电流互感器选配过大或者过小对计量精度有影响吗

合集下载

浅谈电流互感器误差及影响

浅谈电流互感器误差及影响

浅谈电流互感器误差及影响摘要:电流互感器是一次系统和二次系统电流间的联络元件,将一次回路的大电流转换为小电流,供给测量仪表和保护装置使用。

电流反应系统故障的重要电气量,而保护装置是通过电流互感器来间接反应一次电流的,因此电流互感器的性能直接决定保护装置的运行。

然而从互感器本身和运行使用条件方面来看,电流互感器存在不可避免的误差,本文分别从这两个方面分析了误差,并结合实际工作阐述了误差带来的影响,以便在工作中加强重视,并做出正确的分析。

关键词:电流互感器 励磁电流 误差一、电流互感器的误差在理想条件下,电流互感器二次电流I 2=I 1/Kn ,Kn=N 2/ N 1 ,N 1 、N 2 为一、二次绕组的匝数,不存在误差。

但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。

这一点我们可以从图中看到。

从图一看,实际流入互感器二次负载的电流I’2 =I 1-Ie ,其中I’2 = I 2 * Kn,Ie 为励磁电流,即建立磁场所需的工作电流。

正是因为励磁损耗的存在,使得I 1 和I’2 在数值上和相位上产生了差异。

正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大,经常可以被忽略。

但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。

图二相量图,以I’2 为基准,E 2 较-I’2超前φ角(二次总阻抗角,即Z 2 和Z 阻抗角),如果不考虑铁磁损耗,励磁阻抗一般被作为电抗性质处理,Ie 超前E 2 为90度, I’2与Ie 合成I 1。

