中考数学一轮复习第13课时解直角三角形
精品 九年级数学中考数学一轮复习第13课 解直角三角形

第13课 解直角三角形=========⎪⎪⎩⎪⎪⎨⎧<<⎪⎪⎩⎪⎪⎨⎧<<=∠=∠=∠000000000000060tan ;45tan ;30tan 60cos ;45cos ;30cos 60sin ;45sin ;30sin :)900()900(tan ,cos ,sin 特殊三角函数值平方关系:正切:余弦:正弦::取值范围越大,正切值正切:越大,余弦值余弦:越大,正弦值正弦::增减性αααααA A A中考真题练习1.在Rt △ABC 中,∠C=900,若sinA=513,则cosA 的值为( ) A.512B.813C.23D.12132.式子2000)160(tan 45tan 30cos 2---的值是( ) A.232-B.0C.32D.23.在△ABC 中,若0)21(cos 21sin 2=-+-B A ,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 4.如图,在△ABC 中,∠C=900,AB=5,BC=3,则sinA 的值是()A.34B.43C.35 D.455.如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是错误!未找到引用源。
,则错误!未找到引用源。
的值是( )A.45 B.错误!未找到引用源。
C.35D.错误!未找到引用源。
6.如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23B.32C.21313 D.31313第6题图 第7题图 第8题图7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长l 为( )A.h sina B.h tana C.h cosaD.h ·sina 8.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC=a ,BD=b ,则□ABCD 的面积是( ) A.αsin 21ab B.αsin ab C.αcos ab D.αcos 21ab 9.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC=10.如图,某山坡的坡面AB=200米,坡角∠BAC=300,则该山坡的高BC 的长为 米.第10题图 第11题图 第12题图 11.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成750角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为300,则小山东西两侧A 、B 两点间的距离为 米.12.如图,在高度是21米的小山A 处测得建筑物CD 顶部C 处的仰角为300,底部D 处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)13.如图,在Rt △ABC 中,∠ACB=900,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,sinA=35,则DE= .第13题图第14题图14.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=________.16.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.第16题图第17题图第18题图17.如图,某小岛受到了污染,污染范围可以大致看成是以点O为圆心,AD长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O的切线BD(点D为切点)上选择相距300米的B、C两点,分别测得∠ABD=300,∠ACD=600,则直径AD= 米.18.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=1200,则四边形ABCD 的面积为.(结果保留根号)19.如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果MC n=,CMNα∠=.那么P点与B点的距离为 .第19题图第20题图20.如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.21.已知α是锐角,且sin(α+150)=32.计算1184cos( 3.14)tan3απα-⎛⎫---++ ⎪⎝⎭的值.22.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=450,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.23.如图,在一次数学课外活动中,小明同学在点P 处测得教学楼A 位于北偏东60°方向,办公楼B 位于南偏东45°方向.小明沿正东方向前进60米到达C 处,此时测得教学楼A 恰好位于正北方向,办公楼B 正好位于正南方向.求教学楼A 与办公楼B 之间的距离.24.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=300,∠CBD=600.(1)求AB 的长; (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.25.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为600.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为450,已知山坡AB 的坡度3:1=i ,AB=10米,AE=15米.(3:1=i 是指坡面的铅直高度BH 与水平宽度AH 的比) (1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.26.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.27.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?28.如图,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,23 DB DCDP DO==.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.29.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成300角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离.30.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)31.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(1)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A/C/的位置时,A/C/的长为m;(2)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=540,沿河岸MQ前行,在观景平台N处测得∠PNQ=730,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).32.