中科院矩阵分析chapt4
中科院矩阵分析chapt3

矩阵分析及其应用 3.1矩阵序列定义3.1设矩阵序列{A (k )},其中A(k)=( a (k )) C m n ,当k a j" a u 时,称矩阵序列{A (k)}收敛,并称矩阵 A=( a ij )为矩 阵序列{A (k)}的极限,或称{A (k)}收敛于A,记为lim A (k)A 或 A (k) Ak不收敛的矩阵序列称为发散的。
由定义,矩阵序列 A (k )发散的充要条件为存在 j 使得数列a (k)发散。
类似地,我们可以定义矩阵收敛的 Cauchy 定义 定义3.1'矩阵序列{A (k)}收敛的充要条件为 对任给>0存在N(),当k, l N()时有 ||A (k) A (l)|| <其中||.|为任意的广义矩阵范数。
sin 』)n nsin(k)如果直接按定义我们因为求不出 A (n)的极限从而从而只要I 充分大,则当m, n > l 时就有sin(k)k 2这样A (l)收敛。
定理3.1 A (k) A 的充要条件为 ||A (k) A|| 0证明:利用广义矩阵范数的等价性定理,仅对 范数可以证明。
即c 1ILA (k) A||||A (k) AII C 2 ||A (k) AII 性质 0 若 A (k)A ,则 ||A (k) II IIAII 成立。
性质 1. 设 A (k)A m n ,B (k) B m n , 则A (k)+ B(k) A+ B , ,C 性质 2. 设 A (k)A m n ,B (k )B n l ,贝UA (k)B (k)A B证明:由于矩阵范数地等价性,我们可以只讨论相容的 矩阵范数。
||A (k )B (k) A B|| || A (k) B (k) A B (k)||+||AB (k)A B|||| A (k) A|| ||B (k)||+||A||||B (k) B||例 1 A (n)k m 1k(k 1)相反,由于注意||B(k)|| ||B||,则结论可得。
中科院矩阵分析与应用大作业

中科院矩阵分析与应用大作业1. 研究背景矩阵是数学领域中的重要概念之一,它在各个领域中都有广泛的应用。
在计算机科学中,矩阵常常用于图像处理、计算机视觉等领域;在数据分析中,矩阵则被用来描述数据之间的关系。
因此,深入研究矩阵的相关算法和应用,对于提高计算机科学和数据分析领域的研究水平具有重要意义。
2. 研究目的本次研究的主要目的是掌握矩阵分析的基本概念和相关算法,并将其应用于实际问题中,进一步提高对于矩阵分析的理解和应用能力。
3. 研究内容3.1 矩阵分解矩阵分解是矩阵分析中的一项重要任务,它将一个矩阵分解成为多个小的矩阵,从而更方便的进行处理。
常见的矩阵分解算法有:1.奇异值分解(SVD)2.QR分解3.LU分解4.特征值分解3.2 矩阵重构矩阵重构是指将矩阵进行转换、组合等操作,旨在从不同的角度探索和发现矩阵的内在规律。
常见的矩阵重构算法有:1.矩阵乘法2.矩阵转置3.矩阵拼接4.矩阵切片3.3 矩阵应用矩阵在各个领域的应用非常广泛,下面列举几个常见的应用场景:1.图像处理:将图像转化成为矩阵,对其进行矩阵分解、矩阵重构等操作,从而实现图像降噪、图像识别等功能。
2.推荐系统:利用矩阵分解的方法将原始数据转化为矩阵,再对其进行推荐系统的处理,从而为用户提供更好的推荐服务。
3.聚类分析:将大量数据转化为矩阵,从而利用聚类算法对其进行分析,发现数据之间的关系,进一步深入研究数据的内在规律。
4. 研究通过对于矩阵分解、矩阵重构、矩阵应用等领域的研究,我们可以得到以下:1.奇异值分解、QR分解、LU分解、特征值分解等矩阵分解算法各有优缺点,在实际应用中应该根据具体情况选用不同的算法。
2.矩阵乘法、矩阵转置、矩阵拼接、矩阵切片等矩阵重构算法可以帮助我们从不同的角度分析和处理矩阵,从而深入研究矩阵的内在规律。
3.矩阵在图像处理、推荐系统、聚类分析等领域有着广泛的应用,掌握矩阵分析算法可以帮助我们更好地解决实际问题。
中科院学习课件 矩阵分析与应用 9 Determinants

Since σ (1, 2) = +1 and σ (2, 1) = −1, we obtain the familiar formula a11 a12 a21 a22 = a11 a22 bin | UCAS
7 / 23
Determinants | Determinants
Li Bao bin | UCAS 2 / 23
Determinants | Introduction
These men had something else in common — their ideas concerning the solution of linear systems were never adopted by the mathematical community of their time, and their discoveries quickly faded into oblivion. Eventually the determinant was rediscovered, and much was written on the subject between 1750 and 1900. During this era, determinants became the major tool used to analyze and solve linear systems, while the theory of matrices remained relatively undeveloped. The study and use of determinants eventually gave way to Cayley.s matrix algebra, and today matrix and linear algebra are in the main stream of applied mathematics, while the role of determinants has been relegated to a minor backwater position. Nevertheless, it is still important to understand what a determinant is and to learn a few of its fundamental properties. Our goal is not to study determinants for their own sake, but rather to explore those properties that are useful in the further development of matrix theory and its applications.
