大数据数据结构和算法_图_单源最短路径Dijkstra

合集下载

单源最短路径dijkstra算法c语言

单源最短路径dijkstra算法c语言

单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。

其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。

本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。

一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。

算法维护一个集合S,初始时集合S只包含起始节点。

然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。

具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。

2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。

3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。

4. 重复步骤2和3,直到集合S包含所有节点。

二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。

1. 数据结构准备首先,我们需要准备一些数据结构来表示图。

我们可以使用邻接矩阵或邻接表来表示图。

这里,我们选择使用邻接矩阵的方式来表示权重。

我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。

c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。

cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。

dijkstra最短路径算法详解

dijkstra最短路径算法详解

dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。

以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。

2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。

之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。

更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。

3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。

4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。

Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。

其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。

总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。

在处理如飞机和火车等交通路径规划问题中有较好的应用。

最短路dijkstra算法详解

最短路dijkstra算法详解

最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。

Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。

一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。

具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。

初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。

接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。

重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。

最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。

二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。

由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。

以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。

求解单源最短路径问题的算法

求解单源最短路径问题的算法

求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。

核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。

该算法适用于无负权边的情况。

2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。

该算法适用于存在负权边的情况。

3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。

该算法适用于有向图或无向图,且适用于任意权重的情况。

4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。

该算法适用于图中存在目标节点的情况。

以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。

离散数学 最短路径dijkstra算法

离散数学 最短路径dijkstra算法

离散数学是数学的一个分支,研究离散对象和不连续对象的数量关系及其结构的数学学科。

离散数学对于计算机科学和信息技术领域有着重要的应用,其中最短路径dijkstra算法是离散数学中的一个重要算法,它被广泛应用于计算机网络、交通规划、电路设计等领域,在实际应用中发挥着重要的作用。

一、最短路径dijkstra算法的基本原理最短路径dijkstra算法是由荷兰计算机科学家艾兹赫尔·达斯提出的,用于解决带权图中的单源最短路径问题。

该算法的基本原理是:从一个源点出发,按照权值递增的顺序依次求出到达其它各个顶点的最短路径。

具体来说,最短路径dijkstra算法的实现步骤如下:1. 初始化:将源点到图中各个顶点的最短路径估计值初始化为无穷大,将源点到自身的最短路径估计值初始化为0;2. 确定最短路径:从源点开始,选择一个离源点距离最近的未加入集合S中的顶点,并确定从源点到该顶点的最短路径;3. 更新距离:对于未加入集合S中的顶点,根据新加入集合S中的顶点对其进行松弛操作,更新源点到其它顶点的最短路径的估计值;4. 重复操作:重复步骤2和步骤3,直到集合S中包含了图中的所有顶点为止。

二、最短路径dijkstra算法的实现最短路径dijkstra算法的实现可以采用多种数据结构和算法,比较常见的包括邻接矩阵和邻接表两种表示方法。

在使用邻接矩阵表示图的情况下,最短路径dijkstra算法的时间复杂度为O(n^2),其中n表示图中顶点的个数;而在使用邻接表表示图的情况下,最短路径dijkstra 算法的时间复杂度为O(nlogn)。

三、最短路径dijkstra算法的应用最短路径dijkstra算法可以应用于计算机网络中路由选择的最短路径计算、交通规划中的最短路径选择、电路设计中的信号传输最短路径计算等领域。

在实际应用中,最短路径dijkstra算法通过寻找起始点到各个顶点的最短路径,为网络通信、交通规划、电路设计等问题提供有效的解决方案。

最短路径dijkstra算法例题

最短路径dijkstra算法例题

最短路径dijkstra算法例题最短路径问题是图论中的一个重要问题,它的解决方法有很多种,其中最著名的算法之一就是Dijkstra算法。

本文将介绍Dijkstra算法的基本思想和实现过程,并通过一个例题来展示其具体应用。

一、Dijkstra算法的基本思想Dijkstra算法是一种贪心算法,它以起点为中心向外扩展,每次选择当前距离起点最短的点作为下一个扩展点,并更新其周围节点到起点的距离。

