一轮复习 常用逻辑用语

合集下载

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单逻辑联结词全称量词与存在量词

旧教材适用2023高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单逻辑联结词全称量词与存在量词

第3讲简单逻辑联结词、全称量词与存在量词1.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给一个,用符号“□01∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“□02∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:□03∀x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:□04∃x0∈M,p(x0).2.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)□05∃x0∈M,¬p(x0)∃x0∈M,p(x0)□06∀x∈M,¬p(x)1.命题p∧q,p∨q,¬p的真假判定p q p∧q p∨q ¬p真真真真假真假假真假假真假真真假假假假真2.确定p∧q,p∨q,¬p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p 与¬p→真假相反.3.“p∨q”的否定是“(¬p)∧(¬q)”;“p∧q”的否定是“(¬p)∨(¬q)”.4.“且”“或”“非”三个逻辑联结词,对应着集合中的“交”“并”“补”,所以含有逻辑联结词的问题常常转化为集合问题处理.5.含有一个量词的命题的否定规律是“改量词,否结论”.6.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则¬q”,否命题是“若¬p,则¬q”.1.命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x>12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x>12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12答案 D解析 全称命题的否定为特称命题,方法是改量词,否结论,故选D.2.(2022·山西大同摸底)已知命题p ,q ,则“¬p 为假命题”是“p ∧q 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 若¬p 为假命题,则p 为真命题,由于不知道q 的真假性,所以推不出p ∧q 是真命题,所以充分性不成立.p ∧q 是真命题,则p ,q 均为真命题,则¬p 为假命题,所以必要性成立.所以“¬p 为假命题”是“p ∧q 为真命题”的必要不充分条件.3.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A.[-1,3] B .(-1,3)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 因为命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”等价于“x 2+(a -1)x +1=0有两个不等的实根”,所以Δ=(a -1)2-4>0,即a 2-2a -3>0,解得a <-1或a >3.4.(2021·云南丽江模拟)命题p :甲的数学成绩不低于100分,命题q :乙的数学成绩低于100分,则p ∨(¬q )表示( )A .甲、乙两人数学成绩都低于100分B .甲、乙两人至少有一人数学成绩低于100分C .甲、乙两人数学成绩都不低于100分D .甲、乙两人至少有一人数学成绩不低于100分 答案 D解析 因为命题q :乙的数学成绩低于100分,所以命题¬q 表示乙的数学成绩不低于100分,所以命题p ∨(¬q )表示甲、乙两人至少有一人的数学成绩不低于100分.故选D.5.设有下面四个命题:p 1:∃n 0∈N ,n 20>2n 0;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x -312是有理数,则x 是无理数”的逆否命题;p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 1,p 3 答案 D解析 ∵n 0=3时,32>23,∴∃n 0∈N ,n 20>2n 0,∴p 1为真命题;∵(2,+∞)(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,“x >1”是“x >2”的必要不充分条件,∴p 2是假命题;根据逆否命题的定义可知p 3为真命题.