(完整版)高等数学测试题一(极限、连续)答案

合集下载

高等数学一考试题及答案

高等数学一考试题及答案

高等数学一考试题及答案一、单项选择题(每题2分,共10题)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,存在正数δ,使得当x≠a时,|f(x)-L|<εD. 对于任意的正数ε,存在正数δ,使得当x>a时,|f(x)-L|<ε答案:B2. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 积分∫(0 to 1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 3/2答案:A4. 微分方程dy/dx = 2x的通解是:A. y = x^2 + CB. y = 2x^2 + CC. y = x + CD. y = 2x + C答案:A5. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ... 答案:D6. 函数f(x) = e^x的导数是:A. e^xB. e^(-x)C. -e^xD. -e^(-x)答案:A7. 以下哪个函数在x=0处有极值?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B8. 以下哪个选项是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B9. 以下哪个函数是周期函数?A. f(x) = x^2B. f(x) = e^xC. f(x) = sin(x)D. f(x) = ln(x)答案:C10. 以下哪个函数是单调递增的?A. f(x) = -x^2B. f(x) = x^3C. f(x) = e^(-x)D. f(x) = ln(x)答案:B二、填空题(每题3分,共5题)1. 函数f(x) = x^3在x=1处的导数是______。

(数一)高等数学习题集(含解答)

(数一)高等数学习题集(含解答)

