高一数学:指数(教案)

合集下载

高中数学指数运算试讲教案

高中数学指数运算试讲教案

高中数学指数运算试讲教案
一、教学目标:
1. 理解指数的概念和性质。

2. 掌握指数运算的基本规律。

3. 能够灵活运用指数运算解决实际问题。

二、教学重点:
1. 指数的定义和性质。

2. 指数运算的基本规律。

三、教学难点:
1. 理解指数运算的概念。

2. 灵活运用指数运算解决实际问题。

四、教学准备:
1. 教材:高中数学教材。

2. 教具:黑板、彩色粉笔、教学PPT。

3. 学生:高中学生。

五、教学步骤:
1. 导入:
引入指数概念,通过一个简单的例子让学生了解指数的含义和作用。

2. 推导:
通过数学公式的推导,逐步引导学生理解指数运算的基本规律。

3. 练习:
让学生进行一些简单的指数运算练习,巩固他们的基本操作能力。

4. 拓展:
引入一些实际问题,让学生将所学的指数运算知识运用到解决实际问题中。

5. 总结:
总结本节课的重点内容,强调指数运算的重要性并鼓励学生在日常生活中多加练习。

六、课堂练习:
1. 计算:$2^3 \times 5^2$。

2. 计算:$\frac{3^4}{3^2}$。

3. 计算:$4^{(-2)}$。

七、课后作业:
1. 完成课堂练习中的计算题。

2. 搜集相关资料,了解指数运算在实际生活中的应用。

八、小结:
通过本节课的学习,学生应该能够掌握指数的概念和基本规律,灵活运用指数运算解决实际问题。

希望同学们能够在课后多加练习,加深对指数运算的理解和掌握。

高中优秀教案高一数学教案:《指数》教学设计

高中优秀教案高一数学教案:《指数》教学设计

高一数学教案:《指数》教学设计高一数学教案:《指数》教学设计教学目标1.理解分数指数的概念,把握有理指数幂的运算性质.(1) 理解n次方根,n次根式的概念及其性质,能依据性质进行相应的根式计算.(2) 能熟悉到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化.(3) 能利用有理指数运算性质简化根式运算.2.通过指数范围的扩大,使同学能理解运算的本质,熟悉到学问之间的联系和转化,熟悉到符号化思想的重要性,在抽象的符号或字母的运算中提高运算力量.3.通过对根式与分数指数幂的关系的熟悉,使同学能学会透过表面去认清事物的本质.教学建议教材分析(1)本节的教学重点是分数指数幂的概念及其运算性质.教学难点是根式的概念和分数指数幂的概念.(2)由于分数指数幂的概念是借助次方根给出的,而次根式,次方根又是同学刚刚接触到的概念,也是比较生疏的.以此为基础去学习熟悉新学问自然是比较困难的.且次方根,分数指数幂的定义都是用抽象字母和符号的形式给出的,同学在接受理解上也是比较困难的.基于以上缘由,根式和分数指数幂的概念成为本节应突破的难点.(3)学习本节主要目的是将指数从整数指数推广到有理数指数,为指数函数的讨论作好预备.且有理指数幂具备的运算性质还可以推广到无理指数幂,也就是说在运算上已将指数范围推广到了实数范围,为对数运算的出现作好了预备,而使这些成为可能的就是分数指数幂的引入.教法建议(1)根式概念的引入是本节教学的关键.为了让同学感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:①先以详细数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与同学熟识的运算联系起来,树立起转化的观点.②当复习负指数幂时,由于与乘除共同有关,所以出现了分式,这样为分数指数幂的运算与根式相关作好预备.2.5指数(板书)1. 关于整数指数幂的复习(1)概念既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个同学说出相应的运算性质,老师用投影仪依次打出:(2)运算性质 ; ; .复习后挺直提出新课题,今日在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,假如指数推广到分指数会与什么有关呢?应与根式有关.学校时虽然也学过一点根式,但不够用,因此有必要先从根式说起.为了加深对符号的熟悉,还可以提出这样的问题:肯定表示一个正数吗? 中的 a定是正数或非负数吗?让同学来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结。