根据复合命题的真假判断法则可知p 4为假命题.故选D.6.已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧(¬q )D .(¬p )∧q答案 D解析 命题p :a =0时,可得1>0恒成立;a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4.综上,可得实数a ∈[0,4),因此p 是假命题,则¬p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题,故(¬p )∧q 是真命题.故选D.考向一 含有逻辑联结词命题真假的判断 例1 (2020·全国Ⅱ卷)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是 . ①p 1∧p 4,②p 1∧p 2,③¬p 2∨p 3,④¬p 3∨¬p 4. 答案 ①③④解析 对于命题p 1,可设l 1与l 2相交,这两条直线确定的平面为α,设l 3与l 1,l 2的交点分别为A ,B (如图),则A ∈α,B ∈α,所以AB ⊂α,即l 3⊂α,命题p 1为真命题;对于命题p 2,若三点共线,则过这三个点的平面有无数个,命题p 2为假命题; 对于命题p 3,空间中两条直线的位置关系有相交、平行或异面,命题p 3为假命题; 对于命题p 4,若直线m ⊥平面α,则m 垂直于平面α内所有直线,因为l ⊂平面α,所以m ⊥l ,命题p 4为真命题.综上可知,p 1∧p 4为真命题,p 1∧p 2为假命题,¬p 2∨p 3为真命题,¬p 3∨¬p 4为真命题.判断含有逻辑联结词的命题真假的一般步骤(1)定结构:先判断复合命题的结构形式.(2)辨真假:判断构成这个命题的每一个简单命题的真假性.(3)下结论:依据“有真或为真,有假且为假,p 和¬p 真假相反”,作出判断.1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x的图象关于直线x =π2对称,则下列判断正确的是 .①p 为真;②¬q 为假;③p ∧q 为假;④p ∨q 为真;⑤(¬p )∧(¬q )为真;⑥¬(p ∨q )为真. 答案 ③⑤⑥解析 p ,q 均为假,故p ∧q 为假,p ∨q 为假,(¬p )∧(¬q )为真,¬(p ∨q )为真.精准设计考向,多角度探究突破 考向二 全称命题、特称命题 角度全称命题、特称命题的否定例2 (1)(2021·安徽合肥质检)设命题p :∀x ∈R ,x 2-x +1>0,则¬p 为( )A.∃x0∈R,x2-x0+1>0B.∀x∈R,x2-x+1≤0C.∃x0∈R,x2-x0+1≤0D.∀x∈R,x2-x+1<0答案 C解析全称命题的否定是特称命题,同时否定结论.故选C.(2)命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案 B解析根据特称命题的否定为全称命题,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.一般地,写含有一个量词的命题的否定,先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.如果所给命题中省去了量词,则要结合命题的含义加上量词,再对量词进行否定.2.(2022·西安模拟)命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则¬p为( )A.∃a0<0,关于x的方程x2+a0x+1=0有实数解B.∃a0<0,关于x的方程x2+a0x+1=0没有实数解C.∃a0≥0,关于x的方程x2+a0x+1=0没有实数解D.∃a0≥0,关于x的方程x2+a0x+1=0有实数解答案 C解析根据全称命题的否定可知,¬p为∃a0≥0,关于x的方程x2+a0x+1=0没有实数解.故选C.3.命题“奇数的立方是奇数”的否定是.答案存在一个奇数,它的立方不是奇数解析此命题隐含了全称量词“所有”,故否定是特称命题,即“存在一个奇数,它的立方不是奇数”.角度全称命题、特称命题真假的判断例3 以下四个命题既是特称命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x 0,使x 20≤0 C .两个无理数的和必是无理数 D .