第一章 函数·极限·连续一. 填空题1.设⎰∞-∞→=⎪⎭⎫⎝⎛+a t axx dt te x x 1lim , 则a = ________. 解. 可得⎰∞-=at adt te e =a a t t e ae ae te -=∞--)(, 所以 a = 2. 2. ⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =________. 解. nn n nn n n n n n +++++++++22221 <n n n nn n n n +++++++++2222211 <11211222+++++++++n n n n n n n 所以 n n n n +++++221 <n n n n n n n n +++++++++2222211 <1212+++++n n n 212)1(2122→+++=+++++n n n n n n n n n , (n →∞) 2112)1(12122→+++=+++++n n n n n n n , (n →∞) 所以 ⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =213. 已知函数⎩⎨⎧=01)(x f 1||1||>≤x x , 则f[f(x)] _______.解. f[f(x)] = 1. 4. )3(lim n n n n n --+∞→=_______.解. nn n n n n n n n n n n n n n n n n -++-++--+=--+∞→∞→3)3)(3(lim)3(lim=233lim=-+++-+∞→nn n n n n n n n5. ⎪⎭⎫⎝⎛-→x x x x 1sin 1cot lim 0=______.解. 616sin lim 3cos 1lim sin lim sin sin sin cos lim020300==-=-=-⋅→→→→x x x x x x x x x x x x x x x x x6. 已知A n n n k kn =--∞→)1(lim 1990(≠ 0 ≠ ∞), 则A = ______, k = _______. 解. A kn n n n n k n k kn =+=---∞→∞→119901990lim )1(lim 所以 k -1=1990, k = 1991;1991111===k A A k , 二. 选择题1. 设f (x )和ϕ(x )在(-∞, +∞)内有定义, f (x )为连续函数, 且f (x ) ≠ 0, ϕ(x )有间断点, 则 (a) ϕ[f (x )]必有间断点 (b) [ ϕ(x )]2必有间断点 (c) f [ϕ(x )]必有间断点 (d))()(x f x ϕ必有间断点 解. (a) 反例⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则ϕ[f (x )]=1(b) 反例 ⎩⎨⎧-=11)(x ϕ 1||1||>≤x x , [ ϕ(x )]2 = 1(c) 反例⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则f [ϕ(x )]=1(d) 反设 g(x ) = )()(x f x ϕ在(-∞, +∞)内连续, 则ϕ(x ) = g (x )f (x ) 在(-∞, +∞)内连续, 矛盾. 所以(d)是答案.2. 设函数xex x x f sin tan )(⋅⋅=, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数 解. (b)是答案. 3. 极限⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n 的值是 (a) 0 (b) 1 (c) 2 (d) 不存在 解. ⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n =1)1(11lim )1(1131212111lim 2222222=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+-++-+-∞→∞→n n n n n , 所以(b)为答案. 4. 设8)1()1()1(lim 502595=+++∞→x ax x x , 则a 的值为(a) 1 (b) 2 (c)58 (d) 均不对解. 8 = 502595)1()1()1(lim +++∞→x ax x x =100502559595/)1(/)1(/)1(lim x x x ax x x x +++∞→ =5502595)/11()/1()/11(lim a x x a x x =+++∞→, 58=a , 所以(c)为答案. 5. 设βα=------∞→)23()5)(4)(3)(2)(1(limx x x x x x x , 则α, β的数值为(a) α = 1, β = 31 (b) α = 5, β = 31 (c) α = 5, β = 531(d) 均不对 解. (c)为答案.6. 设232)(-+=xxx f , 则当x →0时(a) f(x)是x 的等价无穷小 (b) f(x)是x 的同阶但非等价无穷小(c) f(x)比x 较低价无穷小 (d) f(x)比x 较高价无穷小解. x x x x 232lim 0-+→=3ln 2ln 13ln 32ln 2lim0+=+→x x x , 所以(b)为答案. 7. 设6)31)(21)(1(lim0=++++→xax x x x , 则a 的值为(a) -1 (b) 1 (c) 2 (d) 3解. 0)31)(21)(1(lim 0=++++→a x x x x , 1 + a = 0, a = -1, 所以(a)为答案.8. 设02)1()21ln()cos 1(tan lim2202≠+=-+--+-→c a e d x c x b x a x x ,其中, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c解. 2 =)1()21ln()cos 1(tan lim 20x x e d x c x b x a -→-+--+=c a xde xc x b x axx 22212sin cos lim 220-=+--+-→, 所以a =-4c, 所以(d)为答案. 三. 计算题 1. 求下列极限 (1) xxx e x 1)(lim ++∞→解. e e e eee x xxx x x x e x e x e x xe x x xxx =====++++++∞→+∞→+∞→+∞→11lim)ln(lim)ln(1lim )(lim(2) x x xx )1cos 2(sinlim +∞→解. 令xy 1=yy x x y y xx 10)cos 2(sin lim )1cos 2(sin lim +=+→∞→=2cos 2sin sin 2cos 2lim)cos 2ln(sin lim 00e ee y y y y yy y y y ==+-+→→(3) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→解. =⎪⎭⎫ ⎝⎛++→310sin 1tan 1lim x x x x 310sin 1sin tan 1lim x x x x x ⎪⎭⎫ ⎝⎛+-+→3)s i n 1(s i nt a n s i nt a n s i n10s i n 1s i n t a n 1lim x x x x x x x x x x x +--+→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+==3sin tan limx xx x e -→=3)cos 1(sin limx x x x e-→=212sin 2sin lim32e ex xx x =⋅→.2. 求下列极限 (1) 323112arcsin )11ln(lim--+→x x x解. 当x →1时, 331~)11ln(--+x x , 323212~12arcsin --x x . 按照等价无穷小代换 33132313231221121lim121lim12arcsin )11ln(lim=+=--=--+→→→x x x x x x x x (2) ⎪⎭⎫⎝⎛-→x x x 220cot 1lim 解. 方法1:⎪⎭⎫⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎭⎫ ⎝⎛++-→32204sin cos )1(2cos 2lim x x x x x x x =3203204sin cos 2lim 42sin cos 2lim x x x x x x x x x x →→++- =21122cos 2sin cos 4cos 2lim220+++-→x x x x x x x=2131242sin 4sin cos 4lim 2131122cos 2cos 2lim0220++-=+++-→→x x x x x x x x x =322131612131242sin 2lim 0=++-=++-→x x x方法2:⎪⎭⎫ ⎝⎛-→x x x 220c o t 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫ ⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎪⎪⎭⎫⎝⎛++-→420)12)(cos 1(211lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-++-→444220)(0!4)2(!2)2(11)(1(211lim x x x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-+--→4442420))(024162222(211lim x x x x x x x =3232lim 440=→x xx3. 