电力电子技术项目实训指导书
电力电子技术实习指导书

实验室用,请勿带走!《电力电子技术》实习指导书适用专业:电气、自动化指导老师:杭阿芳金陵科技学院机电工程学院电气系20 年月《电力电子技术》课程实习一、实习目的与要求目的:电力电子技术实习课程是理论联系实际,对学生进行基本技能训练,培养学生解决工程实际问题的能力,激发学生的主动性和创新意识的重要实践教学环节。
通过实习教学,学生亲自动手装配、调试电路,更易掌握电力电子技术的理论,掌握的知识、技术也更适合于实际应用。
实习达到的要求如下:1 .综合运用电力电子技术课程中所学到的理论知识去独立完成一个实训课题。
2. 通过查阅手册和文献资料,培养学生独立分析问题和解决实际问题的能力。
3. 进一步熟悉电力电子器件的类型和特性,并掌握合理选用的原则。
4. 学会电力电子电路的安装与调试技能。
5 .进一步熟悉电子仪器的正确使用方法。
6. 学会撰写实训总结报告。
二、实习安排三、实习内容指导第一部分:基础知识第一讲 电力电子元器件性能简介一、电阻器1.固定电阻: 1.1 图形符号:1.2 文字符号:R (RT 、RJ 、RX 等) 1.3 单 位:欧姆(Ω、K Ω、M Ω) 1.4 功 率:1.5 精度:直标1.6阻值的标称方法:色标电阻值:例如:6R2J 表示该电阻标称值为 6.2Ω,允许偏差为±5%;3K6K 表示电阻值为 3.6K Ω, 允许偏差为±10%;1M5 则表示电阻值为 1.5M Ω,允许偏差为±20%。
色标阻值为AB×10C,D 为精度表示精度的环,金色为5%;银色为10%;无色为20%如:棕黑红金——10×102 =1K ,精度,5%;绿棕红金——51×102=5.1K ,精度5%系列:1.0、1.1、1.2、1.5、1.6、1.8、2.0、2.2、2.4、2.7、3.0、3.3、3.6、3.9、4.3、4.7、5.1、5.6、6.2、6.8、7.5、8.2、9.1如采用5色环表示,则其第一色环为百位数,第二色环是十位数,第三色环是个位数, 第四色环是应乘位数,第五色环为误差率。
电力电子技术--实验指导书

电力电子技术与变频器应用实验指导书第一章实验的基本要求和安全操作说明 (3)1.1 实验的特点和要求 (3)1.2 实验前的准备 (4)1.3 实验实施 (4)1.4 实验总结 (5)1.5 实验安全操作规程 (5)1.6 实验装置电源控制屏操作说明 (6)一、三相电网电压指示 (7)二、定时器兼报警记录仪 (7)三、电源控制部分 (7)四、三相主电路输出 (8)五、励磁电源 (8)六、面板仪表 (8)第二章电力电子技术实验 (9)2.1 实验一锯齿波同步移相触发电路 (9)一、实验目的 (9)二、实验所需挂件及附件 (9)三、实验线路及原理 (9)四、实验内容 (9)五、预习要求 (9)六、思考题 (9)七、实验方法 (10)八、实验报告 (11)九、注意事项 (11)2.2 实验二三相半波可控整流电路 (13)一、实验目的 (13)二、实验所需挂件及附件 (13)三、实验线路及原理 (13)四、实验内容 (14)六、思考题 (14)七、实验方法 (14)八、实验报告 (15)九、注意事项 (15)2.3 实验三三相桥式相控整流及有源逆变电路 (17)一、实验目的 (17)二、实验所需挂件及附件 (17)三、实验线路及原理 (17)四、实验内容 (18)五、预习要求 (19)六、思考题 (19)七、实验方法 (19)八、实验报告 (21)九、注意事项 (21)2.4 实验四直流斩波电路的性能研究 (22)一、实验目的 (22)二、实验所需挂件及附件 (22)三、实验线路及原理 (22)四、实验内容 (24)五、预习要求 (24)六、思考题 (24)七、实验方法 (24)八、实验报告 (26)九、注意事项 (26)2.5 实验五SCR、GTO、MOSFET、GTR、IGBT特性实验 (27)一、实验目的 (27)二、实验所需挂件及附件 (27)三、实验线路及原理 (27)四、实验内容 (28)五、预习要求 (28)六、思考题 (28)七、实验方法 (28)八、实验报告 (29)九、注意事项 (29)2.6 实验六单相交流调压电路实验 (30)一、实验目的 (30)二、实验所需挂件及附件 (30)四、实验内容 (31)五、思考题 (31)六、实验方法 (31)七、实验报告 (32)八、注意事项 (32)第三章变频器应用技术实验 (33)实验一爱莫生TD2000系列变频器 (34)一、实验目的 (34)二、实验所需器材 (35)三、实验线路及原理 (35)四、实验内容 (37)五、实验步骤 (37)六、预习要求 (40)七、思考题 (40)八、实验报告 (40)九、注意事项 (40)实验二三菱变频器实验(1) (41)一、实验目的 (41)二、实验所需器材 (41)三、实验线路及原理 (41)四、实验内容 (42)五、实验步骤 (43)六、预习要求 (46)七、思考题 (47)八、实验报告 (47)九、注意事项 (47)第一章实验的基本要求和安全操作说明《电力电子技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,实验环节是这些课程的重要组成部分。
电力电子技术实训指导书