矩阵分析课件

基本性质: (1)含有零向量的向量组一定线性相关;
(2)整体无关 部分无关;部分相关 整体相关;
(3)如果含有向量多的向量组可以由含有向量少的向 量组线性表出,那么含有向量多的向量组一定线性相 关; (4)向量组的秩是唯一的,但是其极大线性无关组并 不唯一; (5)如果向量组(I)可以由向量组(II)线性表出,
例 4 全体正的实数 R 在下面的加法与数乘的
定义下也构成线性空间:
a b : ab, a, b R
k a : ak , a, k R
例 5 R 表示实数域 R 上的全体无限序列组成的
的集合。即
R
[a1,
a2, a3,]
ai F, i 1,2,3,
在 R 中定义加法与数乘:
[a1, a2, a3,] [b1, b2, b3,] [a1 b1, a2 b2, a3 b3, ] k[a1, a2, a3,] [ka1, ka2, ka3,] 则 R 为实数域 R上的一个线性空间。
是一组线性无关的函数,其中 1,2 , ,n 为一
组互不相同的实数。
例 3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx
也是线性无关的。
例 4 实数域 R 上的线性空间空间 RR 中,函数组 1,cos2 x,cos 2x
是线性相关
cos 2x 2cos2 x 1
线性表出
k11 k22 knn
称1,2,,n为V的一组基; (k1, k2 , , kn )T
为称向V量为一个在n基维底线性1,空2间,, ,记为n下d的im坐V标。此n.时我们
1.向量的坐标是唯一的
中科院矩阵分析课件.doc

矩阵分析及其应用3.1矩阵序列定义3.1设矩阵序列{应)},其中A«)=(#))£Cms,当k—oo, 佝时,称矩阵序列{A00}收敛,并称矩阵A=(佝)为矩阵序列{A00}的极限,或称{A00}收敛于A,记为lim A a)= A或A,k)-> A ks不收敛的矩阵序列称为发散的。
由定义,矩阵序列A(k)发散的充要条件为存在ij使得数列站发散。
类似地,我们可以定义矩阵收敛的Cauchy定义定义31矩阵序列{A00}收敛的充要条件为对任给£>0存在N(E),当k,l> N(E)时有IIA(k)-A(/)ll < £其中11.11为任意的广义矩阵范数。
例 1 A(n)e~nsin(-)n y,sin(R) k=l K 7如果直接按定义我们因为求不出A㈤的极限从而很难应用定义3.1证明收敛。
相反,由于t^< t^<v 1/m从而只要/充分大,则当m, n > /时就有nz sin(A)这样A")收定理3.1 A(k)->A的充要条件为HA'10-AII T O证明:利用广义矩阵范数的等价性定理,仅对co范数可以证明。
即ci IIA(k) -AIL < IIA(k) -All< c2 IIA(k) -AIL性质 1.设A(k,—> A mxn, B,k,—> B mxn>则a- A(k)+P • B(k) -> a- A+P B, V a,PeC性质2.设A(k)—> A mxn, B,k)—> B nx/,则A(k)由如一A B证明:由于矩阵范数地等价性,我们E以只讨论相容的矩阵范数。
IIA(k).B(k)-A-BII < II A(k) -B(k) -A-B(k)ll+IIAB(k)- A-BII<IIA(k)-AII-IIB(k)ll+IIAIMIB(k)-BII注意IIB(k)||_||BII,则结论可得。
中科院学习课件 矩阵分析与应用 6lineartransform

Li Bao bin | UCAS
3 / 34
Linear Transformations | Introduction
If V is the space of all continuous functions from R into R, then the x mapping defined by T(f ) = 0 f (t)dt is a linear operator on V because
Li Bao bin | UCAS
11 / 34
Linear Transformations | Introduction
For T ∈ L(U , V ) and L ∈ L(V , W ), the composition of L with T is defined to be the function C : U → W such that C(x) = L (T(x)). This composition denoted by C(x) = LT, is also a linear transformation because C(αx + y) = L (T(αx + y)) = L (αT(x) + T(y)) = αL (αT(x)) + L (T(y)) = αC(x) + C(y). If B, B and B are bases for U , V and W , respectively, then C must have a coordinate matrix representation with respect to (B, B ). So it’s only natural to ask how [C]BB is related to [L]B B and [T]BB : [C]BB = [L]/ 34
矩阵分析课件精品PPT

典型例题解析
例1
求矩阵A的特征值和特征向量,其中A=[[3,1],[2,2]]。
例2
已知矩阵A的特征值为λ1=2, λ2=3,对应的特征向量为 α1=[1,1]T, α2=[1,-1]T,求矩阵A。
解析
