x −+=⎧⎪−+=⎨⎪−−=⎩ 试将Jacobi 迭代前后的老值与新值加权平均,设计出一种基于Jacobi 迭代的松弛迭代格式.8.分别取松弛因子 1.03ω=,1ω=, 1.1ω=,用SOR 方法解下列方程组1212323414443x x x x x x x −=⎧⎪−+−=⎨⎪−+=−⎩要求()(1)610k k xx −−∞−≤时,迭代终止.。

数值分析习题

数值分析习题

第一章 绪论习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算)6 设x 的相对误差为%a ,求nx y =的相对误差。

(函数误差的计算)7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算)8 设⎰-=11dx e x eI x n n ,求证: (1))2,1,0(11 =-=-n nI I n n(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。

(计算方法的比较选择)第二章 插值法习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。

(拉格朗日插值)2 已知9,4,10===x x x y ,用线性插值求7的近似值。

(拉格朗日线性插值)3 若),...1,0(n j x j =为互异节点,且有)())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------=+-+-试证明),...1,0()(0n k x x l xnj k jk j =≡∑=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 习 题
1. 计算下列矩阵的1A ,2A ,A ∞三种范数。

(1)1101A −⎛⎞=⎜⎟⎝⎠,(2)312020116A ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠
. 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组
1231231
238322041133631236x x x x x x x x x −+=⎧⎪+−=⎨⎪++=⎩ 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。

3. 用Gauss-Seidel 迭代求解
12312312
35163621122x x x x x x x x x −−=⎧⎪++=⎨⎪−+=−⎩ 以(0)(1,1,1)T x =−为初值,当(1)()
310k k x x +−∞−<时,迭代终止。

4. 已知方程组121122,2,x x b tx x b +=⎧⎨
+=⎩ (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。

(2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件.
5. 设有系数矩阵
122111221A −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠ , 211111112B −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠

证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛.
(2)对于矩阵B ,.
6. 讨论方程组
112233302021212x b x b x b −⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠
用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.
7. 对下列方程组进行调整,使之对Gauss-Seidel 迭代收敛,并取初始向量(0)(0,0,0)T x =,求解
1213123
879897x x x x x x x −+=⎧⎪−+=⎨⎪−−=⎩ 试将Jacobi 迭代前后的老值与新值加权平均,设计出一种基于Jacobi 迭代的松弛迭代格式.
8.分别取松弛因子 1.03ω=,1ω=, 1.1ω=,用SOR 方法解下列方程组
1212323414443x x x x x x x −=⎧⎪−+−=⎨⎪−+=−⎩
要求()(1)610k k x
x −−∞−≤时,迭代终止.。

相关文档
最新文档