实验一单结晶体管触发电路实验一、实验目的1 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
2 掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图3-1所示。
图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
图3-1 单结晶体管触发电路原理图工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
单结晶体管触发电路的各点波形如图3-2所示。
电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。
图3-2 单结晶体管触发电路各点的电压波形(α=90º)四、实验内容1 单结晶体管触发电路的调试。
2 单结晶体管触发电路各点电压波形的观察。
五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
六、思考题1 单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?2 单结晶体管触发电路的移相范围能否达到180°?七、实验方法1 单结晶体管触发电路的观测。
电力电子技术实验指导书

同学们:这是我们电力电子技术实验指导参考书,请同学们结合实验内容和要求参考实验参考书完成预习报告和实验2021~2021学年第一学期电力电子技术实验指导参考书实验1 三相桥式全控整流电路的性能研究实验目的1、熟悉三相全控桥式整流电路的结构特点,以及整流变压器、同步变压器的连接;2、掌握KC785集成触发电路的应用;3、掌握三相晶闸管集成触发电路的工作原理与调试〔包括各点电压波形的测试与分析〕。
4、研究三相全控桥式整流供电电路〔电阻负载时〕,在不同导通角下的电压与电流波形。
二、实验电路与工作原理〔一〕三相全控桥式整流电路如图7-1所示。
图7-1三相晶闸管全控桥式整流电路〔单元7〕1、图中6个晶闸管的导通顺序如图7-2所示。
它的特点是:①它们导通的起始点〔即自然换流点〕;对共阴极的VT1、VT3、VT5,为uΑ、uB、uC 三个正半波的交点;而对共阳极的VT4、VT6、VT2,那么为三相电压负半波的交点。
②在共阳极和共阴极的管子中,只有各有一个导通,才能构成通路,如6-1、1-2、2-3、3-4、4-5、5-6、6-1等,参见图7-2。
这样触发脉冲和管子导通的顺序为1→2→3→4→5→6,间隔为60°。
③为了保证电路能启动和电流断续后能再触发导通,必须给对应的两个管子同时加上触发脉冲,例如在6-1时,先前已给VT1发了触发脉冲,但到1-2时,还得给VT1再补发一个脉冲〔在下面介绍的触发电路中,集成电路KC41C的作用,就是产生补脉冲的〕,所以对每个管子触发,都是相隔60°的双脉冲,见图7-2b〔当然用脉宽大于60°的宽脉冲也可以,但功耗大〕。
2、在图7-1中,TA为电流互感器〔三相共3个〕,〔HG1型,5Α╱2.5mΑ,负载电阻<100Ω〕,由于电流互感器二次侧不可开路〔开路会产生很高电压〕,所以二次侧均并有一个负载电阻。
〔二〕整流变压器与同步变压器的接线如图7-3所示。
电力电子技术实验指导书最新