首先求出矩阵A的特征多项式为f(λ)=(λ-1)(λ-4),解得特 征值为λ1=1, λ2=4。然后分别将特征值代入(A-λI)x=0求 解对应的特征向量。
应用举例
通过克拉默法则求解二元、三元线性方程组,并验证解的正确性 。
典型例题解析
01
例题1
求解三元线性方程组,通过高斯消元 法得到增广矩阵的上三角形式,然后 回代求解未知数列向量x。
02
03
例题2
例题3
判断四元线性方程组的解的情况,通 过计算系数矩阵的行列式|A|以及替换 列向量后的矩阵行列式|Ai|,根据克 拉默法则判断方程组的解是唯一解、 无解还是无穷多解。
特殊类型矩阵介绍
01
02
03
04
方阵
行数和列数相等的矩阵称为方 阵。
零矩阵
所有元素都是零的矩阵称为零 矩阵。
对角矩阵
除主对角线外的元素全为零的 方阵称为对角矩阵。
单位矩阵
主对角线上的元素全为1,其 余元素全为0的方阵称为单位 矩阵。
矩阵性质总结
Байду номын сангаас
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
• 对于每一个特征值m,求出齐次线性方程组(A-mI)x=0的一个基础解系,则A对应于特征值m的全部特征向量(其中I是与A 同阶的单位矩阵)。
特征值和特征向量求解方法
中科院矩阵分析_第二章

第 2 章范数理论及其应用2.1向量范数及I p范数定义:如果V 是数域K 上的线性空间,且对于V的任一向量x,对应一个实数值ixil,它满足以下三个条件:1)非负性:||x|| 0,且||x||=0 x=0; 2)齐次性:iikxii=iki iixii,k K;3)三角不等式:||x+y|| ||x||+||y||.则称||x|为V上向量x的范数,简称为向量范数。
可以看出范数||||为将V映射为非负数的函数。
注意:2)中|k|当K为实数时为绝对值,当K 为复数域时为复数的模。
虽然向量范数是定义在一般的线性空间上的,但是由于前面的讨论,我们知道任何n 维线性空间在一个基下都代数同构于常用的n维复(或实)列向量空间, 因此下面我们仅仅讨论n 维复(或实)列向量空间就足够了下面讨论如下:1•设||||为线性空间V n的范数,任取它的一个基X i,X2,…,X n,则对于任意向量X,它可以表示为x= 1X1+ 2X2+ …+ n X n其中,(1, 2,…,n)T为X的坐标。
由此定义C n(或R n)中的范数如下:|| ||C = () = || 1X1+ 2X2+ …+ n X n||则容易验证|| ||C确实为C n中的范数.2•反之,若|| |C为C n中的范数,定义V n的范数如下:||X||= (X)=|| ||c其中X= 1X1+ 2X2+ …+ n X n。
则容易验证(X)确实为V n的范数。
这个例子充分说明了一般线性空间的范数和n维复(或实)列向量空间的范数之间的关系。
这也是为我们只讨论n 维复(或实)列向量空间的范数的理由.范数首先是一个函数,它将线性空间的任意向量映射为非负实数。
范数与函数性质 1. 范数是凸函数,即|| (1 )X+ y|| (1 )||X||+ ||y||其中0向量的范数类似于向量长度。
性质 2. (范数的乘法) 若|| ||为线性空间V 上的向量范数,则k|||| 仍然为向量范数, 其中k > 0.性质3.设||||comp为R m上的范数,且对x (R+)m为单调增加的(即,若x,y (R+)m, 且X i y那么IXI Comp lyil comp 成立•),那么,对于给定的m个n维线性空间V上的范数||||i,i=1,2,…,m,我们可以定义一个复合范数为llxll=llU(x)ll comp , 其中,U(X)=( ||X||1,||X|2,…,||x||m)T. 证明:非负性和齐次性是显然的,仅需证明三角不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 矩阵分解与表示(I)高斯消去法假设矩阵A 的顺序主子式i D ≠0 (i=1,…,n-1),则我们可以进行以下的顺序消元过程1.消元过程n k k i b m b b nk k j i a m a a k k ik k i k i k kj ik k ij k ij ,,2,1,,,2,1,,)()()1()()()1( ++=-=++=-=++等价于用初等矩阵T k k k e l I L -=分别左乘)(k A 和)(k b ,即)()1(k k k A L A =+ (1)其中,T k n k k k k k m m m l ),,,,0,,0(,,2,1 ++=,n k i a a m k kk k ik ik ,,1,/)()( +==我们称ik m 为消元因子,)(k kk a 为主元素;消元过程的一个重要性质是:消元过程不改变矩阵的顺序主子矩阵的行列式(顺序主子式)的值。
例⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=012131121A ,顺序主子式为,1,5,-10 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−++250050121)1*(2)3(),1()2(,顺序主子式为,1,5,-10 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−-200050121)2()3(,顺序主子式为,1,5,-10 引理:约化的主元素)(i ii a ≠0的充要条件是矩阵A 的顺序主子式i D ≠0 (i=1,…,k);推论:若矩阵A 的顺序主子式i D ≠0(i=1,…,k),则 1)1(11D a =,k i D D a i i i ii,,2,1,/1)( ==-; 由此有若A 对称正定或严格对角占优,而它们的顺序主子矩阵也是对称正定或严格对角占优,从而顺序主子式不为0,顺序高斯消去过程可进行;2.回代过程:()()()()()1/()/,1,2,,1n n n n nnn k k k k k kj kk j k x b a x b a a k n n =+⎧=⎪⎪=-⎨⎪⎪=--⎩∑设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=012131121A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=311b , 用高斯消去法解线性方程Ax=b.增广矩阵为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----301211311121 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−−→−++125000501121)1*(2)3(),1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−-120000501121)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−-2/1100005011212/)3( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−2/1100001011215/)2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-+2/110000102/3001)2*(2)3()1(, 因此,问题的解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2/102/3x 3. 数值稳定性1)选列主元;2)选全主元;3)高斯若当(Gauss-Jordan)消去法,求矩阵的逆;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=012131121A , 求A -1.增广矩阵为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100012010********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−++102250011050001121)1*(2)3(),1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−-11120005/15/10100011215/)2(),2()3( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-2/12/12/110005/15/10102/12/12/1021)3()1(,2/)3( ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−-2/12/12/110005/15/10102/110/110/10012)*2()1( 从而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-5550225111011A 4.高斯顺序消元法解方程的计算量1)乘除次数:3/3/23n n n -+2)加减次数:6/52/3/23n n n -+3)求矩阵的逆的计算量为o(4n )(II) 顺序消元过程与矩阵的三角分解(1) T k k T k k k e l I e l I L +=-=--11)((2) 若 ,j i ≤则有0=j T i l e ,从而T j j T i i T j j T i i e l e l I e l I e l I ++=++))((,L e l e l e l I L L L T n n T T n =++++=------112211111211(3) 由)()1(k k k A L A =+ 有)(111211)1(n n A L L L A A ----==故有 A =LU ,其中)(n A U =,T n n T T e l e l e l I L 112211--++++= .这时L 为单位下三角矩阵。
矩阵的三角分解A =(a 1,a 2,…,a n )T =PR =(p 1,p 2,…,p n )R(a) LU 分解(Doolittle 分解)(1) 存在唯一的条件;(顺序主子式不为0)(2) 公式推导;(矩阵乘法)定义4.1 如果方阵A 可分解成一个下三角矩阵L 和一个上三角矩阵U 的乘积,则称A 可作三角分解. 如果方阵A 可分解成A=LDU,其中L 为一个单位下三角矩阵,D 为对角矩阵,U 是一个单位上三角矩阵,则称A 可作LDU 分解。
推论:若矩阵A 的顺序主子式∆k ≠0(k=1,…,n),则A 可唯一分解为A=LDU, 其中L 为一个单位下三角矩阵,D 为对角矩阵,U 是一个单位上三角矩阵。
d k =∆k /∆k -1 (∆0=1)。
定理4.2 设A 是n 阶非奇异矩阵,则存在置换矩阵P 使得PA=LDU, 其中L 为一个单位下三角矩阵,D 为对角矩阵,U 是一个单位上三角矩阵。
定义4.2 设A 存在唯一的LDU 分解.若把A=LDU 中的D 和U 结合起来,并且用U ’表示,则得到唯一的LU 分解A=LU ’称为Doolittle 分解;若把A=LDU 中的L 和D结合成L ’,就得到A=L ’U称为Crout 分解。