高一数学指数函数教案5篇

高一数学指数函数教案5篇

高一数学指数函数教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、条据文书、合同协议、对照材料、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, policy documents, contract agreements, reference materials, planning schemes, reflections, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!高一数学指数函数教案5篇认真写好教案可以帮助我们更好地规划教学内容和教学方法,提高教学效果和学习成果,认真写好教案可以帮助我们更好地发现和培养学生的潜能和特长,推动他们的全面发展,以下是本店铺精心为您推荐的高一数学指数函数教案5篇,供大家参考。

指数函数教案

指数函数教案

《指数函数》(第1课时)教案设计一、教案背景1、面向学生:高一2、学科:数学3、课时:14、学生课前准备:(1)预习本节课本内容;(2)准备一张白纸;(3)准备一根一米长的绳子。

二、教学课题高中数学新课标人教B版《3.1.2指数函数》知识技能目标:使学生理解指数函数的定义,掌握指数函数的图象和性质,初步学会运用指数函数的性质解决问题。

过程方法目标:引入,剖析、定义指数函数的过程,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。

情感态度,价值观目标:通过本节课的学习,使学生获得研究函数的规律和方法,提高学生的学习能力,养成积极主动,勇于探索,不断创新的学习习惯和品质,激发学生学习数学的兴趣,努力培养学生的创新意识。

二、教材分析本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

教学重点: 探究指数函数的图像、性质及其运用。

教学难点:指数函数图像和性质的归纳过程及其运用。

四、教学方法本节知识点对于学生来说比较重要,但在教学生的过程中,要让学生自己动起手来,这样才能有好的理解和掌握,故采用自主学习、合作探究的教学方法,提出问题,让学生自己通过合作探究,完成问题解答,老师只起到辅助的作用,并通过当堂检测和课后延伸巩固本节课知识。

采用观察、分析、归纳、抽象、概括、自主探究、合作交流的学习模式,发挥同学们自主学习,参与课堂活动的主动性和积极性。

高中数学的相关指数教案

高中数学的相关指数教案

高中数学的相关指数教案
教学目标:
1. 了解指数的概念和性质;
2. 掌握指数运算的规则;
3. 能够灵活运用指数知识解决实际问题。

教学重点和难点:
1. 指数的定义和性质;
2. 指数运算的规则;
3. 实际问题的解决方法。

教学准备:
1. 教材《高中数学》;
2. 教学课件PPT;
3. 教学案例及练习题。

教学步骤:
一、导入(5分钟)
教师通过举例引入指数的概念,并提出问题引导学生思考,引起学生兴趣。

二、讲授(25分钟)
1. 指数的定义和性质;
2. 指数运算的规则(同底数幂相乘、幂的幂、幂的乘方、零指数规定);
3. 实例讲解指数运算的步骤。

三、练习(15分钟)
教师设计一些练习题供学生实践操作,巩固所学知识。

四、拓展(10分钟)
学生从日常生活中找到一些实际问题,并运用指数知识进行解决,加深对指数概念的理解。

五、总结(5分钟)
学生总结本堂课的重点内容和难点,教师进行适当梳理和补充。

六、作业布置
布置相应的作业,巩固学生对指数的理解和运用能力。

七、板书
本堂课所学内容的概要和重难点。

教学反思:
本节课采用了导入-讲授-练习-拓展-总结-作业布置的教学方法,使学生在理解指数概念的同时,掌握了指数运算的规则和方法,并能够运用所学知识解决实际问题。

通过本节课的教学,学生对指数的认识和运用能力得到了提升。

高一数学指数函数教案市公开课一等奖教案省赛课金奖教案

高一数学指数函数教案市公开课一等奖教案省赛课金奖教案

高一数学指数函数教案一、教学目标1.了解和掌握指数函数的定义和性质;2.理解指数函数的图象及其特点;3.掌握指数函数与对数函数的相互转化;4.能够解决实际问题中的指数函数应用题。

