高等数学基础极限与连续

高等数学基础极限与连续
高等数学基础极限与连续

第二章 极限与连续

一、教学要求

1.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法.

2.了解函数连续性的概念,掌握函数连续性的性质及运算.

重点:极限的计算,函数连续性的性质及运算。

难点:极限、连续的概念。

二、课程内容导读

1. 掌握求简单极限的常用方法。求极限的常用方法有

(1) 利用极限的四则运算法则;

(2) 利用两个重要极限;

(3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量);

(4) 利用连续函数的定义。

例1 求下列极限:

(1)x

x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1

0)21(lim -→ (4)2

22)sin (1cos lim x x x x x +-+∞→ (5))1

1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x

x x 33sin 9lim 0-+→ =)

33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3

3sin 91lim 3sin lim 00++?→→x x x x x =21613=?

(2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1

)1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim

11+?--=→→x x x x x 2

11111=+?= (3)利用第二重要极限计算,即

x x x 10)21(lim -→=2210])21[(lim --→-x x x 2e -=。

(4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x

x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x

x x 都是无穷小量乘以有界变量,即它们还是无穷小量。

(5) 利用函数的连续性计算,即

)11e (lim 0-+→x x x x =11

01e 00-=-+? 2. 知道一些与极限有关的概念

(1) 知道数列极限、函数极限、左右极限的概念,知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等;

(2) 了解无穷小量的概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质;

(3) 了解函数在某点连续的概念,知道左连续和右连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点;

例2 填空、选择题

(1) 下列变量中,是无穷小量的为( ) A. )0(1ln

+→x x B. )1(ln →x x C. )0(e 1

→-x x D.

)2(422→--x x x 解 选项A 中:因为 +→0x 时,

+∞→x 1,故 +∞→x 1ln ,x

1ln 不是无穷小量; 选项B 中:因为1→x 时,0ln →x ,故x ln 是无穷小量; 选项C 中:因为 +→0x 时,-∞→-x 1,故0e 1

→-x ;但是-→0x 时,x 1- +∞→,故+∞→-x 1

e ,因此x 1

e -当0→x 时不是无穷小量。

选项D 中:因为21422+=--x x x ,故当2→x 时,41422→--x x ,4

22--x x 不是无穷小量。

因此正确的选项是B 。

(2) 下列极限计算正确的是( )。 A.=→x x x 1sin lim 001sin lim lim 00=→→x

x x x

B. =→x x x 2sin 2tan lim 01222tan lim 0=→x

x x

x C. =-+∞→)(lim 2x x x x 0lim lim 2

=-+∞→∞→x x x x x D. =-+-∞→1)11(

lim x x x x x x x x )11(lim -+∞→1)11(lim -∞→-+x x x e e e

e 11==-- 解 选项A 不正确。因为x

x 1sin lim 0→不存在,故不能直接用乘积的运算法则,即 ≠→x x x 1sin lim 0x x x x 1sin lim lim 00→→ 选项B 正确。将分子、分母同除以2x ,再利用第一个重要极限的扩展形式,得到

=→x x x 2sin 2tan lim 0122sin 22tan lim 0=→x

x

x x

x 选项C 不正确。因为∞→∞→+∞→x x x x ,时,2,故不能直接用极限的减法运算法则,即

≠-+∞→)(lim 2x x x x x x x x x ∞→∞→-+lim lim 2

选项D 不正确。1)1

1(

lim -∞→-+x x x x 可以分成两项乘积,即 1)11(lim -∞→-+x x x x =x x x x )11(lim -+∞→1)1

1(lim -∞→-+x x x 其中第一项x x x x )11(lim -+∞→=x x x x )1111(lim -+∞→=x x x

x x

x )11(lim )11(lim -+∞→∞→1

e e -= 而第二项1)11(lim -∞→-+x x x 1)1111(lim 1=-+=-∞→x x x 1e -≠ 故原算法错误。

正确选项应是B 。

(3)当=k ( )时,???<+≥+=001)(2x k x x x x f 在0=x 处连续。

A. 0

B. -1

C. 2

D. 1

解 函数在一点连续必须满足既是左连续又是右连续。因为函数已是右连续,且

110)0(=+=f

而左连续)0()(lim )0(2

0f k k x f x ==+=-→-

故当=k 1时,)(x f 在0=x 处连续。 正确的选项是D 。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.4682, ,,357 极限为1 2.11111,,,,,2345--极限为0 3.212212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x +→ 无极限,趋于-∞ 二、设2221,1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 211lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x --→→=+= 1 lim () 3.x f x →∴=