图中I’2与I 1不同相位,两者夹角δ即为角度误差。

对互感器误差的要求一般为,幅值误差小于10%,角度误差小于7度。

二、电流互感器的饱和电流互感器的误差主要是由励磁电流Ie 引起的。

正常运行时由于励磁阻抗较大,因此Ie 很小,以至于这种误差是可以忽略的。

但当CT 饱和时,饱和程度越严重,励磁阻抗越小,Z图一 等值电路E 图二 相量图励磁电流极大的增大,使互感器的误差成倍的增大,影响保护的正确动作。

电流互感器的参数优化设计与性能分析

电流互感器的参数优化设计与性能分析

电流互感器的参数优化设计与性能分析随着电力系统的快速发展,电流互感器作为电力系统中不可或缺的重要设备,广泛应用于电能计量、电力负荷控制及保护等方面。

而设计一个具有高性能的电流互感器对于系统的稳定运行至关重要。

本文将重点探讨电流互感器的参数优化设计方法以及性能分析。

首先,我们需要了解电流互感器的基本参数。

电流互感器主要由铁芯、线圈以及绝缘材料组成。

其中,铁芯的导磁性能对于电流传感器的性能至关重要。

线圈的匝数和尺寸决定了电流互感器的额定电流范围。

绝缘材料的选择和处理直接影响了互感器的耐压能力和绝缘性能。

在参数优化设计方面,首先需要考虑铁芯材料的选择。

铁芯材料的导磁性能越好,互感器的灵敏度就越高。

一般情况下,优质的硅钢片是理想的导磁材料。

其次,对于线圈的设计要合理选择匝数和尺寸,以满足互感器的额定电流范围。

过大的匝数会导致电流互感器体积增大,而过小的匝数则可能影响灵敏度。

因此,在设计中需要权衡匝数和尺寸的关系。

绝缘材料的选择也是电流互感器参数优化设计中的重要环节。

绝缘材料需要具备良好的电绝缘性能和高耐压能力,以确保互感器的安全运行。

一般来说,绝缘材料可以采用环氧树脂、瓷瓶等材料。

同时,绝缘材料的表面处理也是影响互感器性能的重要因素之一。

表面处理可以提高绝缘性能,降低表面放电的可能性。

参数优化设计完成后,我们需要对电流互感器的性能进行分析。

性能分析可以通过以下几个方面来进行。

首先,我们需要测试互感器的精度。

精度是评价互感器性能的重要指标之一。

通过将已知电流输入到互感器中,然后与互感器输出的信号进行比较,可以评估互感器的精确度。

一般来说,互感器的精度应在标准误差范围内。

其次,还需要测试互感器的频率响应特性。

频率响应特性是评估互感器动态特性的重要依据。

通过输入不同频率的电流信号,观察互感器输出信号的变化,可以获得互感器的频率响应特性曲线。

一般来说,互感器的频率响应特性应具有良好的线性和平稳性。

另外,还可以测试互感器的过载能力和短时过电流能力。

电流互感器选配过大或者过小对计量精度有影响吗

电流互感器选配过大或者过小对计量精度有影响吗

电流互感器选配过大或者过小对计量精度有影响吗Prepared on 22 November 2020电流互感器选配过大或者过小对计量精度有影响吗是否有影响主要看以下两种情况:1、电流互感器的一次额定电流选择过大,流过电度表的实际电流就偏小,只要实际电路不低于电度表的“起始” 电流值,计量精度就不受影响的。

2、电流互感器的一次额定电流选择过小,则大电流时容易造成电流互感器的铁芯磁饱和,而使计量误差增大,也容易产生较大的热量。

1、例如:实际的额定电流约 45 A 选择常用的 150 / 5 电流互感器,倍率是 30 倍。

当满载时(45 A),二次电流为 45 A ÷ 30 倍= 1.5 A ,计量还是准确的。

2、例如:实际的额定电流约 200 A 选择常用的 150 / 5 电流互感器,就属于过载运行了,满载时容易造成电流互感器的铁芯磁饱和,计量误差增大,也容易产生较大的热量。

追问第一个二次电流不超过5A计量就是准确的吗谢谢追答你好:计量电度表的额定电流为 5 A ,在 5 A 以内是准确的。

追问谢谢,发布问题的时候忘写采纳奖励分数,我给你补上追答不用谢。

追问那如果把互感器换成500/5又会怎么样追答你可以算一下倍率:500 / 5 是100 倍,如果还是 45 A 的实际电流,那么二次输出电流就只有 0.45 A 了,如果高于电度表的起始电流,计量就是正常的,低于电度表的起始电流值,电度表就有可能不转了。

电流互感器如果选型太大或太小造成的误差大吗保护用电流互感器可数十倍过载,但是,精度很低。

测量用电流互感器一般可过载20%,过载20%以内能保证测量精度。

过载量超过20%以后,精度下降,并且可能损坏电流互感器。

电流互感器选型过大的话,对精度会有一定的影响。

普通互感器一般要求被测电流在额定电流的30%以上。

S级电流互感器在5%以上都能获得较高的精度。

电流互感器的误差产生的原因是什么,如何减少误差测量误差就是电流互感器的二次输出量I2与其归算到一次输入量I’1的大小不相等、幅角不相同所造成的差值。

分析电力互感器超差引起的电能计量误差

分析电力互感器超差引起的电能计量误差

分析电力互感器超差引起的电能计量误差发布时间:2022-11-08T08:06:57.412Z 来源:《福光技术》2022年22期作者:丁佳[导读] 随着经济的发展,企事业单位用电量的不增加,对电能计量准确性越来越重视。

由于用电负荷的不断加大,电力互感器被广泛应用于将大电流转换为小电流、高电压转换为地电压以便于电能表准确计量电量的场合。

如果由于电力互感器的不准,将造成电能表计量电量的不准确,很容易引起电能计量贸易纠纷。

基于此,本文针对计量用电力互感器误差相关知识进行了论述,仅供参考。

丁佳国网安徽省电力有限公司阜阳供电公司安徽省 236000摘要:随着经济的发展,企事业单位用电量的不增加,对电能计量准确性越来越重视。

由于用电负荷的不断加大,电力互感器被广泛应用于将大电流转换为小电流、高电压转换为地电压以便于电能表准确计量电量的场合。

如果由于电力互感器的不准,将造成电能表计量电量的不准确,很容易引起电能计量贸易纠纷。

基于此,本文针对计量用电力互感器误差相关知识进行了论述,仅供参考。

关键词:电力互感器;电能计量;误差分析电力互感器被广泛应用于各用电单位做计量电能使用,其计量性能的准确与否决定着电能计量的准确性。

当电力互感器示值超差造成电能计量不准确时,就需要对其超差数据进行分析,确定电费的追补。

本文就电能计量误差原因及电力互感器超差引起的电能计量误差进行分析。

1 电力互感器应用1.1 电流互感器运行原理电流互感器运行中,一次线圈匝数少且方便接线,反之二次线圈接线复杂且匝数多。

二次绕组与变化大,极易出现接错。

电路系统中一二次线圈串联在一起,围绕二次线圈测量仪表与继电器串接在一起,电流线圈自身阻抗力较小,所以正常运行状态下,互感器状态趋于短路。

一般情况下,单项、星型及非完全星型是三种常用接线方法,电流互感器接线是否正确,对计量与倍率正确性有着重要的影响;准确的继电保护与远方采集测控,与系统安全稳定运行密切相关,因而正确接线可避免很多问题。