二、教学重难点1.指数函数的定义和性质;2.指数函数的图象及其特点三、教学准备1.教师准备:教案、黑板、彩笔、教学PPT等;2.学生准备:课本、笔记本等。

四、教学过程1.引入(10分钟)先介绍指数函数的定义,让学生复习函数的概念,并回顾一下函数的图象表示。

然后让学生猜测指数函数的图象和性质。

2.讲解指数函数的定义与性质(20分钟)将指数函数的定义和性质以明确的语言向学生进行讲解,包括指数的定义、指数函数的定义、指数函数的图象、指数函数的增减性等。

3.练习指数函数的图象及其特点(30分钟)让学生通过手绘图象的方式练习绘制指数函数的图象,并观察图象的特点,如是否经过点(0,1)、是否有对称轴等。

然后让学生分组讨论,并汇报图象特点。

4.讲解指数函数与对数函数的相互转化(20分钟)讲解指数函数与对数函数的定义及其性质,引导学生认识指数函数与对数函数的互逆关系,并通过示例讲解指数函数与对数函数的相互转化。

5.练习指数函数的应用题(30分钟)提供一些实际问题,让学生应用所学的指数函数知识进行解题练习,包括指数函数的增长与衰减、指数函数的复利计算等。

6.总结与反思(10分钟)对本节课的内容进行总结,让学生再次回顾所学的知识点,并进行反思讨论,如对指数函数的理解程度、存在的问题以及需要加强的地方。

五、课堂作业布置相应的课后作业,包括练习题和思考题,并要求学生按时完成并交给教师检查。

六、板书设计指数函数的定义和性质1. 指数的定义2. 指数函数的定义3. 指数函数的图象4. 指数函数的增减性5. 指数函数与对数函数的相互转化七、教学反思通过本节课的教学,学生对指数函数有了初步的了解。

在教学过程中,教师通过引入、讲解、练习和总结等环节,使学生能够逐步掌握指数函数的定义、性质和应用,培养了学生的数学思维和解决问题的能力。

高中数学指数的概念教案

高中数学指数的概念教案

高中数学指数的概念教案
目标:学生能够理解指数的基本概念,掌握指数的运算规则,并能够应用指数进行相关问题的解决。

一、引入:
通过一个简单的问题引导学生进入指数的学习。

例如:“如果我有2个苹果,再买3个苹果,那么我一共有多少个苹果?”
二、概念讲解:
1. 什么是指数:指数是用来表示幂运算的一种形式,用一个数字来表示底数的次方。

2. 指数的基本概念:底数、指数、幂。

3. 指数的运算规则:相同底数的指数相加减,底数相同的指数相乘除。

4. 科学计数法:介绍科学计数法的概念及应用。

三、实例演练:
1. 让学生进行一些简单的指数计算,巩固基本运算规则。

2. 设计一些综合性的问题,让学生运用指数进行解答,拓展应用能力。

四、讨论与总结:
1. 学生分享自己的解题思路和答案。

2. 教师进行总结,强调指数的重要性和应用。

帮助学生理解并巩固知识点。

五、作业布置:
1. 布置相关练习题目,巩固学生对指数的掌握。

2. 提出拓展性问题,激发学生深入思考和探索。

六、教学反思:
1. 回顾本节课的教学内容,总结优缺点。

2. 根据学生的学习情况,调整教学策略,进一步提升教学效果。

注:教学内容和方法可根据具体教学情况进行适当调整和创新。

高一数学41指数讲解教案

高一数学41指数讲解教案

高一数学41指数讲解教案教案标题:高一数学41指数讲解教案教学目标:1. 了解指数的概念和基本性质;2. 掌握指数运算的基本规则;3. 能够应用指数运算解决实际问题。