存在一个负数x 0,使1x 0>2答案 B解析 选项A 中,锐角三角形的所有内角都是锐角,所以A 是假命题;选项B 中,当x 0=0时,x 20=0,所以B 既是特称命题又是真命题;选项C 中,因为2+(-2)=0不是无理数,所以C 是假命题;选项D 中,对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.故选B.全称命题与特称命题真假性的两种判断方法不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真 存在一个对象使命题真 否定为假 假所有对象使命题假否定为真4.(2021·江西师大附中模拟)已知定义域为R 的函数f (x )不是偶函数,则下列命题一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )≠-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)≠-f (x 0) 答案 C解析 设命题p :∀x ∈R ,f (x )=f (-x ),∵f (x )不是偶函数,∴p 是假命题,则¬p 是真命题,又¬p :∃x 0∈R ,f (-x 0)≠f (x 0),故选C.考向三 利用复合命题的真假求参数范围例4 (1)已知命题p :“∀x ∈[0,1],a ≥e x”;命题q :“∃x 0∈R ,使得x 20+4x 0+a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为( )A .[1,4]B .[1,e]C .[e ,4]D .[4,+∞) 答案 C解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x,得a ≥e ;由∃x 0∈R ,使x 20+4x 0+a =0,知Δ=16-4a ≥0,则a ≤4,因此e ≤a ≤4.则实数a 的取值范围为[e ,4].故选C.(2)命题p :实数a 满足a 2+a -6≥0;命题q :函数y =ax 2-ax +1的定义域为R .若命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围为 .答案 (-∞,-3]∪[0,2)∪(4,+∞)解析 当命题p 为真时,即a 2+a -6≥0,解得a ≥2或a ≤-3;当命题q 为真时,可得ax2-ax +1≥0对任意x ∈R 恒成立,若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.综上,实数a 的取值范围是(-∞,-3]∪[0,2)∪(4,+∞).根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况,本例(2)中有两种情况).(2)然后再求出每个命题是真命题时参数的取值范围. (3)最后根据每个命题的真假情况,求出参数的取值范围.5.设命题p :函数f (x )=x 3-ax -1在区间[-1,1]上单调递减;命题q :函数y =ln (x 2+ax +1)的值域是R .如果命题p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,-2]∪[2,3)C .(2,3]D .[3,+∞)答案 B解析 由函数f (x )=x 3-ax -1在区间[-1,1]上单调递减,得f ′(x )=3x 2-a ≤0在[-1,1]上恒成立,故a ≥(3x 2)max =3,即a ≥3;由函数y =ln (x 2+ax +1)的值域是R ,得x2+ax +1能取到全体正数,故Δ=a 2-4≥0,解得a ≤-2或a ≥2.因为命题p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假.当p 真q 假时,可得{a |a ≥3}∩{a |-2<a <2}=∅;当p 假q 真时,可得{a |a <3}∩{a |a ≤-2或a ≥2}={a |a ≤-2或2≤a <3}.因此实数a 的取值范围是(-∞,-2]∪[2,3).故选B.1.(2021·山西阳泉高三阶段考试)设A 是奇数集,B 是偶数集,则命题“∀x ∈A ,2x ∉B ”的否定是( )A.∃x0∈A,2x0∈B B.∃x0∉A,2x0∈BC.∀x∉A,2x∉B D.∀x∉A,2x∈B答案 A解析“∀x∈A,2x∉B”即“所有x∈A,都有2x∉B”,它的否定应该是“存在x0∈A,使2x0∈B”,所以正确选项为A.2.下列命题中的假命题是( )A.∀x∈R,e x-1>0B.∀x∈N*,(x-1)2>0C.∃x0∈R,ln x0<1D.∃x0∈R,tan x0=2答案 B解析因为当x=1时,(x-1)2=0,所以B为假命题,故选B.3.命题“∀x∈R,f(x)g(x)≠0”的否定是( )A.