求下列极限 (1) )1(ln lim-∞→nn n nn解. n nn n n nn n n n ln 1lim )1(ln lim -=-∞→∞→ x n n =-1令 1)1ln(lim0=+→x x x (2) nxnxn e e --∞→+-11lim解. ⎪⎩⎪⎨⎧-=+---∞→10111limnxnxn e e 000<=>x x x (3) nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim , 其中a > 0, b > 0 解. nnnn b a ⎪⎪⎭⎫ ⎝⎛+∞→2lim a b c n x /,/1== xc xxx x x ae c a 2ln )1ln(lim 10021lim -+→+→+=⎪⎪⎭⎫ ⎝⎛+=ab abac a ae aexx x x x c c c x c ====+-++→+→1ln lim2ln )1ln(lim0 4. 求下列函数的间断点并判别类型(1) 1212)(11+-=xxx f解. 11212lim )0(110=+-=+→+xxx f , 11212lim )0(110-=+-=-→-xxx f所以x = 0为第一类间断点.( 2 ) ⎪⎪⎩⎪⎪⎨⎧-+=11sin cos 2)2()(2x xx x x f π 00>≤x x解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点; 11s i nlim )(lim 211-=→→x x f x x 不存在. 所以x = 1为第二类间断点; )2(π-f 不存在, 而2cos 2)2(lim2πππ=+-→x x x x ,所以x = 0为第一类可去间断点;∞=+--→xx x k x c o s 2)2(lim2πππ, (k = 1, 2, …) 所以x =2ππ--k 为第二类无穷间断点.5. 讨论函数⎪⎩⎪⎨⎧+=βαx e x x x f 1sin )(00≤>x x 在x = 0处的连续性. 解. 当0≤α时)1sin (lim 0xx x α+→不存在, 所以x = 0为第二类间断点;当0>α, 0)1sin (lim 0=+→xx x α, 所以1-=β时,在 x = 0连续, 1-≠β时, x = 0为第一类跳跃间断点.6. 设f(x)在[a, b]上连续, 且a < x 1 < x 2 < … < x n < b, c i (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个ξ, 使 nnc c c c x f c x f c f ++++++=212211)()()(ξ.证明: 令M =)}({max 1i ni x f ≤≤, m =)}({min 1i ni x f ≤≤所以 m ≤nnc c c c x f c x f c ++++++ 212211)()(≤ M所以存在ξ( a < x 1 ≤ ξ ≤ x n < b), 使得nnc c c c x f c x f c f ++++++=212211)()()(ξ7. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ.8. 设f(x)在[0, 1]上连续, 且0 ≤ f(x) ≤ 1, 试证在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ. 证明: (反证法) 反设0)()(],1,0[≠-=∈∀x x f x x ϕ. 所以x x f x -=)()(ϕ恒大于0或恒小于0. 不妨设0)()(],1,0[>-=∈∀x x f x x ϕ. 令)(min 10x m x ϕ≤≤=, 则0>m .因此m x x f x x ≥-=∈∀)()(],1,0[ϕ. 于是01)1(>+≥m f , 矛盾. 所以在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ.9. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个ξ, 使f(ξ) = g(ξ).证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 10. 证明方程x 5-3x -2 = 0在(1, 2)内至少有一个实根. 证明: 令F(x) = x 5-3x -2, 则F(1) =-4 < 0, F(2) = 24 > 0 所以 在(1, 2)内至少有一个ξ, 满足F(ξ) = 0.11. 设⎪⎪⎩⎪⎪⎨⎧>=<-=⎰0cos 1010)cos 1(2)(022x dt t x x x x x x f x试讨论)(x f 在0=x 处的连续性与可导性.解. 20200200cos lim 1cos 1lim )0()(lim )0('x x dt t x dt t x x f x f f x x x x x -=-=-=⎰⎰+++→→→+ 0221lim 21cos lim 2020=-=-=++→→xx x x x x320200)c o s 1(2lim 1)cos 1(2lim )0()(lim )0('x x x x x x x f x f f x x x --=--=-=++-→→→- 06)1(cos 2lim 32sin 2lim 020=-=-=++→→x x x x x x x 所以 0)0('=f , )(x f 在0=x 处连续可导.12. 设f(x)在x = 0的某领域内二阶可导, 且0)(3sin lim 230=⎪⎭⎫⎝⎛+→x x f xx x , 求)0(''),0('),0(f f f 及23)(limxx f x +→. 解. 0)(3sin lim )(3sin lim )(3sin lim 2030230=+=+=⎪⎭⎫ ⎝⎛+→→→x x f x xx x xf x x x f x x x x x . 所以 0)(3s i n lim 0=⎪⎭⎫⎝⎛+→x f x x x . f(x)在x = 0的某领域内二阶可导, 所以)('),(x f x f 在x = 0连续. 所以f(0) = -3. 因为0)(3s i n lim 20=+→xx f x x x , 所以03)(33sin lim 20=++-→x x f x xx , 所以 2030202033c o s 33lim 3sin 3lim 3sin 3lim 3)(lim x x x x x x x x x x f x x x x -=-=-=+→→→→ =2923sin 3lim 0=→x x x02903)(lim 3)(lim 0)0()(lim )0('2000=⨯=+⋅=+=--=→→→x x f x x x f x f x f f x x x由293)(lim 20=+→x x f x , 将f(x)台劳展开, 得 293)(0)0(''!21)0(')0(lim 2220=++++→x x x f x f f x , 所以29)0(''21=f , 于是 9)0(''=f .(本题为2005年教材中的习题, 2008年教材中没有选入. 笔者认为该题很好, 故在题解中加入此题)第二章 导数与微分一. 填空题 1. xx x f +-=11)(, 则)()(x f n = _______. 解. 1112)1(!12)1()1(11)('++⋅-=++---=x x x x x f , 假设1)()1(!2)1(++⋅-=k k k x k f , 则111)1()1()!1(2)1(++++++⋅-=k k k x k f, 所以1)()1(!2)1(++⋅-=n n n x n f2. 设⎩⎨⎧=+=ty t x cos 12 , 则=22dx d y______.解. t tdx dy 2sin -=, 32'224cos sin 214sin 2cos 22sin t t t t t t t t t dxdt t t dx y d t -=--=⎪⎭⎫ ⎝⎛-= 3. 设函数y = y(x)由方程0)cos(=++xy e yx 确定, 则=dxdy______. 解. 0sin )'()'1(=+-++xy xy y y eyx , 所以xyx e e xy y y y x yx sin sin '--=++4. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ______. 解. 由f(-x) =-f(x)得)(')('x f x f -=--, 所以)(')('x f x f =- 所以 k x f x f =-=)(')('005. 设f(x)可导, 则=∆∆--∆+→∆xx n x f x m x f x )()(lim 000_______.解. xx n x f x f x f x m x f x ∆∆--+-∆+→∆)()()()(lim 00000=x m x f x m x f m x ∆-∆+→∆)()(lim 000+x n x f x n x f n x ∆--∆-→∆)()(lim 000=)(')(0x f n m +6. 设)('31)()(lim0000x f x x f x k x f x =∆-∆+→∆, 则k = ________. 解. )('31)()(lim0000x f x k x f x k x f k x =∆-∆+→∆, 所以)('31)('00x f x kf = 所以 31=k7. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫⎝⎛21'f _______. 解. x xx f 121'32=⋅⎪⎭⎫ ⎝⎛-, 所以21'22x x f -=⎪⎭⎫ ⎝⎛. 令x 2 = 2, 所以11'2-=⎪⎭⎫⎝⎛x f 8. 设f 为可导函数, )]}([sin sin{x f f y =, 则=dxdy_______. 解.)]}([sin cos{)]([sin ')(cos )('x f f x f f x f x f dxdy= 9. 设y = f(x)由方程1)cos(2-=-+e xy eyx 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.解. 上式二边求导0)sin()'()'2(2=+-++xy xy y y eyx . 所以切线斜率2)0('-==y k . 法线斜率为21, 法线方程为 x y 211=-, 即 x -2y + 2 = 0. 二. 单项选择题1. 