这个过程不断重复直至所有节点都被扩展完毕。

具体实现时,可以使用一个数组dist来存储每个节点到起点的距离,初始时所有节点到起点的距离都设为无穷大(表示不可达),起点到自己的距离设为0。

同时还需要使用一个visited数组来记录每个节点是否已经被扩展过。

在每次扩展时,从未被扩展过且与当前扩展节点相邻的节点中选择距离起点最短的节点作为下一个扩展节点,并更新其周围节点到起点的距离。

这个过程可以使用优先队列来实现。

二、Dijkstra算法实现例题下面我们通过一个例题来演示Dijkstra算法的具体实现过程。

例题描述:给定一个有向带权图,求从起点s到终点t的最短路径。

解题思路:根据Dijkstra算法的基本思想,我们可以使用一个优先队列来实现。

具体实现步骤如下:1. 初始化dist数组和visited数组。

2. 将起点s加入优先队列,并将其距离起点的距离设为0。

3. 重复以下步骤直至优先队列为空:(1)取出优先队列中距离起点最近的节点u。

(2)如果该节点已经被扩展过,则跳过此节点,否则将其标记为已扩展。

(3)如果该节点就是终点t,则返回其到起点的距离。

(4)否则,遍历该节点的所有邻居节点v,并更新它们到起点的距离。

如果某个邻居节点v之前未被扩展过,则将其加入优先队列中。

更新dist[v]后,需要将v加入优先队列中以便后续扩展。

4. 如果经过以上步骤仍然没有找到终点t,则表示不存在从起点s到终点t的路径。

代码实现:```#include <iostream>#include <queue>#include <vector>using namespace std;const int INF = 0x3f3f3f3f;const int MAXN = 1005;int n, m, s, t;int dist[MAXN], visited[MAXN];vector<pair<int, int>> graph[MAXN];void dijkstra() {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, s));dist[s] = 0;while (!pq.empty()) {pair<int, int> p = pq.top();pq.pop();int u = p.second;if (visited[u]) {continue;}visited[u] = 1;if (u == t) {return;}for (int i = 0; i < graph[u].size(); i++) {int v = graph[u][i].first;int w = graph[u][i].second;if (!visited[v] && dist[v] > dist[u] + w) {dist[v] = dist[u] + w;pq.push(make_pair(dist[v], v));}}}}int main() {cin >> n >> m >> s >> t;for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;graph[u].push_back(make_pair(v, w));}memset(dist, INF, sizeof(dist));memset(visited, 0, sizeof(visited));dijkstra();if (dist[t] == INF) {cout << "No path from " << s << " to " << t << endl;} else {cout << "Shortest path from " << s << " to " << t << ": " << dist[t] << endl;}}```代码解析:首先定义了一些常量和全局变量,其中n表示节点数,m表示边数,s 表示起点,t表示终点。

dijkstra算法最短路径

dijkstra算法最短路径

《求解最短路径:应用迪杰斯特拉算法》一、介绍Dijkstra算法的概念和基本原理Dijkstra算法是一种用于解决最短路径问题的算法,它由荷兰计算机科学家Edsger Dijkstra在1959年发明,用于求解从源点到其他所有结点的最短路径。

它的基本原理是:在一张图中,从源点到每一个结点的最短路径是从源点开始,经过最少的边到达每一个结点的路径。

Dijkstra算法的实现过程中,首先要建立一个有向图,该图由顶点和边组成,每条边都有一个权值,表示从一个顶点到另一个顶点的距离。

然后,从源点开始,每次选择最小权值的边,继续查找下一个顶点,直到找到终点。

最后,将所有路径之和求出,即为源点到目标点的最短路径。

举例来说,假如有一张有向图,其中有A,B,C,D四个结点,以及AB,AC,BD,CD四条边,其中AB,AC,BD边的权值分别为2,3,1,CD边的权值为4。

如果要求求出从A到D的最短路径,则可以使用Dijkstra算法,首先从A出发,选择权值最小的边,即BD,则A-B-D的路径长度为3,接着从B出发,选择权值最小的边,即CD,则A-B-D-C的路径长度为7,因此,从A到D的最短路径为A-B-D,路径长度为3。