∀x∈R,f(x)=0且g(x)=0B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得,命题“∀x∈R,f(x)g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.4.(2022·江西南昌摸底)下列命题的否定是真命题的是( )A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案 B解析若命题的否定是真命题,则原命题是假命题,显然A,C,D是真命题,B是假命题.故选B.5.设非空集合P,Q满足P∩Q=P,则( )A.∀x∈Q,有x∈PB.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈PD.∃x0∈P,使得x0∉Q答案 B解析因为P∩Q=P,所以P⊆Q,所以∀x∉Q,有x∉P,故选B.6.(2021·全国乙卷)已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是( )A.p∧q B.¬p∧qC.p∧¬q D.¬(p∨q)答案 A解析因为命题p为真命题,命题q为真命题,所以p∧q为真命题.故选A.7.关于命题“当m∈[1,2]时,方程x2-2x+m=0没有实数解”,下列说法正确的是( ) A.是全称命题,假命题B.是全称命题,真命题C.是特称命题,假命题D.是特称命题,真命题答案 A解析原命题的含义是“对于任意m∈[1,2],方程x2-2x+m=0都没有实数解”,但当m=1时,方程有实数解x=1,故命题是全称命题,假命题,所以A正确.8.(2022·四川南充月考)下列命题中,是真命题的全称命题的是( )A.对于实数a,b∈R,有a2+b2-2a-2b+2<0B.梯形两条对角线相等C.有小于1的自然数D.函数y=kx+1的图象过定点(0,1)答案 D解析选项A是全称命题,a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故A是假命题;B是假命题;“存在小于1的自然数”,C是特称命题;D项,对于所有k∈R,函数y=kx +1的图象过定点(0,1),所以正确选项为D.9.(2021·河南济源、平顶山、许昌第二次质检)已知直线m,n和平面α,β.命题p:若m⊂α,n⊂β,α∥β,则直线m与直线n平行或异面;命题q:若m∥α,α∥β,则m∥β;命题s:若α⊥β,α∩β=m,在平面α内作直线m的垂线n,则n⊥β.则下列为真命题的是( )A.p∨(¬q) B.(¬p)∧sC.q∧(¬s) D.(¬p)∧(¬q)答案 A解析若α∥β,m⊂α,n⊂β,由于平面α与平面β没有交点,所以直线m与直线n 平行或异面,即命题p 是真命题;若m ∥α,α∥β,则m ∥β或m ⊂β,即命题q 是假命题;若α⊥β,α∩β=m ,在平面α内作直线m 的垂线n ,由面面垂直的性质定理,得n ⊥β,命题s 是真命题.对于A ,p ∨(¬q )是真命题;对于B ,p 是真命题,则¬p 是假命题,s 是真命题,则(¬p )∧s 是假命题;对于C ,s 是真命题,则¬s 是假命题,q 是假命题,则q ∧(¬s )是假命题;对于D ,p 是真命题,则¬p 是假命题,q 是假命题,则¬q 是真命题,则(¬p )∧(¬q )是假命题.故选A.10.命题p :若向量a ·b <0,则a 与b 的夹角为钝角;命题q :若cos αcos β=1,则sin (α+β)=0.下列命题为真命题的是( )A .pB .¬qC .p ∧qD .p ∨q答案 D解析 若a ,b 共线且方向相反时,a ·b <0,但a 与b 夹角为π,故p 是假命题.若cosα·cos β=1,则⎩⎪⎨⎪⎧cos α=1,cos β=1或⎩⎪⎨⎪⎧cos α=-1,cos β=-1,∴sin α=sin β=0,∴sin (α+β)=sin αcos β+cos αsin β=0,故q 是真命题,∴p ,¬q ,p ∧q 均为假命题,p ∨q 为真命题,故选D.11.短道速滑队进行冬奥会选拔赛(6人决出第一~六名),记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,(¬q )∧r 是真命题,则选拔赛的结果为( )A .甲第一、乙第二、丙第三B .甲第二、乙第一、丙第三C .甲第一、乙第三、丙第二D .甲第一、乙没得第二名、丙第三 答案 D解析 (¬q )∧r 是真命题意味着¬q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名.故选D.12.(2022·甘肃兰州模拟)已知f (x )=ln (x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫14,+∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫12,+∞D .