已知函数f(x)具有任意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的正整数时, f(x)的n 阶导数是 (a) 1)]([!+n x f n (b) 1)]([+n x f n (c) n x f 2)]([ (d) nx f n 2)]([!解. 3)]([!2)(')(2)(''x f x f x f x f ==, 假设)()(x f k =1)]([!+k x f k , 所以)()1(x f k +=2)]([)!1()(')]([!)1(++=+k k x f k x f x f k k , 按数学归纳法)()(x fn =1)]([!+n x f n 对一切正整数成立. (a)是答案.2. 设函数对任意x 均满足f(1 + x) = af(x), 且=)0('f b, 其中a, b 为非零常数, 则 (a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且=)1('f a (c) f(x)在x = 1处可导, 且=)1('f b (d) f(x)在x = 1处可导, 且=)1('f ab 解. 在f(1 + x) = af(x)中代入)0()1(,0af f x ==得x f x f f x ∆-∆+=→∆)1()1(lim)1('0=ab af xaf x af x ==∆-∆→∆)0(')0()(lim 0, 所以. (d)是答案 注: 因为没有假设)(x f 可导, 不能对于)()1(x af x f =+二边求导. 3. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为(a) 0 (b) 1 (c) 2 (d) 3解. ⎩⎨⎧=3324)(xx x f 00<≥x x . ⎩⎨⎧=x x x f 1224)('' 00<≥x x24024lim 0)0('')(''lim )0('''00=-=--=++→→+xx x f x f f x x12012lim 0)0('')(''lim )0('''00=-=--=--→→-xx x f x f f x x 所以n = 2, (c)是答案.4. 设函数y = f(x)在点x 0处可导, 当自变量x 由x 0增加到x 0 + ∆x 时, 记∆y 为f(x)的增量, dy 为f(x)的微分, xdyy x ∆-∆→∆0lim等于(a) -1 (b) 0 (c) 1 (d) ∞ 解. 由微分定义∆y = dy + o (∆x), 所以0)(lim lim00=∆∆=∆-∆→→∆x x o xdy y x x . (b)是答案.5. 设⎪⎩⎪⎨⎧+=bax x x x f 1sin)(200≤>x x 在x = 0处可导, 则 (a) a = 1, b = 0 (b) a = 0, b 为任意常数 (c) a = 0, b = 0 (d) a = 1, b 为任意常数解. 在x = 0处可导一定在x = 0处连续, 所以)(lim 1sinlim 020b ax x x x x +=-+→→, 所以b = 0.)0(')0('-+=f f , x ax xx x x x -+→→=020lim 1sinlim , 所以 0 = a. (c)是答案. 三. 计算题1. ')]310ln[cos(2y x y ,求+=解. )310tan(6)310cos(6)310sin('222x x x xx y +-=+⋅+-= 2. 已知f(u)可导, ')][ln(2y x a x f y ,求++= 解. ='y ⎪⎪⎭⎫⎝⎛++++⋅++2222211)][ln('x a xx a x x a x f =22)][ln('xa x a x f +++3. 设y 为x 的函数是由方程xyy x arctan ln22=+确定的, 求'y .解.22222221'2'22xy x y x y y x y x yy x +-=+++y x y yy x -=+'', 所以yx yx y -+=' 4. 已知⎩⎨⎧==te y t e x tt cos sin , 求22dx yd . 解. tt tt t e t e t e t e dx dy t t t t sin cos sin cos sin cos sin cos +-=+-=,dt dx t t t t t t dx dt t t t t dt d dx y d 1)sin (cos )sin (cos )sin (cos sin cos sin cos 22222⋅+--+-=⋅⎪⎭⎫ ⎝⎛+-= 322)s i n (c o s 2t t e dx y d t +-= 5. 设2/322)(x x u y y x +=+=,, 求dudy解. dy y dx )12(+=, dx x x x du )12()(23212++=dx x x x dxdu dyy )12(23)12(2++=+)12()12(322+++=x x x y d u d y 6. 设函数f(x)二阶可导, 0)0('≠f , 且⎩⎨⎧-=-=)1()(3te f y t f x π, 求0=t dx dy , 022=t dx yd . 解. )('3)1('33t fe ef dx dy t t -=, 所以0=t dx dy=3. 3333323322)]('[)('')1(')(')]1('3)(3)1(''[3t f t f e f e t f e f e e e f dx y d t t t t t t ---+-= 所以2322)]0('[)0(''6)0('9)]0('[)0('')0(')0(')]0('3)0(''3[30f f f f f f f f f t dx y d +=-+== 7. 设曲线x = x(t), y = y(t)由方程组⎩⎨⎧=+=e e e te x yt t 2确定. 求该曲线在t = 1处的曲率. 解. ee e e e y t ty t t 2'-=-=. 所以)2)(1(12''e e t te e e e e x y dx dy t t t t tt t -+=+-== 所以et dx dy 211-==.t t tt t ee e t te e e dx dt e e t dt d dx y d 2322)2()1(22)2)(1(1-++--=⎪⎪⎭⎫ ⎝⎛-+=所以 222811et dx y d -==. 在t = 1的曲率为 2322322232)41(411811)'1(|''|--+=⎪⎭⎫ ⎝⎛+==+=e e e e t y y k四. 已知当x ≤ 0时, f (x )有定义且二阶可导, 问a, b, c 为何值时⎩⎨⎧++=cbx ax x f x F 2)()( 00>≤x x二阶可导.解. F(x )连续, 所以)(lim )(lim 0x F x F x x +-→→=, 所以c = f (-0) = f (0);因为F(x )二阶可导, 所以)('x F 连续, 所以b = )0(')0('f f =-, 且 ⎩⎨⎧+=-)0('2)(')('f ax x f x F 00>≤x x)0(''F 存在, 所以)0('')0(''+-=F F , 所以a xf f ax x f x f x x 2)0(')0('2lim )0(')('lim 00=-+=--→→+-, 所以)0(''21f a =五. 已知)0(1)()(22n f xx x f ,求-=. 解. xx x f +⋅+-⋅+-=112111211)( 11)()1()1(21)1(!21)(+++-⋅+-⋅=n nn n x x n x f0)0()12(=+k f , k = 0, 1, 2, …!)0(2n fk=, k = 0, 1, 2, …六. 设x x y ln =, 求)1()(n f .解. 使用莱布尼兹高阶导数公式 121)1()()()!2()1()!1()1()(ln )(ln )(------+--=+⋅=n n n n n n n x n n x n x x n x x x f=121121)!2()1()1()!2()1(-------=⎥⎦⎤⎢⎣⎡+----n n n n n x n x n xn n 所以 )!2()1()1(2)(--=-n f n n七. 已知'.,sin cos 20022y y tdt dt e x y t 求+=⎰⎰解. 两边对x 求导, 2222cos 2cos 2',cos '2cos 2'22yy ex x y y yy x x y e y y -=+=第三章 一元函数积分学(不定积分)一. 求下列不定积分: 1.⎰-+-dx x xx 11ln 112解. =-+-⎰dx x x x 11ln 112c x x x x d x x +⎪⎭⎫⎝⎛-+=-+-+⎰211ln 4111ln 11ln 212. c x x x x d x x dx x x x+⎪⎭⎫ ⎝⎛-+=-+-+=-++⎰⎰2211arctan 2111arctan 11arctan 11arctan 11 3.⎰++⋅+++dx x x x x x cos 1sin 1)cos 1(1sin cos 2解. c x x x x d x x dx x x x x x +⎪⎭⎫ ⎝⎛++=++++=++⋅+++⎰⎰22cos 1sin 121cos 1sin 1cos 1sin 1cos 1sin 1)cos 1(1sin cos 4.⎰+)1(8x x dx解. 方法一: 令tx 1=,c t t dt t dt t t t x x dx ++-=+-=⎪⎭⎫⎝⎛+-=+⎰⎰⎰)1ln(8111111)1(887828 = c x +⎪⎭⎫ ⎝⎛+-811ln 81 方法二:⎰⎰⎰+--=+=+dx x x x x x dx x x x dx )111()1()1(8878878 =c x x x x d x dx ++-=++-⎰⎰)1ln(81||ln 1)1(81888=c x +⎪⎭⎫ ⎝⎛+-811ln 815.dx xx x x x x dx x x x ⎰⎰+++-+++=+++cos sin 121)cos (sin 21)cos sin 1(21cos sin 1sin 1 ⎰⎰⎰+++++--=dx x x dx x x x x dx cos sin 1121cos sin 1sin cos 2121dx x x x x x x x d x ⎰⎰++++++-=2cos 22cos 2sin 2121cos sin 1)cos sin 1(212122tan 12tan 121|cos sin 1|ln 2121xd x x x x ⎰++++-=c xx x x +++++-=|12tan |ln 21|cos sin 1|ln 2121二. 