研究电力互感器饱和误差对计量表精准度的影响

研究电力互感器饱和误差对计量表精准度的影响

研究电力互感器饱和误差对计量表精准度的影响摘要:在我们的实际生活应用中,电力系统中的计量表关系着我们家庭中的实际开销情况。

而电力互感器是电力系统中的重要元器件,电力互感器的影响十分巨大,尤其是我们接下来将要研究的饱和误差问题。

只有把饱和误差问题分析透彻才能给电力工作者提供一个更好的解决方案,把计量表设计的更加精准,给广大的群众提供更可靠的电力使用信息。

关键词:电力互感器;饱和误差;精度的影响导语:电力的计量问题是一个关乎民众生活的重要问题,计量表的精准程度成为了让我们亟待解决的问题。

众所周知,电能计量的主要组成是由电力互感器和电能表组成的,电力互感器平时都是设计在电能表的里边,不方便大家的观察。

一旦出现问题大家都不能及时了解到。

尤其是我们平时不太关注的电力互感器的饱和误差问题,本文我们将着重分析电力互感器的饱和误差问题对计量表的精准度的影响和相应的解决方案。

正文:一、电力互感器的工作原理电力互感器作为电力测量的重要组成部分之一,只有透彻的了解其工作原理才能更好的解决上文我们提到的对计量表精度影响的问题。

其基本原理是测量电线中的一次二次的高压产生的回路来进行电量的的测量。

在其基本构成部分中,最先开始变化的是其中的铁芯产生变化的磁场进而产生磁通。

在通过这个变化的磁通从而能产生感应电压,然后根据变化的电压转化为信号让人们直观的观察到。

电力互感器有以下几部分组成,一是有一个完全闭合的铁芯,二是有一个缠绕的线组。

一次线组的数量远远小于二次线组的数量,一次线组主要是串联在需要测量的线路中,而二次线组多是以保护电路的功能出现。

因为电力互感器的存在让一次系统的电流由二次系统电流更替,然后提供给计量仪,从而得出整个线路的具体情况。

二、电力互感器饱和误差产生的原因及各类状态的影响电力互感器中的饱和问题是我们必须要面对的一个严峻问题,不能很好的解决饱和误差问题对计量表的精度将产生极大的影响。

大家通常所说的电力互感器的误差实际上指的是互感器中铁芯的饱和状态,上文我们提到的就是因为第一次的电流在装置中的铁芯中产生了变化的磁通,在铁芯的另一边才会产生相应的电压。

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法电流互感器是一种用于测量电流的传感器,广泛应用于电力系统中。