教学重点:1. 指数的定义和基本性质;2. 指数运算的基本规则。

教学难点:1. 指数运算中的特殊情况处理;2. 实际问题的转化与解决。

教学准备:1. 教师准备:课件、黑板、粉笔、教学素材;2. 学生准备:教科书、练习册。

教学过程:一、导入(5分钟)1. 引入指数的概念,提问学生对指数的理解和应用;2. 通过举例说明指数的实际应用,激发学生的学习兴趣。

二、理论讲解(15分钟)1. 定义指数的概念,解释底数、指数和幂的关系;2. 介绍指数运算的基本规则,包括同底数幂相乘、幂的乘方、幂的倒数等;3. 通过示例演示指数运算的过程和应用。

三、练习与讨论(20分钟)1. 给学生分发练习题,让学生独立完成;2. 鼓励学生互相讨论、解答疑惑,帮助他们巩固理解;3. 教师巡回指导,解答学生提出的问题。

四、拓展与应用(15分钟)1. 提供一些拓展题目,让学生进行更深入的思考和探索;2. 引导学生将指数运算应用到实际问题中,例如人口增长、物质衰变等;3. 学生展示他们的解题思路和答案,进行讨论和分享。

五、总结与反思(5分钟)1. 对本节课所学内容进行总结,强调重点和难点;2. 让学生自我评价学习效果,提出问题和建议;3. 鼓励学生积极参与,激发他们对数学学习的兴趣和动力。

教学延伸:1. 布置相关的课后作业,巩固所学知识;2. 鼓励学生积极参加数学竞赛和活动,提高数学思维能力;3. 配合教材进度,继续进行相关的教学拓展和延伸。

教学资源:1. 课件:包括指数的定义、基本性质和运算规则的展示;2. 练习题:根据学生的水平和课堂进度,提供适当难度的练习题;3. 参考答案:供学生参考和自我检查。

教学评价:1. 课堂表现:观察学生的参与度、思维活跃度和问题解决能力;2. 练习成绩:检查学生对所学知识的掌握程度;3. 课后作业:评价学生对课堂内容的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 高中数学 / 高一数学教案
编订:XX文讯教育机构
指数(教案)
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于高中高一数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

教学目标
1.理解分数指数的概念,把握有理指数幂的运算性质.
(1) 理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算.
(2) 能熟悉到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化.
(3) 能利用有理指数运算性质简化根式运算.
2.通过指数范围的扩大,使学生能理解运算的本质,熟悉到知识之间的联系和转化,熟悉到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
3.通过对根式与分数指数幂的关系的熟悉,使学生能学会透过表面去认清事物的本质.
教学建议
教材分析
(1)本节的教学重点是分数指数幂的概念及其运算性质.教学难点是根式的概念和分数指
数幂的概念.
(2)由于分数指数幂的概念是借助次方根给出的,而次根式, 次方根又是学生刚刚接触到的概念,也是比较生疏的.以此为基础去学习熟悉新知识自然是比较困难的.且次方根,分数指数幂的定义都是用抽象字母和符号的形式给出的,学生在接受理解上也是比较困难的.基于以上原因,根式和分数指数幂的概念成为本节应突破的难点.
(3)学习本节主要目的是将指数从整数指数推广到有理数指数,为指数函数的研究作好预备.且有理指数幂具备的运算性质还可以推广到无理指数幂,也就是说在运算上已将指数范围推广到了实数范围,为对数运算的出现作好了预备,而使这些成为可能的就是分数指数幂的引入.
教法建议
(1)根式概念的引入是本节教学的关键.为了让学生感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:
①先以具体数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与学生熟悉的运算联系起来,树立起转化的观点.
②当复习负指数幂时,由于与乘除共同有关,所以出现了分式,这样为分数指数幂的运算与根式相关作好预备.
③在引入根式时可先由学生知道的平方根和立方根入手,再大胆写出即谁的四次方根等于16.指出2和2是它的四次方根后再把指数换成 ,写成即谁的次方等于 ,在语言描述的同时,也把数学的符号语言自然的给出.
(2)在次方根的定义中并没有将次方根符号化原因是结论的多样性,不能乱表示,所以需要先研究规律,再把它符号化.按这样的研究思路学生对次方根的熟悉逐层递进,直至找出运算上的规律.
教学设计示例
课题根式
教学目标:
1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.
2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.
3.通过对根式的化简,使学生了解由非凡到一般的解决问题的方法,渗透分类讨论的思想.
教学重点难点:
重点是次方根的概念及其取值规律.
难点是次方根的概念及其运算根据的研究.
教学用具:投影仪
教学方法:启发探索式.
教学过程:
一. 复习引入
今天我们将学习新的一节指数.指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.
下面从我们熟悉的指数的复习开始.能举一个具体的指数运算的例子吗?
以为例,是指数运算要求学生指明各部分的名称,其中2称为底数,4为指数, 称为幂.
教师还可引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义. .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出及 ,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数指数幂的概念
2.5指数(板书)
1. 关于整数指数幂的复习
(1) 概念
既然是一种运算,除了定义之外,自然要给出它的运算规律,再往返顾一下关于整数指数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:
(2) 运算性质: ; ; .
复习后直接提出新课题,今天在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,假如指数推广到分指数会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.
2. 根式(板书)
我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.