⎝ ⎛⎦⎥⎤-∞,-12 答案 A解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.故选A.13.已知命题p :∀x ∈R ,2x <3x,命题q :∃x 0∈R ,x 20=2-x 0,则下述命题中所有真命题的序号是 .①p ∧q ;②(¬p )∧q ;③p ∨(¬q );④(¬p )∨(¬q ). 答案 ②④解析 当x <0时,2x>3x,所以命题p 为假命题.解x 2=2-x ,得x =-2或1,所以命题q 为真命题.所以p ∧q ,p ∨(¬q )为假命题,(¬p )∧q ,(¬p )∨(¬q )为真命题.14.若命题:“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是 .答案 [-3,3]解析 命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,即“∀x ∈R ,3x 2+2ax +1≥0”是真命题,故Δ=4a 2-12≤0,解得-3≤a ≤ 3.即实数a 的取值范围为[-3,3].15.(2022·四川绵阳中学模拟)已知命题p :∃x ∈⎣⎢⎡⎦⎥⎤0,π2,cos 2x +cos x -m =0为真命题,则实数m 的取值范围是 .答案 [-1,2]解析 cos 2x +cos x -m =0可变形为cos 2x +cos x =m .令f (x )=cos 2x +cos x ,则f (x )=2cos 2x +cos x -1=2⎝ ⎛⎭⎪⎫cos x +142-98.由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1].于是f (x )∈[-1,2].故实数m 的取值范围是[-1,2].16.(2021·南昌一中模拟)已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2⎝ ⎛⎭⎪⎫x 2-2mx +12在[1,+∞)上单调递增.若“¬p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为 .答案 ⎝ ⎛⎭⎪⎫-1,34解析 对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p 为真命题时,m ≤-1.∴¬p 为真命题时,m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0, 解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值范围为⎝⎛⎭⎪⎫-1,34.17.(2022·江西上饶高三摸底)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x 0∈[1,2],log 12(x 20-mx 0+1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.解 若p 为真,则∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3,∴f (x )在[-1,1]上的最小值为-3, ∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x 0∈[1,2],x 20-mx 0+1>2成立,即m <x 20-1x 0成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <12或m =32.18.已知函数f (x )=-(x -2m )(x +m +3)(其中m <-1),g (x )=2x-2.设命题p :∀x ∈(1,+∞),f (x )<0或g (x )<0;命题q :∃x 0∈(-1,0),f (x 0)·g (x 0)<0.若p ∧q 是真命题,求m 的取值范围.解 ∵p ∧q 是真命题,∴p 与q 都是真命题. 当x >1时,g (x )=2x-2>0, 又p 是真命题,则f (x )<0. ∵m <-1,∴2m <-m -3,∴f (x )<0的解集为{x |x <2m 或x >-m -3},∴-m-3≤1,解得m≥-4;当-1<x<0时,g(x)=2x-2<0.∵q是真命题,则∃x0∈(-1,0),使得f(x0)>0,由f(x0)>0得2m<x0<-m-3,则(2m,-m-3)∩(-1,0)≠∅,又m<-1,∴2m<-2,∴-m-3>-1,解得m<-2. ∴若p∧q是真命题,m的取值范围是-4≤m<-2.。