222lim ()lim(1)3x x f x x ++→→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 1 1x f x e =+,求 0x →时的左、右极限,并说明0x →时极限是否存在. ()1001lim lim 01x x x f x e ++→→==+ ()1 001 lim lim 11x x x f x e --→→==+ 0 lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当0x →时,1sin 0x x →;当1x →时,1sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 221 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x ,k Z ∈

持久状况承载能力极限状态计算

持久状况承载能力极限状态计算 在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏,下面验算这两类截面的承载力。 ① 2.4.1 正截面抗弯承载力计算 荷载基本组合表达式按《桥规》式(4.1.6-1) )(1111 00k Q Q k G n i Gi sd M M M γγγγ+=∑= 现以边梁弯矩最大的跨中截面为例进行正截面承载力计算。 1)求受压区高度x 先按第一类T 形截面梁,略去构造钢筋的影响,由式x b f A f A f f cd p pd S sd ' =+计算受压区高度x : mm h mm b f A f A f x f f cd S sd p pd 1803.802100 4.221900 33025021260''=<=??+?= += 受压区全部位于翼缘板内,说明确实是第一类T 形截面梁。 2)正截面承载力计算 跨中截面的预应力钢筋和非预应力钢筋的布置见图2-12和图2-17,预应力钢筋和非预应力钢筋的合力作用点到截面底边的距离(a )为 mm A f A f a A f a A f a s sd p pd s s sd p p pd 1601900 3302502126060 190033018025021260=?+???+??= ++= 所以mm a h h 184016020000=-=-= 按《公预规》式(5.2.2-3),钢筋采用钢绞线,混凝土标准强度为C50,查《公预规》表5.2.1得相对界限受压区高度4.0=b ξ。 mm h x b 73618404.00=?=≤ξ 从表2-10序号⑦知,边梁跨中截面弯矩组合设计值m kN M d ?=01.6612,由式子: )2/(0'0x h x b f M f cd d +≤γ )2/3.801840(3.8021004.22)2/(0'-???=+=x h x b f M f cd u )01.66120.1(595.67980m kN M m kN d ??=≥?=γ 可见边梁弯矩最大的跨中截面正截面承载力满足要求。以下为各个截面的验算,见表

关于大学高等数学函数极限和连续

关于大学高等数学函数极 限和连续 Last revision on 21 December 2020

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x1)>f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log x ,(a>0、a≠1) a 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x∈X 2.初等函数:

【精品】高等数学习题详解第2章 极限与连续

习题2-1 1.观察下列数列的变化趋势,写出其极限: (1)1n n x n =+; (2)2(1)n n x =--; (3)13(1)n n x n =+-; (4)2 11n x n =-。 解:(1)此数列为12341234,,,,,,23451n n x x x x x n =====+所以lim 1n n x →∞ =。 (2)12343,1,3,1,,2(1),n n x x x x x =====--所以原数列极限不存在。 (3)1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+- 所以lim 3n n x →∞ =。 (4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=-所以lim 1n n x →∞ =- 2.下列说法是否正确: (1)收敛数列一定有界; (2)有界数列一定收敛; (3)无界数列一定发散;

(4)极限大于0的数列的通项也一定大于0. 解:(1)正确. (2)错误例如数列{}(-1)n 有界,但它不收敛。 (3)正确。 (4)错误例如数列21(1)n n x n ??=+-???? 极限为1,极限大于零,但是11x =-小于零。 *3。用数列极限的精确定义证明下列极限: (1)1 (1)lim 1n n n n -→∞+-=; (2)222lim 11 n n n n →∞-=++; (3)3 23125lim -=-+∞→n n n 证:(1)对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε >即可,所以可取正整数1 N ε≥. 因此,0ε?>,1N ε???=???? ,当n N >时,总有1(1)1n n n ε-+--<,所以

