2015年华杯赛初赛试题答案及解析
2015年第二十届华杯赛中年级组初赛A卷(详解)

【分析】设张叔叔现在 x 岁,张叔叔减少 y 岁后是李叔叔年龄的一半,则李叔叔现在年龄为 2 x y 岁,
张叔叔是李叔叔现在年龄的一半时李叔叔为 2 x y y 岁,则
x 2 x y 56
y 8
x
2
x
y
y
,解得
x
24
,即张叔叔现在
24
岁.
此题亦可运用线段图的解法,同学们可以自己思考!
(A)30
(B)42
【答案】C
【考点】应用题:和倍问题
(C)46
(D)52
【分析】设田径队员为 a 人,则合唱队员 2a 人,舞蹈队员 2a 10 人, 2a a 2a 10 100 ,则
a 18 ,所以舞蹈队员18 2 10 46 人.
5. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分.那么,这只旧钟的 24 小时比标准 时间的 24 小时( ).
二. 填空题 (每小题 10 分, 共 40 分) 7. 计算: (1000 15 314) (201 360 110) (1000 201 360 110) (15 314) ________. 【答案】1000000 【考点】计算:换元法 【分析】令 a 15 314, b 201 360 110 ;则
(A)快 12 分
(B)快 6 分
2015年华杯选拔解答

【答案】 39
8.
把 2015 写成连续 n 个非零自然数之和, 当 n 取最大值时, 将写成的和式中所有“ ”号 换成“ ”号后,其乘积的末尾有 个连续的 0 。
【答案】 14
二、解答下列各题(每题 10 分,共 40 分,要求写出简要过程) 9. 在
1 2 2006 , , , 中,共有多少个最简分数? 10 11 2015
a b c 是d 9
12. 如图, A 码头位于 B 码头的上游,某天早上小舟驾着游艇从 B 码头出发向上游驶去, 此时他发现沿江大道上每隔 6 分钟有一辆观光大巴与他迎面相遇。 当小舟在 A 码头折返 时,他又发现每隔 10 分钟追上一辆观光大巴。在回程中游艇出现故障,只能向 B 地漂 流,那么此时每隔几分钟会有一辆观光大巴追上小舟的游艇(假设船速、水速、车速以 及发车的时间间隔前后一致)?
是 3 的倍数.又因为 0 ~ 9 的总和是 45 ,是 3 的倍数,所以 e f g hij 也是 3 的倍数,进一 步 可 知 的 倍 数 , 又 因 为 a b c d 30 , 而 342 c4 d e f g 1 h 0 i 2j 3 4 ,所以 5 a1 b1 .结合 a b c d 是 9 的倍数, 13 可以确定 a b c d 27 . 容易推出 a 3 ,对应 金牌种子 的最小值应为 3789 。 9873 3 下面给出一种对应的填法 。 4 5 6 102 13 【答案】 3789
SDEF 11 3 3 1 1 11 , DG : GC SDEF : SCEF : 11:18 。 1 42 7 SABC 7 7 6 42
A F D B
【答案】 11:18
华杯赛2001-2015年试题及答案

第六届“华杯赛”小学组决赛第一试试题l.N是1,2,3…1995,1996,1997的最小公倍数,请回答N等于多少个2与一个奇数的积?2.正方形客厅边长12米,若正中铺一块正方形纯毛地毯,外围铺化纤地毯,共需费用22455元。
已知纯毛地毯每平方米250元,化纤地毯每平方米35元,请求出铺在外围的化纤地毯的宽度是多少米?3.将1,2,3…49,50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,求这10个中位数之和的最大值及最小值.4.红,黄,蓝和白色卡片各一张,每张上写有一个数字,小明将这四张卡片如右下图放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
问:红、黄、蓝三张卡片上各是什么数?5.一堆球,如果是10的倍数个,就平均分成10堆并拿走9堆。
如果不是10的倍数个,就添加几个,但少于10个,使这堆球成为10的倍数个,再平均分成10堆并拿走9堆,这个过程称为一次“均分”。
若球仅为一个,则不做“均分”。
如果最初一堆球数有1234…19961997个,请回答经过多少次“均分”和添加了多少个球后,这堆球就仅余1个球?6.若干台计算机联网,要求:(1)任意两台之间最多用一条电缆连接;(2)任意三台之间最多用两条电缆连接;(3)两台计算机之间如果没有连接电缆,则必须有另一台计算机和它们都连接有电缆。
若按此要求最少要连79条,问:(1)这些计算机的数量是多少?(2)这些计算机按要求联网,最多可以连多少条电缆?第6届小学组决赛1试答案1.N等于10个2与某个奇数的积。
2.外围化纤地毯的宽度是1.5米。
3.最大的“居中和”是345,最小的“居中和”是165。
4.红卡上的数字是2,黄卡上是1,蓝卡上是8。
5.均分6881次,添加了33985个球。
6.有80台计算机参加联网;最多可连1600条电缆。
第七届“华杯赛”小学组复赛试卷1. 计算4133.5261374381.125-6.1⨯+÷⎪⎭⎫ ⎝⎛+ 2. 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元(精确到亿元)。
华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。
答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。
答案:803. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-54. 一个数除以2的结果是3,那么这个数是______。
答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。
答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。
根据题意,2x=10,解得x=5。
答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
证明:设直角三角形的两直角边分别为a和b,斜边为c。
根据勾股定理,有a^2 + b^2 = c^2。
答案:证明完毕。
2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。
证明:设这个数为x,那么x^2 = -x。
将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。
华赛杯初赛试题及答案