常用逻辑用语+讲义-2023届高三数学一轮复习

常用逻辑用语+讲义-2023届高三数学一轮复习

常用逻辑用语考点1 命题及其关系1.命题“若4πα=,则1tan =α”的逆否命题是( ) A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠ D .若1tan ≠α,则4πα=2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =33.给定下列命题:①若k >0,则方程x 2+2x -k =0有实数根; ②“若a >b ,则a +c >b +c ”的否命题;③“矩形的对角线相等”的逆命题;④“若xy =0,则x ,y 中至少有一个为0”的否命题.其中是真命题的序号是___________.4.【2020•新课标Ⅲ理16,5】关于函数f (x )=sin x +有如下四个命题:Ⅲf (x )的图象关于y 轴对称.Ⅲf (x )的图象关于原点对称.Ⅲf (x )的图象关于直线x =对称.Ⅲf (x )的最小值为2.其中所有真命题的序号是 .考点2 简单逻辑联结词1.若p 是真命题,q 是假命题,则( )A .p ∧q 是真命题B .p ∨q 是假命题C .p 是真命题D .q 是真命题2.下列选项正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“x =5”是“x 2-4x -5=0”的充分不必要条件C .命题“若x <-1,则x 2-2x -3>0”的否定为:“若x ≥-1,则x 2-3x +2≤0”D .已知命题p :∃x ∈R ,使得x 2+x -1<0,则p :∃x ∈R ,使得x 2+x -1≥03.设命题p :函数y =sin2x 的最小正周期为π2,命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为假C .p ∧q 为假D .p ∨q 为真 4.【2021乙卷】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨ 5.【2020全国Ⅱ卷文理16】设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行.4p :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥. 则下述命题中所有真命题的序号是 .①41p p ∧ ②21p p ∧ ③32p p ∨⌝ ④ 43p p ⌝∨⌝考点3 全称量词与特称量词1.设命题p :n N ∃∈,22n n >,则p ⌝为( )A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2n n N n ∀∈≤D .2,2n n N n ∃∈= 2.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( ) A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P3.命题“[)30,.0x x x ∀∈+∞+≥”的否定是( ) A .()30,.0x x x ∀∈+∞+< B .()3,0.0x x x ∀∈-∞+≥ C .[)30000,.0x x x ∃∈+∞+< D .[)30000,.0x x x ∃∈+∞+≥ 4.【2021乙卷】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨5.已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q: “∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q ” 是真命题,则实数a 的取值范围是( )A .(4,+∞)B .[1,4]C .[e ,4]D .(-∞,1]考点4 充分条件与必要条件1.设α,β为两个平面,则αⅢβ的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面2.已知空间中不过同一点的三条直线,,m n l ,则“,,m n l 在同一平面”是“,,m n l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设x ∈R ,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知αβ∈R ,,则“存在k ∈Z ,使得π(1)k k αβ=+-”是“βαsin sin =”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则()A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件7.下列命题中,真命题是( )A .∃x 0∈R ,0x e ≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b =-1D .a >1,b >1是ab >1的充分条件8.下列说法正确的是( )A .函数f (x )=1x 在其定义域上是减函数B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“∃x ∈R ,x 2+x +1>0”的否定是“∀x ∈R ,x 2+x +1<0”D .给定命题p ,q ,若p ∧q 是真命题,则p 是假命题。

高三一轮复习:常用逻辑用语

高三一轮复习:常用逻辑用语

常用逻辑用语一、【知识梳理】(一)四种命题及其关系:1、一般地,用p 和q 分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示p 和q 的否定,于是四种命题的形式就是:原命题:若p ,则q ;逆命题: ; 否命题: ; 逆否命题: 。

2、一个命题的真假与其他三个命题的真假有如下关系: (1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真; (3)原命题为真,它的逆否命题一定为真;(4)逆命题为真,它的否命题一定为真。

(二)充分条件和必要条件:1、“若p 则q ”是真命题,即q p ⇒;“若p 则q ”为假命题,即q p ⇒。

2、 (1)若q p ⇒,但q p ⇐,则p 叫q 的 ;(2)若q p ⇒,但q p ⇐,则p 叫q 的 ;(3)若q p ⇒,且q p ⇐,则p 叫q 的 ;(4)若q p ⇒,且q p ⇐,则p 叫q 的 ; 3、证明p 是q 的充要条件分两步:(1)充分性,把p 当作已知条件,结合命题的前提条件,推理论证得出q ; (2)必要性:把q 当作已知条件,结合命题的前提条件,推理论证得出p ;(三)逻辑联结词:1、或、且、非这些词叫做逻辑联结词。

或:两个命题中至少一个成立; 且:两个命题都成立; 非:对一个命题的否定;2、了解真值表:(四)含有一个量词的命题:1、短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。

2、将含有变量x 的语句用p(x)、q(x)、r(x )……表示,变量x 的范围用M 表示,那么全称命题“对M 中任意一个x ,有p(x)成立”可用符号简记为 。

3、短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示,含有存在量词的命题,叫做存在性命题。

4、存在性命题“存在M 中的一个x ,使p(x)成立”可用符号简记为 。

5、全称命题M x ∈∀,p(x),它的否定: ,全称命题的否定是存在性命题。

高考数学一轮总复习第一章集合与常用逻辑用语不等式 4基本不等式课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式 4基本不等式课件
≤ + 30 − 2
2
8
=
225

2
当且仅当 = 30 − ,即 = 15时等号成立,所以这个矩形的长为15 m时,菜园的最
225
大面积是
2
225
2
m .故填15; .
2
【巩固强化】
1.下列命题中正确的是(
)
1