如图,某校教学楼的后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB的长为22 m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过500时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离;(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC改到F点处,则BF至少是多少米?(保留一位小数,参考数据:sin680≈0.9272,cos 680≈0.3746,tan 680≈2.4751,sin500≈0.7660,cos500≈0.6428,tan500≈1.1918)第13课解直角三角形测试题日期:月日满分:100分时间:20分钟姓名:得分:1.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,2C.1,1,3D.1,2,32.在Rt△ACB中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC的长为()A.6B.7.5C.8D.12.53.点M (-sin600,cosn600)关于x 轴对称的点的坐标是( )A .(32,12) B .(32-,12-) C .(32-,12) D .(12-,32-) 4.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.513B.1213C.512D.125第4题图 第5题图 第6题图5.如图,在△ABC 中,∠C=900,AD 是BC 边上的中线,BD=4,52=AD ,则tan ∠CAD 的值是( ) A.2B.2C.3D.56.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC /B /,则tanB /的值为( ) A.12B.13C.14D.247.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( ) A.34米B.56米C.512米D.24米8.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A.43 B.35 C.34 D.459.△ABC 中,∠C=900,AB=8,cosA=43,则BC 的长 10.若a=3-tan600,则196)121(2-+-÷--a a a a =11.如图,在Rt △ABC 中,∠C=900,∠B=370,BC=32,则AC= .(sin370≈0.60,cos370≈0.80,tan370≈0.75)第11题图第12题图第13题图第14题图12.如图,△ABC的顶点都在方格纸的格点上,则sinA=_____13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).2,则AB的长为.14.如图,在△ABC中,∠A=300,∠B=450,AC=315.如图,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)16.如图,在Rt△ABC中,∠C=900,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.17.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.。
中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。
衢州市中考数学第一轮总复习讲义:解直角三角形(一)

浙江考情分析解直角三角形(一)典型考题考点一成比例线段与比例的基本性质若2a=3b=4c,且abc≠0,则a+b的值是( ) c-2bA.2 B.-2 C.3 D.-3变式:(2015·乐山)如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C 和D,E,F.已知AB=3,则DE的值为( )BC 2 DFA.32B.23C.25D.35考点二 相似多边形的性质如果两个相似多边形面积的比为 1∶5,则它们的相似比为()A .1∶25B .1∶5C .1∶2.5D .1∶ 5变式 1: 如图 1 所示的两个四边形相似,则∠α的度数是()A .87°B .60°C .75°D .120°图 1图 2变式 2:如图 2,四边形 ABCD 与四边形 A 1B 1C 1D 1 相似, AB =12,CD =15,A 1B 1=9,则边 C 1D 1 的长是() A .10B .12C.454考点三 相似三角形的性质与判定D. 365(·庆阳)如图,在△ABC 中,两条中线 BE ,CD相交于点 O ,则 S △DOE ∶S △COB =()A .1∶4B .2∶3C .1∶3D .1∶2变式 1: (2015·重庆)已知△ABC ∽△DEF ,若△ABC 与 △DEF 的相似比为 2∶3,则△ABC 与△DEF 对应边上的中 线的比为.变式2:(·南京)如图,△ABC 中,CD 是边AB 上的高,且CD2=AD·DB.(1)求证:△ACD∽△CBD;(2)求∠ACB 的大小.考点四相似图形的应用(·菏泽)如图,M,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N 两点之间的直线距离,选择测量点A,B,C,点B,C 分别在AM,AN 上,现测得AM=1 千米、AN=1.8 千米、AB=54 米、BC=45 米、AC=30 米,求M,N 两点之间的直线距离.变式1:如图,在一场羽毛球比赛中,站在场内M 处的运动员林丹把球从N 点击到了对方内的B 点,已知网高OA =1.52 米,OB=4 米,OM=5 米,则林丹起跳后击球点N 离地面的距离NM=米.变式2:有一支夹子如图所示,AB=2BC,BD=2BE,在夹子前面有一个长方体硬物,厚PQ 为6 cm,如果想用夹子的尖端A,D 两点夹住P,Q 两点,那么手握的地方EC 至少要张开cm.随堂巩固1.(·安顺)如图,▱ABCD 中,点E 是边AD 的中点,EC交对角线BD 于点F,则EF∶FC 等于( )A.3∶2 B.3∶1C.1∶1 D.1∶2第1 题第2 题2.如图,等边三角形ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC 上一点,若∠APD=60°,则CD 的长为.3.如图,在方格纸中,△ABC 和△EPD 的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为( ) A.P1 B.P2 C.P3 D.P4第3 题第4 题4.(2015·南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC,交BC 于点E,AB=6,AD=5,则AE 的长为( )A.2.5 B.2.8 C.3 D.3.25.如图,在矩形ABCD 中,F 是DC 上的一点,AE 平分∠BAF 交BC 于点E,且DE⊥AF,垂足为点M,BE=3,AE=2 6,则MF 的长是( )A. 15B.1510C.1 D.1515第5 题第6 题6.(2015·金华外国语学校模拟)如图,已知矩形ABCD 中,AB=1,在BC 上取一点E,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=.7.(·绍兴鲁迅中学模拟)如图,四边形ABCD 中,AC ⊥BD 交BD 于点E,点F,M 分别是AB,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB=AC=BD,连结MF,NF.(1)判断△BMN 的形状,并证明你的结论;(2)判断△MFN 与△BDC 之间的关系,并说明理由.8.(·安徽)如图①,在四边形ABCD 中,点E,F 分别是AB ,CD 的中点.过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G,连结GA,GB,GC,GD,EF.若∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;AD(3)如图②,若AD,BC 所在的直线互相垂直,求的值.EF。