求下列不定积分: 1.⎰+++22)1(22x x x dx解.⎰⎰++++=+++1)1()1()1(22)1(2222x x x d x x x dx t x tan 1=+令 ⎰t t t dtsec tan cos 22 =⎰++++-=+-=c x x x c t t tdt 122sin 1sin cos 222.⎰+241xxdx解. 令x = tan t,⎰⎰⎰⎰⎰++-=-===+c t t t t d t t d dt t t t t t dt xxdx sin 1sin 31sin sin sin sin sin cos sec tan cos 1324434224=c x x x x+++⎪⎪⎭⎫⎝⎛+-23211313.⎰++221)12(xxdx解. 令t x tan =⎰⎰⎰⎰+=+=+=++t td dt t t t dt t t t xx dx2222222sin 1sin cos sin 2cos sec )1tan 2(sec 1)12(=c xx c t ++=+21arctansin arctan4.⎰-222x a dx x (a > 0)解. 令t a x sin =⎰⎰⎰+-=-=⋅=-c t a t a dt t a t a tdt a t a x a dxx 2sin 412122cos 1cos cos sin 22222222=c x a a x a x a +⎪⎭⎫⎝⎛--2222arcsin 25.⎰-dx x 32)1(解. 令t x sin =⎰⎰⎰⎰++=+==-dt tt dt t tdt dx x 42cos 2cos 214)2cos 1(cos )1(22432=⎰+++=+++c t t t dt t t t 4sin 3212sin 4183)4cos 1(812sin 4141 =c t t x +++)2cos 411(2sin 41arcsin 83=c tt t x +-++)4sin 214(cos sin 241arcsin 832 =c x x x x +--+)25(181arcsin 8322 6.⎰-dx xx 421解. 令tx 1=⎰⎰⎰--=⎪⎭⎫ ⎝⎛--=-dt t t dt t t t t dx xx 224224211111u t sin =令⎰-udu u 2cos sin =c x x c u +-=+33233)1(cos 317.⎰-+dx x xx 1122解. 令 tdt t dx t x tan sec ,sec ==⎰⎰⎰++=+=+=-+c t t dt t tdt t tt t dx x xx sin )cos 1(tan sec tan sec 1sec 11222c xx x+-+=11arccos 2 三. 求下列不定积分:1. ⎰+-+dx e e e e x xxx 1243 解. ⎰⎰⎰+-=+--=+-+=+-+-----c e e e e e e d dx e e e e dx e e e e x x x x x x x x x x x xx x )arctan(1)()(11222243 2.⎰+)41(2x x dx解. 令xt 2=, 2ln t dtdx =c tt dt t t t t dt dx x x +--=⎪⎭⎫ ⎝⎛+-=+=+⎰⎰⎰2ln arctan 2ln 11112ln 12ln )1()41(22222 =c x x ++--)2arctan 2(2ln 1四. 求下列不定积分:1. ⎰-dx x x 1005)2( 解. ⎰⎰⎰---+--=--=-dx x x x x x d x dx x x 9949959951005)2(995)2(99)2(991)2( =⎰--⋅⋅+-⨯---dx x x x x x x 983984995)2(989945)2(98995)2(99 =962973984995)2(96979899345)2(97989945)2(98995)2(99-⋅⋅⋅⋅⋅--⋅⋅⋅--⋅---x x x x x x x x c x x x +-⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅-9495)2(95969798992345)2(95969798992345 2.⎰+41xxdx解.⎰⎰⎰⎰+-=+-=+-=+22244424)(1211111/11t dt t tdt t t t dt t t x x x dx 令c x x c u u du u u u t ++-=++-=-=⎰24221ln 21|sec tan |ln 21sec sec 21tan 令五. 求下列不定积分: 1.⎰xdx x 2cos 解.⎰⎰⎰+=+=x xd x dx x x xdx x 2sin 4141)2cos 1(21cos 22⎰-+=xdx x x x 2sin 412sin 41412c x x x x +++=2cos 812sin 414122.⎰xdx 3sec解.⎰⎰⎰-==xdx x x x x x xd xdx tan sec tan tan sec tan sec sec3=⎰⎰-++=--xdx x x x x xdx x x x 32sec |tan sec |ln tan sec sec )1(sec tan secc x x x x xd x +++=⎰|t a n s e c |ln 21tan sec 21sec 3 3. ⎰dx xx 23)(ln 解. ⎰⎰⎰+-=-=dx x x x x x d x dx x x 223323)(ln 3)(ln 11)(ln )(ln ⎰+--=dx x x x x x x 223ln 6)(ln 3)(ln ⎰+---=dx x x x x x x x 2236ln 6)(ln 3)(ln c xx x x x x x +----=6ln 6)(ln 3)(ln 23 4.⎰dx x )cos(ln解.⎰⎰⎰-+=+=dx x x x x dx x x x dx x )cos(ln )]sin(ln )[cos(ln )sin(ln )cos(ln )cos(ln∴c x x xdx x ++=⎰)]sin(ln )[cos(ln 2)cos(ln5.⎰⎰⎰⎰---+-=-==dx x x x x xd dx x x xx dx xxx 2sin 812sin 812sin 812cos 2sin 2cos 81sin 2cos 22233434c x x x xd x x x +--=+-=---⎰2cot 412sin 8122sin 412sin 81222 六. 求下列不定积分: 1.⎰-++dx x x x x 222)1()1ln(解.⎰⎰-++=-++2222211)1ln(21)1()1ln(xd x x dx x x x x =⎰+⋅---++dx x x x x x 222211112111)1ln(21 t x t a n =令 tdt t t x x x 2222sec sec 1tan 1121)1(2)1ln(⋅⋅---++⎰ =dt t t x x x ⎰---++222sin 21cos 21)1(2)1ln( =⎰---++t t d x x x 222sin 21sin 2221)1(2)1ln( =c t t x x x +-+--++sin 21sin 21ln 241)1(2)1ln(22 =c xx xx x x x +-+++--++2121ln 241)1(2)1ln(22222.⎰+dx xx x 21arctan解.⎰⎰⎰++-+=+=+dx x x x x x xd dx xx x 2222211arctan 11arctan 1arctan=c x x x x dx x x x +++-+=+-+⎰)1ln(arctan 111arctan 122223. ⎰dx e e xx2arctan解. dx e e e e e de e dx e e x x x xx x x x x ⎰⎰⎰++-=-=---22222121arctan 21arctan 21arctan dx e e e e x x x x ⎰++-=--22121arctan 21⎰++-=-dx e e e e x x xx )1(121arctan 2122 c x e e e dx e e e e e x x x xx x xx +++-=+-+-=---⎰)arctan arctan (21)11(21arctan 21222 七. 设⎩⎨⎧-+-+=-xex x x x x f )32(3)1ln()(22 00<≥x x , 求⎰dx x f )(.解.⎪⎩⎪⎨⎧-+-+=-⎰⎰⎰dx e x x dxx x dx x f x )32()3)1ln(()(22⎪⎩⎪⎨⎧+++-+-+--+=-122222)14(3)]1ln([21)1ln(21c e x x cx x x x x x 00<≥x x 考虑连续性, 所以 c =-1+ c 1, c 1 = 1 + c⎰dx x f )(⎪⎩⎪⎨⎧++++-+-+--+=-c e x x c x x x x x x 1)14(3)]1ln([21)1ln(2122222 00<≥x x 八. 设x b x a e f xcos sin )('+=, (a, b 为不同时为零的常数), 求f(x). 解. 令t x e t xln ==,, )cos(ln )sin(ln )('t b t a t f +=, 所以 ⎰+=dx x b x a x f )]cos(ln )sin(ln [)( =c x a b x b a x+-++)]cos(ln )()sin(ln )[(2九. 求下列不定积分: 1.⎰-dx x x234解. 令t x sin 2=⎰⎰⎰--==-t td t tdt t dx x x cos cos )cos 1(32cos sin 324222323 =c x x c t t +---=++-23225253)4(34)4(51cos 532cos 332 2.