LU 分解的公式:l ik =a ik -(l i1u 1k +…+l i,k-1u k-1,k )u kj = [a kj -(l k1u 1j +…+l k,k-1u k-1,j )]/l kkCrout 分解类似。
(b)平方根法(1)对称矩阵的三角分解定理;T LDL A =(2)对称正定矩阵的三角分解(Cholesky 分解)T LL A =递推公式g ii =(a ii -∑-=112i k ik g)1/2g ij =[a ij -(g i 1g j 1+g i 2g j 2+…+g i,j -1g j,j -1)]/g ii , i>jg ij =0 i<j四、分块矩阵的拟LU 分解和拟LDU 分解⎥⎦⎤⎢⎣⎡=22211211A A A A A 若A 11可逆,作⎥⎦⎤⎢⎣⎡-=-21112110n n I A A I L则 11121222111120A A LA A A A A -⎡⎤=⎢⎥-⎣⎦从而det(A)=det(A 11)⋅det(121112122A A A A --) 同样若A 22可逆,可得类似结果。
推论:设A ∈R m ⨯n ,B ∈R n ⨯m .则det(I m +AB )= det(I n +BA )矩阵求逆引理(Woodbury 公式)(A +BC )-1=A -1- A -1B (I +CA -1B )-1CA -1证明: 求方程(A +BC )x = b,令y =Cx, 则有 Ax +By =b-Cx +y =0写成矩阵为 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-0b y x I C B A ,利用高斯消去法有⎥⎦⎤⎢⎣⎡-0I C b B A ⎥⎦⎤⎢⎣⎡+−−−−→−--+-b CA B CA I b B A CA 11)1*()2(01 ⎥⎦⎤⎢⎣⎡+−−−−−→−---+--b CA B CA I I b B A B CA I 111)2*()()(011 ⎥⎦⎤⎢⎣⎡++-−−−→−-------b CA B CA I Ib CA B CA I B I A B 111111)2*()1()(0))((0 ⎥⎦⎤⎢⎣⎡++-−−→−---------b CA B CA I I b CA B CA I B A A I A 11111111)1*()(0))((01 因此可得x = (A -1- A -1B (I +CA -1B )-1CA -1)b,而由(A +BC )x = b 可得x = (A +BC )-1b由于b 的任意性可得(A +BC )-1=A -1- A -1B (I +CA -1B )-1CA -1从而命题得证。
推论:(A +BD -1C )-1=A -1- A -1B (D +CA -1B )-1CA -1例⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=321151120A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121121121200030001 =[]121111200030001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-由于[]611112000300011211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---利用矩阵求逆引理有 []11111100030002100110010301112103060021002-----⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦-⎡⎤⎡⎤⎡⎤⎛⎫⎢⎥⎢⎥⎢⎥-+- ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦A []2/13/212/13/11762/10003/10001--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= []2/13/212/13/11762/10003/10001--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Schur 补设矩阵A ∈C n ⨯n 为非奇异,I,J ⊂{1,2,…,n}为有序的指标集,I ≠∅, I ≠{1,2,…,n}。
令R={1,2,…,n}/I, S={1,2,…,n}/J 。
假定A I , A I,J 非奇异,则Schur 补A/A I 定义为:A/A I =A R -A R,I (A I )-1A I,RA/A I,J =A R,S -A R,J (A I,J )-1A I,S(当A I,J 不可逆时,使用广义逆(A I,J )+)其中,A I 表示由矩阵A 的元素其行数和列数在I 中组成主子矩阵,其余类似。
定理:假设A I 非奇异,那么 A 非奇异的充要条件为A/A I 非奇异,此时我们有:(A -1)R =(A/A I ) -1 (1)(A -1)R,I = -(A/A I ) -1A R,I (A I )-1 (2)(A -1)I,R = - (A I )-1A I,R (A/A I ) -1 (3)(A -1)I = (A I )-1- (A I )-1A I,R (A/A I ) -1 A R,I (A I )-1 (4)从定理的条件看我们发现I 和R的位置可以完全互换,因此交换I 和R 时等式一定成立。