中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
2023年中考数学一轮复习考点过关 解直角三角形的应用

2023年中考数学一轮复习考点过关解直角三角形的应用1. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东45°方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.(1)由于水位下降,巡航船还发现在A处北偏西15°方向300米的C处,露出一片礁石,求B、C两地的距离;(精确到1米)(2)为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果≈)2 1.4147 2.6462. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.3. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:23)4. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60︒的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15︒的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C 处,请问补给船能否在83分钟之内到达C3 1.73≈)5. 为做好疫情防控工作,确保师生生命安全,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30︒,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60︒,求体温检测有效识别区域CD 段的长(结果保留根号)6. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73)7. 如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得如下数据;∠A =27°,∠B =31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)8. 为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度1:23i AB的长(结果保留根号).9. 某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米.(1)应在地面上距点B多远的A处开始斜坡施工?(精确到0.1米)(2)如果给该购物广场送货的货车高度为2.5米,那么按这样的设计能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)10. 如图,某城市的一座古塔CD 坐落在湖边,数学老师带领学生隔湖测量古塔CD 的高度,在点A 处测得塔尖点D 的仰角∠DAC 为31°,沿射线AC 方向前进35米到达湖边点B 处,测得塔尖点D 在湖中的倒影E 的俯角∠CBE 为45°,根据测得的数据,计算这座灯塔的高度CD (结果精确到0.1).参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60.(结果精确到0.1)11. 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长AB =17cm ,支撑板长CD =16cm ,底座长DE =14cm ,托板AB 联结在支撑板顶端点C 处,且CB =7cm ,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若70,60DCB CDE ∠=︒∠=︒,求点A 到直线DE 的距离(精确到0.1cm )(参考数值sin 400.64,cos400.77,tan 403 1.73︒︒︒≈≈≈)12. 图①是某车站的一组智能通道闸机,图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角∠ABC =∠DEF =20°,半径BA =ED =60cm ,点A 与点D 在同一水平线上,且它们之间的距离为10cm .求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).13. 如图,1号楼在2号楼的南侧,两楼高度均为90,m 楼间距为AB .冬至日正午,太阳光线与水平面所成的角为32.3︒.1号楼在2号楼墙面上的影高为CA ,春分日正午,太阳光线与水平面所成的角为55.7︒,1号楼在2号楼墙面上的影高为DA .已知42CD m =.(1)求楼间距AB ;(2)若2号楼共30层,层高均为3,m 则点C 位于第几层? ( 参考数据:32.30.53,sin ︒≈32.30.85cos ︒≈,32.30.6355.70.83tan sin ︒≈︒≈,,55.70.5655.7 1.47cos tan ︒≈︒≈,)14. 如图,小明站在江边某瞭望台DE 的顶端D 处,测得江面上的渔船A 的俯角为40°.若瞭望台DE 垂直于江面,它的高度为3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE 的顶端D 到江面AB 的距离;(2)求渔船A 到迎水坡BC 的底端B 的距离.(结果保留一位小数)15. 如图,小锋将一-架4米长的梯子AB 斜靠在竖直的墙AC 上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC (结果保留根号)(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B 向内移动多少米(结果精确到0.1米)?参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈.。
备考2023年中考数学一轮复习-解直角三角形的应用﹣仰角俯角问题-综合题专训及答案

备考2023年中考数学一轮复习-解直角三角形的应用﹣仰角俯角问题-综合题专训及答案解直角三角形的应用﹣仰角俯角问题综合题专训1、(2018山西.中考真卷) 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB的长度38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).2、(2019石家庄.中考模拟) 如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在0B的位置时俯角∠FOB=60°,若OCLEF,点A比点B高7cm.(要求:本题中的计算结果均保留整数。