Dijkstra算法的优点是算法简单,实现方便,时间复杂度低,它可以用于解决路径规划,车辆调度,网络路由等问题,同时,它也可以用于解决复杂的最短路径问题。

因此,Dijkstra算法在计算机科学中有着重要的应用价值。

二、讨论Dijkstra算法的应用及其优势Dijkstra算法是一种用于解决最短路径问题的算法,它的应用和优势非常广泛。

首先,Dijkstra算法可以用于解决交通路网中的最短路径问题。

例如,在一个城市的交通路网中,如果一个乘客要从一个地方到另一个地方,那么他可以使用Dijkstra算法来查找最短的路径。

这样可以节省乘客的时间和金钱,也可以减少拥堵。

此外,Dijkstra算法还可以用于解决计算机网络中的最短路径问题。

迪杰斯特拉算法求单源最短路径

迪杰斯特拉算法求单源最短路径

迪杰斯特拉算法是一种用于求解单源最短路径的经典算法,它被广泛应用于网络路由、电信领域以及各种其他实际问题中。

本文将从以下几个方面详细介绍迪杰斯特拉算法的原理、实现以及应用,以帮助读者深入理解并掌握该算法。

一、迪杰斯特拉算法的原理迪杰斯特拉算法的核心思想是通过逐步确定从起点到其他顶点的最短路径来求解单源最短路径问题。

其具体原理包括以下几个步骤:1. 初始化:将起点到所有其他顶点的距离初始化为无穷大,起点到自身的距离为0,并建立一个空的集合S来存放已确定最短路径的顶点。

2. 选择最近顶点:从未确定最短路径的顶点中选择距离起点最近的顶点u加入集合S。

3. 更新距离:对于顶点集合V-S中的每个顶点v,如果通过顶点u可以找到一条比当前最短路径更短的路径,则更新起点到顶点v的距离。

4. 重复步骤2和步骤3,直到集合S包含所有顶点。

通过上述步骤,迪杰斯特拉算法可以求解出起点到图中所有其他顶点的最短路径。

二、迪杰斯特拉算法的实现迪杰斯特拉算法可以通过多种数据结构来实现,其中最常见的是使用优先队列来存储未确定最短路径的顶点,并通过松弛操作来更新顶点的距离。

下面将介绍一种基于优先队列的迪杰斯特拉算法实现方法:1. 初始化距离数组dist[],其中dist[i]表示起点到顶点i的最短距离,将所有顶点初始化为无穷大,起点初始化为0。

2. 将起点加入优先队列,并将其距离更新为0。

3. 循环执行以下步骤直到优先队列为空:(1)从优先队列中取出距离起点最近的顶点u。

(2)遍历顶点u的所有邻接顶点v,对于每个邻接顶点v,如果通过顶点u可以找到一条更短的路径,则更新顶点v的距离,并将其加入优先队列。

通过上述实现,我们可以得到起点到所有其他顶点的最短路径。

三、迪杰斯特拉算法的应用迪杰斯特拉算法在实际应用中有着广泛的应用场景,其中最典型的应用包括网络路由、电信领域以及地图路径规划等。

1. 网络路由:在计算机网络中,迪杰斯特拉算法被用于寻找最短路径,以确保数据包以最短的路径到达目的地,提高网络传输效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 15 4 5 0.35 5 4 0.35 4 7 0.37 5 7 0.28 7 5 0.28 5 1 0.32 0 4 0.38 0 2 0.26 7 3 0.39 1 3 0.29 2 7 0.34 6 2 0.40 3 6 0.52 6 0 0.58 6 4 0.93

迪杰斯特拉算法(Dijkstra’s algorithm) -目前已知的求有向带权图的单源最短路径最有效的算法 -不能处理权值为负、为零的边 -它非常简单,算法用一句话可以说明:
邻 接 表
边数:15 0:4 0.38,2 1:3 0.29, 2:7 0.34, 3:6 0.52, 4:5 0.35,7 5:4 0.35,7
0.26,
0.37, 0.28,1
0.32,
图 的 数 据 来 源
6:2 0.40,0 0.58,4 0.93,
6
7:5 0.28,3 0.39,
有向带权图 Edge-weighted digraph