实验一 电力电子元件测试一、实验目的1.观察晶闸管(SCR )的结构,掌握测试晶闸管好坏的正确方法。
2.观察IGBT 和MOSFET 的结构,掌握测试IGBT 和MOSFET 好坏的正确方法。
3.验证晶闸管导通与关断条件。
4.掌握各种电力电子器件的工作特性。
二、实验设备三、实验线路及原理1、晶闸管电极的判定和简单测试若从外观上判断,3个电极形状各不相同,无需作任何测量就可以识别。
小功率晶闸管的门极比阴极细,大功率的门极则用金属编制套引出,像一根辫子。
有的在阴极上另引出一根较细的引线,以便和触发电路连接,这种晶闸管虽有4个电极,也无需测量就能识别。
(2)晶闸管的简单测试在实际的使用过程中,很多时候需要对晶闸管的好坏进行简单的判断,我们常常采用万用表法进行判别。
1)万用表档位放至于欧姆档R ×100,将红表笔接在晶闸管的阳极,黑表笔接在晶闸管的阴极观察指针摆动情况,如图1-1所示。
图1-1 测量阳极和阴极间反向电阻2)将黑表笔接晶闸管的阳极,红表笔接晶闸管的阴极观察指针摆动情况,如图1-2所示。
图1-2 测量阳极和阴极间正向电阻结果:正反向阻值均很大原因:晶闸管是四层三端半导体器件,在阳极和阴极之间有三个PN 结,无论如何加电压,总有一个PN 结处于反向阻断状态,因此正反向阻值均很大。
3)将红表笔接晶闸管的阴极,黑表笔接晶闸管的门极观察指针摆动情况,如图1-3所示。
图1-3 测量门极和阴极间正向电阻4)将黑表笔接晶闸管的阴极,红表笔接晶闸管的门极观察指针摆动情况,如图1-4所示。
图1-4 测量门极和阴极间反向电阻理论结果:当黑表笔接控制极,红表笔接阴极时,阻值很小;当红表笔接控制极,黑表笔接阴极时,阻值较大。
实测结果:两次测量的阻值均不大 原因:在晶闸管内部控制极与阴极之间反并联了一个二极管,对加到控制极与阴极之间的反向电压进行限幅,防止晶闸管控制极与阴极之间的PN 结反向击穿。
2、SCR 、MOSFET 、IGBT 特性实验将电力电子器件(包括SCR 、MOSFET 、IGBT 三种)和负载电阻R 串联后接至直流电源的两端,由直流电源为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A 特性。
电力电子技术实验指导书最新版

电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。
电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。
电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。
电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。
波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。
因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。
本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。
由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。
二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。
1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。
可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。
电力电子技术实验指导书

实验一 功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET 主要参数的测量方法 2.掌握MOSEET 对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法三.实验设备和仪器1. NMCL-07电力电子实验箱中的MOSFET 与PWM 波形发生器部分 2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档)图2-2 MOSFET实验电路五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源极电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。
将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。
★注意mosfet刚开启时的漏极电流距离完全开通时的漏极电流相差很远,因此在1mA之后的四个点之间的距离需要取大一些,这样才能测量出较为完整的特性曲线。
此步骤所测得的特性曲线又称为mosfet的转移特性曲线,完整的转移特性曲线示意图如下所示(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。
★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。
电力电子技术实验指导书V10.docx