最全大学高等数学函数、极限与连续

第一章 函数、极限和连续 §1.1 函数 一、 主要容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ??∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

高等数学基础极限与连续

第二章 极限与连续 一、教学要求 1.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法. 2.了解函数连续性的概念,掌握函数连续性的性质及运算. 重点:极限的计算,函数连续性的性质及运算。 难点:极限、连续的概念。 二、课程内容导读 1. 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例1 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =21613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即

x x x 10)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即 222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+? 2. 知道一些与极限有关的概念 (1) 知道数列极限、函数极限、左右极限的概念,知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等; (2) 了解无穷小量的概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质; (3) 了解函数在某点连续的概念,知道左连续和右连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点; 例2 填空、选择题 (1) 下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(e 1 →-x x D. )2(422→--x x x 解 选项A 中:因为 +→0x 时, +∞→x 1,故 +∞→x 1ln ,x 1ln 不是无穷小量; 选项B 中:因为1→x 时,0ln →x ,故x ln 是无穷小量; 选项C 中:因为 +→0x 时,-∞→-x 1,故0e 1 →-x ;但是-→0x 时,x 1- +∞→,故+∞→-x 1 e ,因此x 1 e -当0→x 时不是无穷小量。 选项D 中:因为21422+=--x x x ,故当2→x 时,41422→--x x ,4 22--x x 不是无穷小量。 因此正确的选项是B 。 (2) 下列极限计算正确的是( )。 A.=→x x x 1sin lim 001sin lim lim 00=→→x x x x

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

建筑结构应按承载能力极限状态和正常使用极限状态设计

第一章概述 建筑结构应按承载能力极限状态和正常使用极限状态设计。前者指结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态;后者为结构或构件达到正常使用的某项规定限值时的极限状态[1]。钢结构可能出现的承载能力极限状态有:①结构构件或连接因材料强度被超过而破坏;②结构转变为机动体系;③整个结构或其中一部分作为刚体失去平衡而倾覆;④结构或构件丧失稳定;⑤结构出现过度塑性变形,不适于继续承载;⑥在重复荷载下构件疲劳断裂。其中稳定问题是钢结构的突出问题,在各种类型的钢结构中,都可能遇到稳定问题,因稳定问题处理不利造成的事故也时有发生。 1.1钢结构的失稳破坏 钢结构因其优良的性能被广泛地应用于大跨度结构、重型厂房、高层建筑、高耸构筑物、轻型钢结构和桥梁结构等。如果钢结构发生事故则会造成很大损失。 1907年,加拿大圣劳伦斯河上的魁北克桥,在用悬臂法架设桥的中跨桥架时,由于悬臂的受压下弦失稳,导致桥架倒塌,9000t钢结构变成一堆废铁,桥上施工人员75人罹难。大跨度箱形截面钢桥在1970年前后曾出现多次事故[2]。 美国哈特福德市(Hartford City)的一座体育馆网架屋盖,平面尺寸92m×110m,该体育馆交付使用后,于1987年1月18日夜突然坍塌[3]。由于网架杆件采用了4个等肢角钢组成的十字形截面,其抗扭刚度较差;加之为压杆设置的支撑杆有偏心,不能起到预期的减少计算长度的作用,导致网架破坏[4]。20世纪80年代,在我国也发生了数起因钢构件失稳而导致的事故[5]。 科纳科夫和马霍夫曾分析前苏联1951—1977年期间所发生的59起重大钢结构事故,其中17起事故是由于结构的整体或局部失稳造成的。如原古比雪夫列宁冶金厂锻压车间在1957年末,7榀钢屋架因压杆提前屈曲,连同1200 m2屋盖突然塌落。 高层建筑钢结构在地震中因失稳而破坏也不乏其例。1985年9月19日,墨西哥城湖泊沉淀区发生8.1级强震,持时长达180s,只隔36h又发生一次7.5级强余震。震后调查表明,位于墨西哥城中心区的Pino Suarez综合楼第4层有3根钢柱严重屈曲(失稳),横向X形支撑交叉点的连接板屈曲,纵向桁架梁腹杆屈曲破坏[6]。1994年发生在美国加利福尼亚州Northridge的地震震害表明,该地区有超过100座钢框架发生了梁柱节点破坏[7],对位于Woodland Hills地区的一座17层钢框架观察后发现节点破坏很严重[8],竖向支撑的整体失稳和局部失稳现象明显。1995年发生在日本Hyogoken-Nanbu的强烈地震中,钢结构发生的典型破坏主要有局部屈曲、脆性断裂和低周疲劳破坏[9]。 对结构构件,强度计算是基本要求,但是对钢结构构件,稳定计算比强度计算更为重要。强度问题与稳定问题虽然均属第一极限状态问题,但两者之间概念不同。强度问题关注在结构构件截面上产生的最大内力或最大应力是否达到该截面的承载力或材料的强度,因此,强度问题是应力问题;而稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,属于变形问题。稳定问题有如下几个特点: (1)稳定问题采用二阶分析。以未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析(FOA—First Order Analysis);针对已变形的结构来分析它的平衡,则是二阶分析(SOA—Second Order Analysis)。应力问题通常采用一阶分析,也称线性分析;稳定问题原则上均采用二阶分析,也称几何非线性分析。 (2)不能应用叠加原理。应用叠加原理应满足两个条件:①材料符合虎克定律,即应力与应变成正比;②结构处于小变形状态,可用一阶分析进行计算。弹性稳定问题不满足第二个条件,即对二阶分析不能用叠加原理;非弹性稳定计算则两个条件均不满足。因此,叠加原理不适用于稳定问题。 (3)稳定问题不必区分静定和超静定结构。对应力问题,静定和超静定结构内力分析方法