点7出队 考察点7的邻接表 边(7,5)无法松弛 边(7,3)被松弛,distanceTo[3] = 0.99,lastEdgeTo[3] = (7,3)
图 迪杰斯特拉算法伪代码
图 使用优先队列的迪杰斯特拉算法伪代码

1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
0-6的最短路 径: 0-2 0.26 2-7 0.34 7-3 0.39 3-6 0.52
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 Null Null Null

点2出队 考察点2的邻接表 边(2,7)被松弛,distanceTo[7] = 0.60,lastEdgeTo[7] = (2,7)
1
5
7
0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = Infinity 6 = Infinity 7 = 0.60

图的存储方式
adjacency-lists 邻接表法: 用一个数组存储所有的顶点. 对每个顶点,用一个链表存储该点的 邻接点.
0
6
2
1
3
4
8
7
5
9
10
11
12

最 短 路 径
0-6的最短路径 (SP): 0-2 0.26 2-7 0.34 7-3 0.39
3-6 0.52
1
5
7
0
4
顶点数:8
3 2

如果你想解决那5个问题,你必须学习一种数据结构,这就是图. 本课时目标: ✓基础环节*:了解图的含义 ✓实操环节**:了解图的存储方式和图的遍历 ✓实操环节***:了解最小生成树、最短路径的意义和算法思想 ✓实操扩展环节***:讲述图论经典TSP(旅行商)问题,并利 用智能搜索算法中的遗传算法求TSP问题的近似解。这是一个综 合了图中最优路径、NP难题及智能算法的扩展。
数据结构和算法
第11课 非线性结构-图-有向图的单源最短路径

问题1:网页和链接之间、路口和路之间是一种什么关系? 网页之间靠链接连通,路口靠路来连通. 问题2:如果你是市长,你想打通所有城市间的道路,而城市间 已经有很多路都相通了,你想用最小代价去做这件事,你怎么做? 连通性问题.找出所有连通的路,看还需要修几条路. 问题3:你还是那个市长,不过给你一个全新的城市,这个城市 将会有学校、医院、生活区,你现在需要打通这些地点,你怎么 用最小的代价修路? 最小生成树问题.

点0出队 考察点0的邻接表 边(0,4)被松弛,distanceTo[4] = 0.38,lastEdgeTo[4] = (0,4) 边(0,2)被松弛,distanceTo[2] = 0.26,lastEdgeTo[2] = (0,2)
1
5
7
0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = Infinity 6 = Infinity 7 = Infinity
遍历所有的边,对每个边进行松弛操作. 边的松弛(Edge relaxation) -预估距离:distance_to(v) 当前已知的到v的最短距离 -前驱域:last_edge_to(v) 当前已知的到v的最短路径中,v的一个 前驱顶点或前驱边

迪杰斯特拉算法(Dijkstra’s algorithm) 边的松弛(Edge relaxation) 对一条边v->w进行松弛,是指: 当前已知的s->w的最短路径,是否在经过v->w这条边后,依 然保持是一条已知的最短路径.如果是,则选择这条边,更新相 关数据结构.
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 Null Null 2-7 0.34

点4出队 考察点4的邻接表
请思考:为什么是点4出 队?
边(4,5)被松弛,distanceTo[5] = 0.73,lastEdgeTo[5] = (4,5)
边(4,7)无法松弛

问题4:你想去其它市长的城市参观以学习经验,现在你在机场, 而你要去城市尽头的医院,你想走最少的路过去,你怎么办? 有向图的最短路径问题. 问题5:你想环游整个中国,假设你从北京出发,最后又回到北 京。对于每个省的省会,你只想游玩一次,而你又不想错过任何 一个省会。追求效率的你当然希望旅游的总路线是最短的,你怎 么规划旅游方案? 你想到了对所有城市做全排列,然后算出每个排列的城市之间的 距离之和,挑一个最短的城市排列作为你的方案.但是你有那么 多时间吗?位数 : 39 34! = 295232799039604140847618609643520000000
1
5

0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = 0.73 6 = Infinity 7 = 0.60
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 4-5 0.35 Null 2-7 0.34
相关文档
最新文档