其主要作用是将高电流通过磁耦合的方式转换为低电流,以便进行测量和保护。

选型电流互感器时,需要考虑一系列的原则和方法,以确保其能够满足系统的要求,并提供可靠的测量数据。

首先,选型电流互感器时需要考虑的是额定电流范围。

根据实际应用中的最大电流需求,选取适当的额定电流范围。

过小的额定电流范围会导致互感器无法承受高电流,而过大的额定电流范围则会使互感器的量程过大,从而影响测量的准确性。

其次,选型电流互感器还需要考虑的是准确度等级。

准确度等级决定了互感器的测量准确性,一般分为0.1级、0.2级、0.5级等。

根据实际应用的要求,选择适当的准确度等级。

通常情况下,对于保护设备来说,需要选择较高的准确度等级,而对于测量设备来说,可以选择较低的准确度等级。

另外,选型电流互感器还需要考虑的是频率响应范围。

频率响应范围决定了互感器在不同频率下的测量准确性。

一般来说,电力系统的频率为50Hz或60Hz,因此选择能够覆盖该频率范围的互感器。

此外,选型电流互感器还需要考虑的是绝缘水平和安装方式。

绝缘水平决定了互感器能够承受的绝缘电压,一般根据系统的绝缘等级选择相应的互感器。

安装方式决定了互感器的安装方法,常见的有插入式、夹式和固定式等。

使用电流互感器时,需要注意以下几点。

首先,要确保互感器的额定电流与系统的最大电流相匹配,以免互感器过载。

其次,要注意互感器的接线方式,确保正确连接。

另外,要定期检测互感器的准确度,以确保测量结果的可靠性。

此外,要注意互感器的维护和保养,定期清洁和检查互感器,确保其正常工作。

综上所述,电流互感器的选型原则和方法包括考虑额定电流范围、准确度等级、频率响应范围、绝缘水平和安装方式等因素。

在使用电流互感器时,需要注意互感器的额定电流、接线方式、准确度检测以及维护保养等方面。

只有选择适合的互感器并正确使用,才能确保测量的准确性和可靠性。

电流互感器检定时的一些注意事项

电流互感器检定时的一些注意事项

电流互感器检定时的一些注意事项摘要:电流互感器是一种把电力线路上大小不一的电流变成一定范围内的电流的仪器,以方便测量。

在日常的检定设备的选择中,更多的是注重了主标准器的重要性,对电流互感器的退磁、二次负荷的误差以及升流器的选择关注不是太多。

但在实际检定工作中,上述三个方面对检定过程中的误差存在着显著影响,有必要引起大家的特别注意。

关键词:互感器检定注意事项0 引言电流互感器是一种把电力线路上大小不一的电流变成一定范围内的电流的仪器,以方便测量。

其计量性能的准确性直接影响了电能计量的准确性,是计量法规定的强制性检定产品。

根据规程JJG313-1994《测量用电流互感器》要求的检定条件和检定项目,在日常的检定设备的选择中,更多的是注重了主标准器的重要性,对电流互感器的退磁、二次负荷的误差以及升流器的选择关注不是太多。

但在实际检定工作中,上述三个方面对检定过程中的误差存在着显著影响,有必要引起大家的特别注意。

1 退磁电流互感器如果在大电流下切断电源,或者在运行时二次绕组偶然发生开路,以及通过直流电流进行试验以后,互感器的铁心中就可能产生剩磁,使铁心的磁导率下降,影响互感器的性能,所以在电流互感器进行误差试验之前,一般应先对互感器进行退磁,以消除剩磁对误差的影响。

常见的退磁方法有以下两种:1.1 开路(强磁场)退磁法一次和二次绕组全部开路,并在一次或二次绕组中通以工频电流,由零增加到20%或50%额定电流,然后均匀且缓慢的降至零。

重复这一过程2~3次,同时使每次所通入的电流按50%、20%、10%额定电流递减。

退磁完毕在切断电流之前,应将二次绕组短接。

1.2 闭路(大负荷)退磁法在二次绕组上接一相当于额定负荷10~20倍的电阻,一次绕组通工频电流,使电流由零增加至约120%额定电流,然后均匀且缓慢的降至零。

重复这一过程2~3次,同时使每次所接的电阻负荷按100%、50%、20%递减。

如果是多次级的电流互感器,在退磁过程中,不退磁的二次绕组都应短接。

电流互感器二次负荷和绕组个数选取应慎重

电流互感器二次负荷和绕组个数选取应慎重

少年易学老难成,一寸光阴不可轻- 百度文库电流互感器二次负荷和绕组个数选取应慎重摘要:阐述了电流互感器二次负荷选取增大或二次绕组个数增多给产品设计和制造带来的困难,以及在产品使用过程中可能产生的不良后果。

关键词:二次负荷、径向场强、准确级、仪表保安系数(FS)。

0引言目前在电流互感器的招标技术文件中,存在二次绕组个数增多,8~10个,并且二次负荷选取很大,80VA、100VA,甚者150VA。

后果是,二次绕组体积增大,油箱或储油柜体积随之增大。

不仅加大了产品的设计和制造难度,增加了成本,而且在产品的使用过程中也会产生不良后果。

详述如下:1实际运行二次负荷变小,会使电流互感器准确级降低从电流互感器的工作原理知道,只有励磁电流等于零时,二次电流乘以电流比才等于一次电流,此时误差ε为零。

由于励磁电流或多或少总是存在,所以电流互感器的电流误差ε是负值(曲线1),如图1。

只有采用了匝数补偿措施后才有可能出现正值电流误差(曲线2)。

制造商在设计时为了满足在25%~120%额定负荷,不同电流下误差均满足国标或企标要求,一般都要采用减匝补偿,曲线2正是产品出厂时的误差曲线。

设补偿前误差iε,减匝补偿值bε,bε是正值。

由误差公式可知,电流误差ε为bncCINNAfLZIεθαμπε++=100*)sin()(201222即:biεεε+=。

在没有减匝补偿时,减匝补偿值bε=0,电流误差ε=i ε,与二次负荷成正比,随二次负荷减小而减小,即曲线1会越接近X 轴。

但在减匝补偿后,电流误差b i εεε+=,随二次负荷减小,补偿前误差i ε趋于零,电流误差ε=b ε,会正方向增大,接近b ε(曲线3),导致实际运行时误差超标,准确级降低。