华赛杯初赛试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项不是华赛杯的参赛条件?A. 年龄在14-18岁之间B. 必须为在校中学生C. 可以是个人参赛D. 必须参加所有比赛项目2. 华赛杯的初赛通常在每年的哪个月份举行?A. 1月B. 3月C. 6月D. 9月3. 华赛杯的决赛通常在哪个国家举行?A. 中国B. 美国C. 英国D. 澳大利亚4. 下列哪个科目不属于华赛杯的竞赛科目?A. 数学B. 物理C. 化学D. 历史5. 华赛杯的参赛者需要提交哪些材料?A. 个人简历B. 学校成绩单C. 竞赛报名表D. 所有以上选项6. 华赛杯的初赛试题通常由哪些专家命题?A. 中学教师B. 大学教授C. 行业专家D. 所有以上选项7. 华赛杯的奖项设置通常包括哪些?A. 一等奖、二等奖、三等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项8. 华赛杯的参赛者在初赛中获得多少分才能进入决赛?A. 60分以上B. 70分以上C. 80分以上D. 90分以上9. 华赛杯的参赛者可以参加几次初赛?A. 1次B. 2次C. 3次D. 无限制10. 华赛杯的参赛者在决赛中获得什么奖项可以被保送至大学?A. 一等奖B. 金银铜奖C. 荣誉证书D. 所有以上选项二、简答题(每题5分,共10分)11. 请简述华赛杯的宗旨是什么?12. 请列举华赛杯对参赛者有哪些要求?三、论述题(每题15分,共30分)13. 论述华赛杯对中学生的学术发展有哪些积极影响?14. 论述参加华赛杯对个人综合素质提升的作用。
四、案例分析题(每题15分,共15分)15. 假设你是华赛杯的组织者,请分析如何提高华赛杯的知名度和影响力?五、答案1-5:D, B, A, D, D6-10:D, A, C, C, A11. 华赛杯的宗旨是激发中学生的学术兴趣,培养他们的创新能力和团队合作精神,同时提供一个展示自己才华的平台。
12. 参赛者要求包括年龄在14-18岁之间,为在校中学生,可以个人或团队参赛,需提交竞赛报名表和学校成绩单。
2012年—2015五届华杯赛小高年级组试题及答案