⎰>-)0(22a dx xa x解. 令t a x sec =⎰⎰⎰+-===>-c at t a tdt a t t a ta ta a dx x a x tan tan tan sec sec tan )0(222 =c xaa a x +--arccos 223.dx ee e xx x ⎰-+21)1(解.=-+⎰d ee e xx x 21)1(⎰-dx ee xx 21+dx ee xx ⎰-221=⎰-x x e de 21-dx e e d xx ⎰--221)1(21=c e e x x +--21arcsin 4.⎰-dx xa xx2 (a > 0)解. ⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8=⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222=c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222=c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222 =c t t a t t a t a +--cos sin 2cos sin 333222 =c axa a x a xa a x a a x a a x a +----2222222232arcsin3222=c x a x x a a x a +-+-)2(232arcsin32十. 求下列不定积分:1.⎰+-dx x xcos 2sin 2 解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2t x =2t a n 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt =c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 342.⎰+dx x x xx cos sin cos sin解. ⎰⎰+-+=+dx xx x x dx x x x x cos sin 1cos sin 2121cos sin cos sin=⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π 十一. 求下列不定积分: 1.⎰++dx x xx )32(332解.⎰⎰+=+=++++c x d dx x xx xx xx 3ln 3)3(3)32(332332222.⎰-+-dx x x x)13()523(232解. )523()523(21)13()523(2232232+-+-=-+-⎰⎰x x d x x dx x x xc x x ++-=252)523(513.dx xx x ⎰+++221)1ln(解.⎰⎰+++=++++=+++c x x x x d x x dx x x x )1(ln 21)1ln()1ln(1)1ln(222222 4.⎰+++++)11ln()11(222x x xxdx解.c x x xd x x xxdx+++=++++=+++++⎰⎰|)11ln(|ln )11ln()11ln()11ln()11(222222十二. 求下列不定积分: 1.⎰+dx x x x )1(arctan 2解.⎰⎰⎰-+-=++=+1222222)1(arctan 21)1()1(arctan 21)1(arctan x xd x d x x dx x x x ⎰⎰+++-=+++-=dx x x x x d x x x 22222)1(1211arctan 21arctan 11211arctan 21 dt t x x tdt x x t x ⎰⎰+++-=++-=22cos 1211arctan 21cos 211arctan 21tan 222令c t t x x x aex c t t x x ++++-=++++-=cos sin 41arctan 411tan 212sin 81411arctan 2122 c xxx x x aex +++++-=22141arctan 411tan 21 2.⎰+dx x x1arcsin解. 令t x t xx2tan ,1arcsin==+则⎰⎰⎰++-=-==+c t t t t t d t t t t d t dx xxtan tan tan tan tan 1arcsin2222 c x xx x c x x x x x x +-++=+++-+=1arcsin )1(1arcsin 1arcsin3. ⎰-+⋅dx xx x x 22211arcsin解. ⎰⎰⎰+=+⋅=-+⋅dt t t tdt t t t t t x dx xx x x )1(csc cos cos sin 1sin sin 11arcsin 222222令 ⎰⎰⎰+++-=+-=c t tdt t t dt t tdt t 221cot cot cot c t t t t +++-=221|sin |ln cot c x x x x x+++--=22)(arcsin 21||ln 1arcsin4.dx x x x ⎰+)1(arctan 22解.⎰⎰⎰-==+dt t t dt t t t t tx dx x x x)1(csc sec sec tan tan )1(arctan 222222令22221cot cot 21cot csc t dt t t t t d t dt t dt t t -+-=--=-=⎰⎰⎰⎰ c x x x x x c t t t t +-++-=+-+-=222)(arctan 21|1|ln arctan 21|sin |ln cot c x x x x x +-++-=222)(arctan 211ln 21arctan 十三. 求下列不定积分: 1.⎰-dx x x234解.⎰⎰⎰==-dt t t dt t t t t x dx x x 23323cos sin 32cos 2cos 2sin 8sin 24令 c t t t d dt t t ++-=-=⎰5322cos 532cos 332cos cos )cos 1(32 c x x +-+--=252232)4(51)4(342.⎰-xa x 22 解.⎰⎰⎰-==-dt t t a dt t t a t a t a t a x xa x 2222cos cos 1tan sec sec tan sec 令c xaa a x c at t a +--=+-=arccos tan 223.dx ee e xx x ⎰-+21)1(解.udu u uu t dt t t t dt t t t te dx e e e x xx x cos cos sin 1sin 111)1(1)1(222⎰⎰⎰⎰+=-+=-+=-+令令c e e c u u x x +--=+-=21arcsin cos 4.⎰-dx xa xx2 (a > 0)解. ⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8=⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222=c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222=c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222 =c t t a t t a t a +--cos sin 2cos sin 333222 =c axa a x a xa a x a a x a a x a +----2222222232arcsin3222=c x a x x a a x a +-+-)2(232arcsin32十四. 求下列不定积分: 1.⎰+xxdx cos 1sin解.⎰⎰⎰⎰-+-=++-=+=+xxd xx x d xx dx x xxdx 222cos 1cos 12cos 1sin )cos 1(cos 1sin sin cos 1sin ⎰⎰--=---=+)2(2)1(12cos 12222u u duu du u x 令⎰+-++=-+-=c u uu du u u |22|ln 2211)211(22 c xx x++-++++=|cos 12cos 12|ln 221cos 112.⎰+-dx x xcos 2sin 2 解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2t x =2t a n 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt=c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 343.⎰+dx x x xx cos sin cos sin解. ⎰⎰+-+=+dx xx x x dx x x x x cos sin 1cos sin 2121cos sin cos sin=⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π 十五. 求下列不定积分: 1.dx xx x ⎰-1解.c t t td dt t t tx dx xx x+--=---=-=-⎰⎰⎰333321341)1(32121令c x +--=231342.⎰+-dx e e xx 11解.⎰⎰⎰⎰-=-=--=+-dt t dt t t t t e dx e e dx e e xx x x x )1(sec tan tan 1sec sec 11112令c eee c t t t x xx+-++=+--=1arccos )1ln(|tan sec |ln 23.dx xx x ⎰--1arctan 1解. 令t t dx t x x t x t tan sec 2,sec ,1tan ,1arctan22==-=-=⎰⎰⎰⎰-===--dt tt t dt t t dt t t t t t dx x x x 22222cos cos 12tan 2tan sec 2sec tan 1arctan 1。