第二章 极限与连续习题答案

第二章 极限与连续习题答案 练习题2.1 1. (1)1 (2)0 (3)不存在 (4)不存在 2. (1)0 (2)不存在 3. (1)不存在 (2)0 4. 5123 lim ()14,lim ()2,lim ()2,lim ()4x x x x f x f x f x f x →-→→→==== 练习题2.2 1. (1)0sin 7lim 7x x x →= (2)0tan 2lim 2x x x →= (3)0sin 55lim sin 33 x x x →= (4)3lim sin 3x x x →∞= 2. (1)55511lim(1)lim (1)x x x x e x x →∞→∞??+=+=??? ? (2)22211lim(1)lim (1)x x x x e x x ---→∞→∞??-=+=??-? ? (3)21 12200lim(12)lim (12)x x x x x x e ---→→??-=-=???? (4)2232 33 003lim()lim (1)33x x x x x x e ---→→??--=+=???? 练习题2.3 1. (1)无穷小 (2)无穷大 (3)无穷小 (4)无穷大 2. x →∞时函数为无穷小;2x →时函数为无穷大 3. (1)202lim sin 0x x x →=

(2)11lim(1)cos 01 x x x →-=- 练习题2.4 未定式及极限运算 1. (1)4233lim 01 x x x x →-=++ (2)223lim 2 x x x →-=∞- (3)322042lim 032x x x x x x →-+=+ (4)252lim 727 x x x →∞-=+ (5)2423lim 01 x x x x →∞-=++ (6)211113132lim()lim lim 11(1)(1)(1)(1)x x x x x x x x x x x →→→+---===∞---+-+ 2. 22222 2lim ()lim(2)6,lim ()lim()2,lim (),4x x x x x f x x f x x m m f x m ++--→→→→→=+==+=+∴= 存在 练习题2.5函数的连续 1. 1y ?=- 2. (1)(1,)-+∞ (2)(,0)(0,)-∞+∞ 3. 12 x =连续 1x =不连续 2x =连续 4. (1)1x =-第二类间断点 (2)4x =第一类间断点 5. 证明:设5()31,f x x x =--则()f x 在(,)-∞+∞内连续,所以()f x 在[]1,2内也连续,而 (1)30,(2)250f f =-<=>,所以,根据零点定理可知,至少有一个12ξ∈(,) ,使得()0f ξ=,即方程531x x -=至少有一个实根介于1和2之间。 复习题二 1. 判断题 (1) X (2) √ (3) X (4) X (5) √ (6) √ (7) X (8) X (9) X (10)X (11)X (12)√ (13)X (14)X (15)√ (16)X (17)√ (18)√ (19)√(20)X (21)√ (22)X 2. 填空题