参考值:≈1.7;π≈3.1)求:(1)单摆的长度;【答案】解:解:设单摆的长度为x.过A作AM⊥OC于点M,过B作BN⊥OC于点N∵OC⊥EF.∴∠COE=∠COF=90°∴∠AOM=∠COE-∠AOE=90°-30°=60°∠BON=∠COF-∠BOF=90°-60°=30°在Rt△AOM中,OM=OA·cos60°= x在Rt△BON中,ON=OB·cos30°= x由题知:MN=7∴ON-OM= x- x=7解得:x=7 +7≈7×1.7+7≈19答:单摆的长度约19cm.(1)从点A摆动到点B经过的路径长.3、(2019丹东.中考模拟) 如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°(1)求证:AB=BD;(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41 )4、(2019海宁.中考模拟) 如图,小聪和小明在校园内测量钟楼MN的高度.小聪在A 处测得钟楼顶端N的仰角为45°,小明在B处测得钟楼顶端N的仰角为60°,并测得A,B两点之间的距离为27.3米,已知点A,M,B依次在同一直线上.(1)求钟楼MN的高度,(结果精确到0.1米)(2)因为要举办艺术节,学校在钟楼顶端N处拉了一条宣传竖幅,并固定在地面上的C处(点C在线段AM上).小聪测得点C处的仰角∠NCM等于75°,小明测得点C,M之间的距离约为5米,若小聪的仰角数据正确,问小明测得的数据“5米”是否正确?为什么?(参考数据: 1.41, 1.73)5、(2014绍兴.中考真卷) 九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.6、(2018广州.中考模拟) 如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7、(2016盐田.中考模拟) 如图,某高楼顶部有一信号发射塔,小凡在矩形建筑物ABCD的A、C两点处测得塔顶F的仰角分别为α和β,AD=18m,CD=78m.(1)用α和β的三角函数表示CE;(2)当α=30°、β=60°时,求EF(结果精确到1m).(参考数据:≈1.414,≈1.732)8、(2019贵阳.中考模拟) 如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2 米到达点D,在点D 处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).9、(2019桂林.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:(沿斜坡从B到D时,其升高的高度与水平前进的距离之比),另一段斜坡AD的长400米,在斜坡BD的坡顶D处测得山顶A的仰角为45°(1)求斜坡BD的坡顶D到地面BC的高度是多少米?(2)求BC.(结果保留根号)10、(2017桂林.中考模拟) 如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6 米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号).11、(2018海南.中考真卷) 如图,某数学兴趣小组为测量一棵古树BH和教学楼CG 的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G 的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树 BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)12、(2018遵义.中考模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE 和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?13、(2020铁岭.中考真卷) 如图,小明利用学到的数学知识测量大桥主架在水面以上的高度,在观测点处测得大桥主架顶端的仰角为30°,测得大桥主架与水面交汇点的俯角为14°,观测点与大桥主架的水平距离为60米,且垂直于桥面.(点在同一平面内)(参考数据)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度.(结果精确到1米)14、(2021八步.中考模拟) 如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.(,)(1)求的值;(2)求教学楼的高度.(结果精确到)15、随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量翡翠湖某处东西岸边,两点之间的距离.如图所示,小星站在湖边的处遥控无人机,无人机在处距离地面的飞行高度是,此时从无人机测得岸边处的俯角为,他抬头仰视无人机时,仰角为,若小星的身高,(点,,,在同一平面内).(1)求仰角的正弦值;(2)求,两点之间的距离(结果精确到).(,,,,,)解直角三角形的应用﹣仰角俯角问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学一轮复习第13课时解直角三角形
一、考点说明(见中考指南P52)
二、典型例题
例1 如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.
例2 如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.求(1)BC的长;(2)tan∠DAE的值.
例3 如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).
例 4 xx年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:).
例 5如图,飞机沿水平方向(A.B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低.就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素.飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示.并在图中标出);
(2)用测出的数据写出求距离MN的步骤.
三、反馈检测(10分钟)
1.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E= .
2.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .
3.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()
A.1B.C.3D.
A t OA x t)
A.1 B.1.5 C.2 D.3
5.如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;
(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′,求△A′BC的周长和sin∠BA′C 的值;
智者加速:
如图,在半径为1的⊙O中,∠AOB=45°,求sinC的值
34846 881E 蠞37971 9453 鑓29850 749A 璚 - 28595 6FB3 澳38864 97D0 韐 27340 6ACC 櫌23321 5B19 嬙L25469 637D 捽。