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。

大学高数极限考试题及答案

大学高数极限考试题及答案

大学高数极限考试题及答案# 大学高数极限考试题及答案一、选择题1. 下列函数中,极限不存在的是()A. \( f(x) = \frac{x^2 - 1}{x - 1} \) 当 \( x \to 1 \)B. \( g(x) = \sin(x) \) 当 \( x \to \pi \)C. \( h(x) = x^2 \) 当 \( x \to 2 \)D. \( k(x) = \frac{\sin(x)}{x} \) 当 \( x \to 0 \)答案:A2. 计算极限 \( \lim_{x \to \infty} \frac{x^2}{x + 1} \) 的结果是()A. \( \infty \)B. \( 1 \)C. \( 0 \)D. \( \frac{1}{2} \)答案:A二、填空题1. \( \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = \) ______答案:02. \( \lim_{x \to 1} (x^2 - 1) = \) ______答案:0三、计算题1. 计算极限 \( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)。

解答:\( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3}\frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \)2. 计算极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \)。

解答:使用洛必达法则(L'Hôpital's Rule):\( \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0}\frac{\cos(x)}{1} = \cos(0) = 1 \)四、证明题1. 证明 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \)。

高等数学题库第01章(函数,极限,连续).

高等数学题库第01章(函数,极限,连续).

高等数学题库第01章(函数,极限,连续).第一章函数、极限、连续习题一一.选择题1.下列各组中的函数f(x)与g(x)表示同一个函数的是()A.f(x)=x,g(x)=x2B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2C.f(x)=xD.f(x)=x,g(x)=-x2.函数y=4-x+sinx的定义域是( )A.[0,1]B.[0,1)(1,4]C.[0,+∞)D.[0,4]3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-1323 B.y=x2 C. y=x3 D.y=x-24.函数y=x2-1单调增且有界的区间是( )A. [-1,1]B. [0,+∞)C. [1,+∞)D. [1,2]5.设y=f(x)=1+logx+32,则y=f-(x)=( )A.2x+3B. 2x-1-3C. 2x+1-3D. 2x-1+36.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=(A.-4B.-2C.-3D.6二.填空题1.f(x)=3-xx+2的定义域是2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。