电力电子技术实验装置简介................................................. -2 -电力电子技术实验的基本要求和安全操作说明 (6)第一章晶闸管部分 (8)实验一正弦波同步移相触发电路实验 (8)实验二锯齿波同步移相触发电路实验 (10)实验三单相半波整流电路实验 ............................................ -12 -实验四单相桥式半控整流电路实验 (75)实验五单相桥式全控整流及有源逆变电路实验 ........................... -18 -实验六三相半波可控整流电路实验 ...................................... -22 -实验七三相桥式半控整流电路实验 ...................................... -25 -实验八三相桥式全控整流及有源逆变电路实验 . (28)实验九单相并联逆变电路实验 (33)实验十单相交流调压电路的性能研究 (36)实验^一三相交流调压电路实验 (39)第二章全控型器件特性部分 (42)实验十二SCR、GTO、MOSFET、GTR、IGBT特性实验 (42)实验十三GTO、MOSFET、GTR、IGBT驱动与保护电路实验 (45)第三章控型器件典型线路部分 (48)实验十四单相交直交变频电路原理 (48)(单相正眩波脉宽调制(SPWM)逆变实验) (48)实验十五半桥型开关稳压电源的性能研究 (51)实验十八单相交流调功电路的性能研究 (65)电力电子技术实验装置简介一、概述:1、特点:1)实验装置采用挂件式结构,可根据不同的实验内容进行自由组合,故结构紧凑、使用方便灵活,并且可随着功能的扩展只需增加挂件即可.2)装置布局合理,外型美观,面板示意图明确、、清晰、直观,学生可通过面板的示意查寻故障,分析工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.项目实训总学时:3周总学分:3
二.适用专业:
电气工程及其自动化
三.考核方式及方法:
检查学生所建立的电力电子变换器主电路和控制电路模型,编写总结报告,答辩。
四.题目:(三选一)
(一)设计一个DC/DC Buck变换器的主电路和控制电路,利用MATLAB/PSIM 仿真软件,对所设计的电路进行仿真验证。
基本参数为:输入电压为200V ,输出电压为50V ,纹波电压为输出电压的0.2% ,负载电阻为20Ω,开关管选用MOSFET,工作频率为20KHz。
要求:
1.设计主电路,根据Buck 变换器的工作原理
1)设计电感和电容参数;
2)建立DC/DC Buck变换器仿真模型;
3)研究MOSFET门极触发脉冲V g、电感电压V L、电感电流i L、输出电压V O、MOSFET 电流i Q1、二极管电流i D1的波形,并对结果进行分析;
4)将开关管工作频率改为50 KHz,电感改为约临界电感值的一半进行对比研究和分析。
2.设计控制电路,保证输入电压或负载变化± 20%时,输出电压保持不变,且纹波控制在2%以内。
根据电压负反馈控制的基本原则,确定补偿网络传递函数的形式和参数大小,并用波特图验证所设计的闭环控制系统是否稳定。
图1 电压控制型DC/DC Buck变换器原理图
(二)设计一个DC/DC Boost变换器的主电路和控制电路,利用MATLAB/PSIM 仿真软件,对所设计的电路进行仿真验证。
基本参数为:输入电压为3-6V ,输出电压为15V ,纹波电压为输出电压的0.2% ,负载电阻为10Ω,开关管选用MOSFET,工作频率为40KHz。
要求:
1.设计主电路,根据Boost变换器的工作原理
1)电感电流连续情况下,设计仿真参数;
2)建立DC/DC Boost变换器仿真模型;
3)研究MOSFET门极触发脉冲V g、电感电压V L、电感电流i L、输出电压V O、MOSFET 电流i Q1、二极管电流i D1的波形,并对结果进行分析。
4)将电感值分别减小为临界电感的一半和二分之一,仿真分析电感电流断续时的Boost 变换器工作情况。
2.设计控制电路,保证输入电压或负载变化± 20%时,输出电压保持不变,且纹波控制在2%以内。
根据电压负反馈控制的基本原则,确定补偿网络传递函数的形式和参数大小,并用波特图验证所设计的闭环控制系统是否稳定。
(三)设计一个DC/DC Buck- Boost变换器的主电路和控制电路,利MATLAB/PSIM 仿真软件,对所设计的电路进行仿真验证。
基本参数为:输入电压为20V ,输出电压为10 V ~ 40V ,纹波电压为输出电压的
0.2% ,负载电阻为10Ω,开关管选用MOSFET,工作频率为20KHz。
要求:
1.设计主电路,根据Buck- Boost变换器的工作原理
1)电感电流连续情况下,设计主电路参数;
2)建立DC/DC Buck- Boost变换器仿真模型;
3)研究MOSFET门极触发脉冲V g、电感电压V L、电感电流i L、输出电压V O、MOSFET 电流i Q1、二极管电流i D1的波形,并对结果进行分析;
4)仿真分析电感电流断续时的电路工作情况。
2.设计控制电路,保证输入电压或负载变化± 20%时,输出电压保持不变,且纹波控制在2%以内。
根据电压负反馈控制的基本原则,确定补偿网络传递函数的形式和参数大小,并用波特图验证所设计的闭环控制系统是否稳定。
五.设计内容与时间安排:
由于任务较重,同学们务必抓紧时间,并充分利用业余时间查找资料,进行调试工作,下面提供大致安排,供参考:
1.每个同学选定题目,独立查阅文献资料;(1天)2.熟悉仿真软件。
(1天)3.主电路参数设计;(2天)4.建立主电路仿真模型和完成开环状态下仿真验证;(3天)5.控制电路参数设计;(2天)6.建立控制电路仿真模型和完成闭环状态下仿真验证;(3天)7.编写不少于3000字的项目总结报告及提供仿真模型(电子版);(2天)8.总结与答辩。
(1天)
六.设计说明书主要内容:
1.课程设计的主要内容和任务;
2.主电路工作原理分析;
3.主电路参数设计;
4.主电路仿真模型及开环状态下仿真结果分析;
5.控制电路工作原理分析;
6.控制电路参数设计;
7.控制电路仿真模型及闭环状态下仿真结果分析;8.结论及存在问题
9.参考文献。