6容许应力法和承载能力极限状态法在钢结构设计中的区别

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 、概率(极限状态)设计法

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

高等数学 第二章 极限与连续

第二章 极限与连续 教学要求 1.理解数列极限和函数极限(包括左、右极限)的概念,理解数列极限与函数极限的区别与联系。 2.熟练掌握极限的四则运算法则,熟练掌握两个重要极限及其应用。 3.理解无穷小与无穷大的概念,掌握无穷小比较方法以及利用无穷小等价求极限的方法。 4.理解函数连续性(包括左、右连续)与函数间断的概念,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值与最小值定理和介值定理),并能灵活运用连续函数的性质。 教学重点 极限概念,极限四则运算法则;函数的连续性。 教学难点 极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 数列的极限 一、数列 1.数列的概念; 2.有界数列; 3.单调数列; 4.子列。 二、数列的极限 三、数列极限的性质与运算 1.数列极限的性质; 2.数列极限的运算法则。 第二节 函数的极限 一、函数极限的概念 1.自变量趋于有限值时函数的极限; 2.自变量趋于无穷大时函数的极限。 二、函数极限的性质 第三节 函数极限的运算法则 一、函数极限的运算法则 二、复合函数的极限运算法则 三、两个重要极限 1.重要极限1 1sin lim 0=→x x x ; 2.重要极限2 e x x x =+∞→)11(lim 或e x x x =+→1 0)1(lim 。

第四节无穷大与无穷小 一、无穷小 二、无穷大 第五节函数的连续性与间断点 一、函数的连续性概念 1.函数的增量; 2.函数的连续性 二、函数的间断点 第六节连续函数的性质 一、连续函数的和、差、积、商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、闭区间商连续函数的性质

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续 习题一 一.选择题 1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2 B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2 C.f(x)=x D.f(x)=x,g(x)=-x 2.函数y=4-x+sinx的定义域是( ) A.[0,1] B.[0,1)(1,4] C.[0,+∞) D.[0,4] 3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-132 3 B.y=x2 C. y=x3 D.y=x-2 4.函数y=x2-1单调增且有界的区间是( ) A. [-1,1] B. [0,+∞) C. [1,+∞) D. [1,2] 5.设y=f(x)=1+logx+3 2,则y=f-(x)=( ) A.2x+3 B. 2x-1-3 C. 2x+1-3 D. 2x-1+3 6.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=( A.-4 B.-2 C.-3 D.6 二.填空题 1.f(x)=3-x x+2的定义域是 2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。 3.设f(2x)=x+1,且f(a)=4,则a= 。 4.设f(x+11 x)=x2+x2,则f(x) 5.y=arcsin1-x 2的反函数是。 6.函数y=cos2πx-sin2πx的周期T。 ) ?π?sinx,x<17.设f(x)=?则f(-)=。 4??0,x≥1 2??1,x≤12-x,x≤1??8.设f(x)=?,g(x)=?,当x>1时,g[f(x)]= 。 x>1x>1???0?29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。 10.设f(x)=2x,g(x)=x2,则f[g(x)]=。 三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-3 3.limx→52x-1-3+2x2-1 4. lim x→0xx-5 x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-2 7.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1

承载能力极限状态包括结构构件或连接因强度超过而破坏结构

一级建造师建筑实务学习资料 承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 预应力混凝土构件的混凝土最低强度等级不应低于C40。 细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm) 一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步

相关文档
最新文档