3.设f(2x)=x+1,且f(a)=4,则a= 。

4.设f(x+11x)=x2+x2,则f(x)5.y=arcsin1-x2的反函数是。

6.函数y=cos2πx-sin2πx的周期T。

)π?sinx,x<17.设f(x)=?则f(-)=。

4??0,x≥12??1,x≤12-x,x≤1??8.设f(x)=?,g(x)=?,当x>1时,g[f(x)]= 。

x>1x>10?29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。

10.设f(x)=2x,g(x)=x2,则f[g(x)]=。

三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-33.limx→52x-1-3+2x2-14. lim x→0xx-5x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-27.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1sinx2-49. lim2 x→2x+x-6()习题二1.下列数列中,发散的是( ) 1π2n-11+(-1)n(-1)nA.xn=sinB.xn=5+C.xn=D.xn= nn3n+22n22设limf(x)=A(A为常数),则在点x0处f(x)( ) x→x0A. 一定有定义且f(x0)=AB.有定义但f(x0)可为不等于A的值B. 不能有定义 D.可以有定义,也可以没有定义f(x)=limf(x)是limf(x)存在的( ) 3.lim+-x→x0x→0x→x0A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件4.limh→0x+h-x=() hA.0 B.12x C.2x D.不存在x3(1+a)+1+bx2=-1则a,b的值为( ) 5.若limx→∞x2+1A.a=-1,b=-1B. a=1,b=-1C. a=-1,b=1D. a=1,b=16.设limf(x)=A,limg(x)=B,且A>B,则当x充分接近xo时,必有( ) x→x0x→x0A.f(x)≥g(x)B. f(x)>g(x)C. f(x)≤g(x)D. f(x)<g(x)< p="">7.数列{xn}有界是收敛的( )A.充分必要条件B. 必要而非充分条件C.充分而非必要条件D.既非充分也非必要条件8.设f(x)=1-x,g(x)=1-x,当x→1时,( )A.f(x)是比g(x)较高阶的无穷小量B. f(x)是比g(x)较低阶的无穷小量C.f(x)与g(x)同阶无穷小量D. f(x)与g(x)等价无穷小量9.当x→0时,为无穷小量的是()-1A.lnsinx B.sin C.cotx D.ex x1n,n为奇数?10.设数列xn=?1,则{xn}是( ) ,n为偶数??nA.无穷大量B. 无穷小量C.有界变量D. 无界变量二.填空题lnx= 。

(完整版)高等数学测试题及解答(分章)

(完整版)高等数学测试题及解答(分章)

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

极限与连续练习题及解析

极限与连续练习题及解析

极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。

这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。

在本文中,我将为大家分享一些关于极限与连续的练习题及解析。

题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。

首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。

由于$x \geq 0$,所以$\sqrt{x}$是有定义的。

接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。

根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。

高等数学(大一)题库

高等数学(大一)题库

(一)函数、极限、连续一、选择题:1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。

(A);1+=x y (B);2x x y -= (C)34+-=x y(D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小4、 x =0是函数1()arctanf x x=的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也 存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 若),1(3-=x f y Z且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ;三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 220--+→x x x (4)xx x x cos 11sinlim30-→ (5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则t t x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey 2sin =, 则dy = ;4、 设),0(sin >=x x x y x则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =14、 若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx ' (C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n fx . 7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学测试题(一)极限、连续部分(答案)
一、选择题(每小题4分,共20分) 1、 当0x →+时,(A )无穷小量。

A 1sin x x
B 1
x e C ln x D 1
sin x x
2、点1x =是函数31
1()1131x x f x x x x -<⎧⎪
==⎨⎪->⎩
的(C )。

A 连续点
B 第一类非可去间断点
C 可去间断点
D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件
B 必要非充分条件
C 充要条件
D 无关条件
4、已知极限22
lim()0x x ax x
→∞++=,则常数a 等于(A )。

A -1
B 0
C 1
D 2
5、极限2
01
lim cos 1
x x e x →--等于(D )。

A ∞
B 2
C 0
D -2
二、填空题(每小题4分,共20分) 1、21lim(1)x x x
→∞
-=2
e -
2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常
数A=3
3、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数2
1()2
x f x -=,
则函数值(0)f =0
4、 111
lim[
]1223
(1)
n n n →∞++
+
••+=1
5、 若lim ()x f x π
→存在,且sin ()2lim ()x x
f x f x x ππ
→=
+-,则lim ()x f x π→=1
二、解答题
1、(7分)计算极限 222111
lim(1)(1)(1)23n n
→∞-
-- 解:原式=132411111
lim()()()lim 223322
n n n n n n n n →∞→∞-++•••=•=
2、(7分)计算极限 3
0tan sin lim x x x
x →-
解:原式=2
322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2
x x x x x x
x x x x x x x →→→--===
3、(7分)计算极限 1
23lim()21
x x x x +→∞++
解:原式= 11
122
11
22
21lim(1)lim(1)1212
11lim(1)lim(1)11
22
x x x x x x x x
x e x x +++→∞→∞+→∞→∞+=+++
=+•+=++ 4、(7分)计算极限 0
1
x e →-解:原式=201
sin 12lim 2
x x x
x →=
5、(7分)设3214
lim 1
x x ax x x →---++ 具有极限l ,求,a l 的值
解:因为1
lim(1)0x x →-+=,所以 3
2
1
lim(4)0x x ax x →---+=,
因此 4a = 并将其代入原式
321144(1)(1)(4)
lim lim 1011
x x x x x x x x l x x →-→---++--===++
6、(8分)设3()32,()(1)n
x x x x c x αβ=-+=-,试确定常数,c n ,使得
()()x x αβ
解:
32221()32(1)(2)
(1)(2)3
lim ,3,2(1)x x x x x x x x c n c x c
α→=-+=-+-+=∴==- 此时,()()x x αβ
7、(7分)试确定常数a ,使得函数21sin 0()0
x x f x x
a x
x ⎧
>⎪
=⎨⎪+≤⎩
在(,)-∞+∞内连续
解:当0x >时,()f x 连续,当0x <时,()f x 连续。

002
1
lim ()lim sin 0
lim ()lim()x x x x f x x x f x a x a +
-
→→→→===+= 所以 当0a =时,()f x 在0x =连续
因此,当0a =时,()f x 在(,)-∞+∞内连续。

8、(10分)设函数()f x 在开区间(,)a b 内连续,12a x x b <<<,试证:在开区间(,)a b 内至少存在一点c ,使得
11221212()()()()(0,0)t f x t f x t t f c t t +=+>>
证明:因为()f x 在(,)a b 内连续,12a x x b <<<,所以 ()f x 在12[,]x x 上连续,由连续函数的最大值、最小值定理知,()f x 在12[,]x x 上存在最大值M 和最小值m ,即在12[,]x x 上,()m f x M ≤≤,所以
12112212()()()()t t m t f x t f x t t M +≤+≤+,又因为 120t t +>,所以
112212
()()
t f x t f x m M t t +≤
≤+,由连续函数的介值定理知:存在
12(,)(,)c x x a b ∈⊂,使得
112212
()()
()t f x t f x f c t t +=+,即
11221212()()()()
(0,0)t f x t f x t t f c t t +=+>> 证毕。

相关文档
最新文档