假如给出了4和2进行运算,那就是乘方运算.假如是知道了16和2,求4即 ,求?
问题也就是: 谁的平方是16 ,大家都能回答是4和4,这就是开方运算,且4和4 有个名字叫16的平方根.
再如
知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.
(根据情况教师可再适当举几个例子,如 ,要求学生用语言描述式子的含义,i再说出结果分别为和2,同时指出它们分别称为9的四次方根和8的立方根)
在以上几个式子会解释的基础上,提出即一个数的次方等于 ,求这个数,即开次方,那么这个数叫做的次方根.
(1) 次方根的定义:假如一个数的次方等于 ( ,那么这个数叫做的次方根.
(板书)
对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.
由学生翻译为:若 ( ,则叫做的次方根.(把它补在定义的后面)
翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(假如学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.
(2) 的次方根的取值规律: (板书)
先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论
当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.
ⅰ当为奇数时
, 的次方根为一个正数;
, 的次方根为一个负数;
, 的次方根为零. (板书)
当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳
ⅱ当为偶数时
, 的次方根为两个互为相反数的数;
, 的次方根不存在;
, 的次方根为零.
对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.
有了这个规律之后,就可以用准确的数学符号去描述次方根了.
(3) 的次方根的符号表示 (板书)
可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值, 次方根都只有一个值,可用统一的符号表示,此时要求学生解释符号的含义: 为正数,则为一个确定的正数, 为负数, 则为一个确定的负数, 为零,则为零.
当为偶数时, 为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成 ,其含义为为偶数时,正数的次方根有两个分别为和 .
为了加深对符号的熟悉,还可以提出这样的问题: 一定表示一个正数吗? 中的一定是正数或非负数吗?让学生往返答,在回答中进一步认清符号的含义,再从另一个角度进行总结 .对于符号 ,当为偶数是,它有意义的条件是 ;当为奇数时,它有意义的条件时 .
把称为根式,其中为根指数, 叫做被开方数.(板书)
(4) 根式运算的依据 (板书)
由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.
如应该得什么?有学生讲出理由,根据次方根的定义,可得ⅰ = .(板书)
再问: 应该得什么?也得吗?
若学生想不清楚,可用具体例子提示学生,如吗? 吗?让学生能发现结果与有关,从而得到ⅱ = .(板书)
为进一步熟悉这个运算依据,下面通过练习来体会一下.
三.巩固练习
例1. 求值
(1) . (2) .
(3) . (4) .
(5) .(
要求学生口答,并说出简要步骤.
四.小结
1. 次方根与次根式的概念
2.二者的区别
3.运算依据
五.作业略
六.板书设计
2.5指数 (2)取值规律 (4)运算依据
1. 复习
2. 根式 (3)符号表示例1
(1)定义
XX文讯教育机构
WenXun Educational Institution。

相关文档
最新文档