2012年第十七届华杯赛小高年级组初赛试题答案第1题:176第2题:865第3题:3721第4题:3第5题:120第6题:60第7题:75第8题:2012第9题:6第10题:40442013第十八届华杯赛决赛小学高年级组试题A卷2013-04-25 14:23:54 来源:华杯赛官网2013第十八届“华杯赛”笔试决赛已经结束,全国试卷小高组分A、B、C卷外,其余组别都是分A、B卷,杭州智康1对1整理了第十八届“华杯赛”决赛所有试题及答案解析。
∙2014年第十八届华罗庚金杯少年数学邀请赛初赛试卷B (小学高年级组)(时间: 2013 年3 月23 日10:00 ~ 11:00)一、选择题 (每小题 10 分, 满分60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数, 各位数字互不相同, 所有数字之和等于6, 并且这个数是11 的倍数, 则满足这种要求的四位数共有( )个.(A )6 (B )7 (C )8 (D )9【答案】A【解析】四个数字互不相同,且和为6,只能是0、1、2、3;又知这个四位数是11的倍数,所以奇数位的数字和和偶数位的数字和都是3,只能是0+3=1+2; 千位可能是1、2、3;确定千位后十位也随之确定。
每个对应的个位和百位有2种可能;共有6种。
2. 932232332333+⨯+⨯⨯++⨯⨯⨯⨯个个位数字是( ). ?? ?????(A )2 (B )8 (C )4 (D )6【答案】B【解析】式子为10个数相加,这10个数的个位分别是2、6、8、4、2、6、8、4、2、6;易得和的个位是83. 在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图( )中的三角形.(A ) (B ) (C ) (D )【答案】B【解析】图中①、②、③三边应为顺时针关系,B 不合要求。
4. 某日, 甲学校买了56 千克水果糖, 每千克8.06 元. 过了几日, 乙学校也需要买同样的56 千克水果糖, 不过正好赶上促销活动, 每千克水果糖降价0.56 元, 而且只要买水果糖都会额外赠送5% 同样的水果糖. 那么乙学校将比甲学校少花( )元.(A )20 (B )51.36 (C )31.36 (D )10.36【答案】B【解析】甲花的钱是8.0656451.36⨯=元 乙花的钱是568.060.56=4001+5%-⨯()元;差是451.36-400=51.36元5. 甲、乙两仓的稻谷数量一样, 爸爸, 妈妈和阳阳单独运完一仓稻谷分别需要10 天, 12 天和15 天. 爸爸妈妈同时开始分别运甲、乙两仓的稻谷, 阳阳先帮妈妈, 后帮爸爸, 结果同时运完两仓稻谷, 那么阳阳帮妈妈运了( )天.(A )3 (B )4 (C )5 (D )6【答案】C【解析】三人的效率分别是111101215,,;共同运了2仓稻谷,需要1112++=8101215÷()天;妈妈运了1仓稻谷的812;小明帮妈妈运了412,需要5天; 6. 如图, 将长度为9 的线段AB 分成9 等份, 那么图中所有线段的长度的总和是( ).(A )132 (B )144 (C )156 (D )165【答案】D【解析】图中长度为1的线段有9条,长度为2的线段有8条,……1×9+2×8+3×7+…+9×1=165二、填空题(每小题 10 分, 满分40 分)7. 将乘积0.2430.325233⨯化为小数, 小数点后第2013 位的数字是________.【答案】9 【解析】243325233-3927879371079110.2430.325233====0.079119999999903727999991099999⨯⨯⨯⨯⨯⨯⨯⨯ 循环节有5位,2013≡3(mod5),第2013位和第3位一样,是9.8. 一只青蛙8 点从深为12 米的井底向上爬, 它每向上爬3 米, 因为井壁打滑, 就会下滑1 米, 下滑1 米的时间是向上爬3 米所用时间的三分之一. 8 点17 分时, 青蛙第二次爬至离井口3 米之处, 那么青蛙从井底爬到井口时所花的时间为________分钟.【答案】22【解析】青蛙的运动状态如下图所示,从开始到第二次离井口3米的时间为17份,爬到井口的时间为22份。
2015华赛杯试题及答案

2015华赛杯试题及答案2015华赛杯是一项重要的数学竞赛活动,旨在提高中学生的数学水平和培养他们的综合能力。
以下是2015华赛杯的试题及答案。
第一题:选择题1. 已知函数 f(x) 的定义域为实数集,当 x>0 时,f(x) + 1 = 2x,则f(2015) 的值为:A. 2013B. 2014C. 2015D. 2016答案:B. 2014解析:将 x 替换为 2015,得到 f(2015) + 1 = 2 * 2015,解方程可得f(2015) = 2014。
第二题:填空题2. 若项数为 5 的等差数列的首项为 3,公差为 4,则这个等差数列的和为________。
答案:65解析:根据等差数列和的公式 Sn = (a1 + an) * n / 2,代入已知条件可得 Sn = (3 + (3 + 4 * (5-1))) * 5 / 2 = 65。
第三题:解答题3. 某公司从 2010 年开始连续 5 年进行业绩评比,得分如下:88, 90, 92, 86, 94。
若该公司的年度得分与上一年度得分之差不得超过 8 分,问该公司是否能在任意两个相邻年份之间的得分之差都不超过 8 分的前提下,获得连续 5 年的最高得分。
答案:能解析:根据已知条件可知,相邻两年的得分之差不能超过 8 分。
我们可以使用动态规划的方法来解决这个问题。
定义一个数组 dp[i] 表示到第 i 年为止的最高得分。
首先,初始化 dp[1] = 88,然后逐年计算dp[i]。
根据题目条件,dp[i] 的取值范围为 [dp[i-1]-8, dp[i-1]+8],即dp[i] = max(min(dp[j]+8, dp[j]-8), 88),其中 j 取值范围为 1 到 i-1。
计算得到 dp[5] = 94,因此该公司能在任意两个相邻年份之间的得分之差都不超过 8 分的前提下,获得连续 5 年的最高得分为 94。
通过以上三道题目的介绍,我们可以看出2015华赛杯试题的难度较高,需要考生具备扎实的数学基础和解题能力。
2015年第二十届华杯赛小高组初赛详解