1- 减匝补偿前电流误差曲线 2- 减匝补偿后电流误差曲线3- 减小二次负荷实际运行电流误差曲线图12实际运行二次负荷变小,电流互感器FS 系数增大,失去保护二次回路的作用电力系统中使用的电流互感器往往会有很大的过电流流过一次绕组,为避免二次回路的仪器、仪表不致受到大电流的冲击,希望测量绕组在过电流情况下二次电流不再按比例增长,因此标准提出了仪表保安系数(FS )的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器选配过大或者过小对计量精度有影响吗是否有影响主要看以下两种情况:
1、电流互感器的一次额定电流选择过大,流过电度表的实际电流就偏小,只要实际电路不低于电度表的“起始” 电流值,计量精度就不受影响的。

2、电流互感器的一次额定电流选择过小,则大电流时容易造成电流互感器的铁芯磁饱和,而使计量误差增大,也容易产生较大的热量。

1、例如:实际的额定电流约45 A 选择常用的150 / 5 电流互感器,倍率是30 倍。

当满载时(45 A),二次电流为45 A ÷30 倍= 1.5 A ,计量还是准确的。

2、例如:实际的额定电流约200 A 选择常用的150 / 5 电流互感器,就属于过载运行了,满载时容易造成电流互感器的铁芯磁饱和,计量误差增大,也容易产生较大的热量。

追问
第一个二次电流不超过5A计量就是准确的吗谢谢
追答
你好:计量电度表的额定电流为 5 A ,在 5 A 以内是准确的。

追问
谢谢,发布问题的时候忘写采纳奖励分数,我给你补上
追答
不用谢。

追问
那如果把互感器换成500/5又会怎么样
追答
你可以算一下倍率:500 / 5 是100 倍,如果还是45 A 的实际电流,那么二次输出电流就只有0.45 A 了,如果高于电度表的起始电流,计量就是正常的,低于电度表的起始电流值,电度表就有可能不转了。

电流互感器如果选型太大或太小造成的误差大吗
保护用电流互感器可数十倍过载,但是,精度很低。

测量用电流互感器一般可过载20%,过载20%以内能保证测量精度。

过载量超过20%以后,精度下降,并且可能损坏电流互感器。

电流互感器选型过大的话,对精度会有一定的影响。

普通互感器一般要求被测电流在额定电流的30%以上。

S级电流互感器在5%以上都能获得较高的精度。

电流互感器的误差产生的原因是什么,如何减少误差
测量误差就是电流互感器的二次输出量I2与其归算到一次输入量I’1的大小不相等、幅角不相同所造成的差值。

因此测量误差分为数值(变比)误差和相位(角度)误差两种。

产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。

电流互感器本身造成的测量误差是由于电流互感器又励磁电流Ie存在,而Ie是输入电流的一部分,它不传变到二次侧,故形成了变比误差。

Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失。

所流经的励磁支路是一个呈电感性的支路,Ie与I2不同相位,这是造成角度误差的主要原因。

运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大
所致。

减小误差的措施:
励磁电流是造成电流互感器误差的主要原因,因此减小励磁电流就可以减小误差。

⑴采用高导磁率的材料做铁芯,因为铁心磁性能不但
影响比差和角差,也影响饱和倍数。

⑵增大铁心截面,缩短磁路长度;增加线圈匝数。

增减铁心截面或线圈安匝会相应增大和减小饱和倍数,在采取增加铁心截面或线圈安匝以改善比差和角差时,必须考虑到对饱和倍数的影响。

⑶限制二次负载的影响。

在现场一般用增加连接导线的有效截面的方法,如采用较大截面的电缆,或多芯并联使用,以减少二次负载的阻抗值。

还可以把两个同型号、变比相同的电流互感器串联使用,使每个电流互感器的负载成为整个负载的一半。

⑷适当增大电流互感器变比。

在现场运行中选用较大变比的互感器。

另外,还有二次绕组的分数补偿、二次侧电容分路补偿等等。

相关文档
最新文档