【题型】几何:一半模型 【解析】
帅
A F C作 AB , AC , BC 的平行线,则 S1 = S 2 , S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ;
1 1 2 所以 S阴影 =S白 = S△ABC = × 2028 = 1014cm ,则 S△PCF = 1014 − 192 × 2 = 630cm 2 2 2
余帅老师公众号:shuaiteacher
帅
第 3 页 兴趣是最好的老师
老
师
学习有意思
快乐思维
二、填空题 (每小题 10 分,共 40 分)
1 1 1 29 41 55 7. 计算: 481 + 265 + 904 − 184 − 160 − 703 =________. 6 12 20 30 42 56
余
如图所示 示,第一列和 和第二行已经 经有 A,所以 以左上角 3*2 粗线方格的 A 只能填在第二列;因为 为第一列 3*2 粗线方格 和第二列 列已经有 A, 所 所以左下角 格的 A 只能填 填在第三列; 因为第五列和第四行已经 经有 A, 3*2 2 A A 所以右中 中位置的 粗线方格的 的 只能填在 在第四列; 因为 为第五行和第 第五列已经有 有 , 右下角 3*2 所以右 粗线方格 格的 A 只能填 填在第六列;以此类推,可以填出所 所以的数.
学习有意思
快乐思维
2015年第二十届华杯赛小高组初赛详解
0分 总分:100 时间 间:60 分钟
0 分,共 60 分.以下每题的 一、选 选择题. (每小题 10 以 的四个选项 项中,仅有 有一个 是正确 确的,请将 将表示正确 确答案的英 英文字母写在每题 题的圆括号 号内. )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一届华罗庚金杯少年数学邀请赛
初赛试卷B (小学中年级组)
( 时间: 2015年12月12日 15:00~16:00)
一、选择题 (每小题 10 分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. )
1. “凑24点”游戏规则是: 从一副扑克牌中抽去大小王剩下52张, (如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组), 用加、减、乘、除(可加括号)把牌面上的数算成24. 每张牌必须用一次且只能用一次, 并不能用几张牌组成一个多位数, 如抽出的牌是3, 8, 8, 9, 那么算式为 38)89(⨯⨯-或3)889(⨯÷-等. 在下面4个选项中, 唯一无法凑出24点的是( ). (A )1, 2, 3, 3 (B )1, 5, 5, 5 (C )2, 2, 2, 2 (D )3, 3, 3, 3
2. 在右图的乘法算式中, 每个汉字代表0至9中的一个数字, 不同汉字代表不同数字, 当算式成立时, “好”字代表的数字是( ).
(A )1 (B )2 (C )4 (D )6
3. 如右图, 边长分别为10厘米和7厘米的正方形部分重叠, 重叠部分
的面积是9平方厘米. 图中两个阴影部分的面积相差( )平
方厘米.
(A )51 (B )60 (C )42 (D )9
4. 库里是美国NBA 勇士队当家球星, 在过去的10场比赛中已经得了333分的高分, 他在第11场得( )分就能使前11场的平均得分达到34分.
(A )35 (B )40 (C )41 (D )47
5. 如右图, 木板上有10根钉子, 任意相邻的两根钉子距离都相等. 以这些钉子为顶点, 用橡皮筋可套出( )个正三角形.
(A )6 (B )10
(C )13 (D )15
6. 在桌面上, 将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接, 要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为( ).
(A )8 (B )7 (C )6 (D )5
二、填空题(每小题10分, 共40分)
7. 计算: =⨯-⨯2016198620151987 .
8. 学校打算组织同学们去秋游. 每辆大巴车有39个座位, 每辆公交车有27个座位, 大巴车比公交车少2辆. 如果所有学生和老师都乘坐大巴, 每辆大巴车上有2位老师, 则多出3个座位; 如果都乘坐公交车, 每辆公交车都坐满并且各有1位老师, 则多出3位老师. 那么共有 位老师, 名同学参加这次秋游.
9. 于2015年10月29日闭幕的党的十八届五中全会确定了允许普遍二孩的政策. 笑笑的爸爸看到当天的新闻后跟笑笑说: 我们家今年的年龄总和是你年龄的7倍, 如果明年给你添一个弟弟或者妹妹, 我们家2020年的年龄总和就是你那时年龄的6倍. 那么笑笑今年 岁.
10. 教育部于2015年9月21日公布了全国青少年校园足球特色学校名单, 笑笑所在的学校榜上有名. 为了更好地备战明年市里举行的小学生足球联赛, 近期他们学校的球队将和另3支球队进行一次足球友谊赛. 比赛采用单循环制(即每两队比赛一场), 规定胜一场得3分, 负一场得0分, 平局两队各得1分; 以总得分高低确定名次, 若两支球队得分相同, 就参考净胜球、相互胜负关系等因素决定名次. 笑笑学校的球队要想稳获这次友谊赛的前两名, 至少要得 分. 试题答案和解析请扫下方二维码查看:。