A.当 > 1时, + 的最小值为2
C.当0 < < 1时, +
即 = 2时,等号成立.所以 ≤
=
1
9
+1
1
6−4
=
.
9
+1++1−4
≥2
+1 ⋅
1
1
.故填 .
2
2
9
+1
= 6,当且仅当 + 1 =
9
,
+1
命题角度2 常数代换法
例2 设正实数,满足 + =
3
A.
2


4
)
5
C.
4




1
+ 的最小值是(
2

5
B.
2
解:因为 + = 2,所以 +
−2=
1
2−4
1
2 −2
=−2+
,即 = 2 +
1
2 −2
+2≥2
2
时取等号.
2
所以 的最小值为2 + 2.故选A.
−2 ⋅
1
2 −2
+ 2 = 2 + 2,当且仅当

高考数学一轮复习第一章集合常用逻辑用语及不等式3命题及其关系充要条件课件新人教A版22

高考数学一轮复习第一章集合常用逻辑用语及不等式3命题及其关系充要条件课件新人教A版22
D.若a+b+c≥3,则a+b+c=3
关闭
(2)已知命题“若x=5,则x2-8x+15=0”,则它的逆命题、否命题与逆
(1)否命题是指条件和结论都否.“≥”的否定是“<”.
否命题这三个命题中,真命题有(
)
2-8x+15=0”为真命题,又当x2-8x+15=0时,x=3或x=5,
(2)原命题“若x=5,则x
C.逆否命题“周期函数是单调函数”
D.命题的否定“存在单调函数是周期函数”
)
关闭
由逆命题、否命题、逆否命题的定义知A,B,C错.
关闭
D
解析
答案
-9知识梳理
双基自测
1
2
3
4
5
4.设a∈R,则“a>1”是“a2>a”的( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
-10知识梳理
③“若q≤-1,则x2+x+q=0有实根”的逆否命题;
x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假
④若ab是正整数,则a,b都是正整数.
命题;③原命题为真命题,所以它的逆否命题也为真命题,故③为真命题;④
其中真命题是
.(只填序号)
ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.
∵“x∈A”是“x∈B”的必要条件,
∴B⊆A.
∴b-a的最小值是3-0=3.
π
6
1
∈ - ,1 .
2
-24-
思想方法——等价转化思想在充要条件中的应用

高考数学一轮复习 常用逻辑用语讲义

高考数学一轮复习 常用逻辑用语讲义

高考数学一轮复习专题1.2 常用逻辑用语1.与函数、不等式、解析几何等知识结合考查充分条件与必要条件的判断及应用,凸显逻辑推理的核心素养;2.以函数、不等式为载体考查全称命题、特称命题的否定及真假判断的应用,凸显逻辑推理、数学运算的核心素养.1. 充分条件、必要条件与充要条件的概念A B B A A B 2.全称量词与存在量词 1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示. (2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为,()x M p x ∀∈,读作“对任意x 属于M ,有p (x )成立”. 2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为00,()x M p x ∃∈,读作“存在M 中的元素x 0,使p (x 0)成立”. 3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)含有一个量词的命题的否定充分条件、必要条件的判断【方法储备】充要关系的几种判断方法:(1)定义法:①若p ⇒q,q ⇏p ,则p 是q 的充分而不必要条件; ②若p ⇏q,q ⇒p ,则p 是q 的必要而不充分条件; ③若p ⇒q,q ⇒p ,则p 是q 的充要条件;④若p ⇏q,q ⇏p ,则p 是q 的既不充分也不必要条件.(2)等价转化法:即利用p ⇒q 与¬q ⇒¬p ;q ⟹p 与¬p ⇒¬q ;p ⟺q 与¬q⇒¬p的等价关系,对于条件或结论是否定形式的命题,一般运用等价转化法. (3)集合关系法:从集合的观点理解,根据使p,q成立的对象的集合之间的包含关系.【精研题型】1.已知a∈R,则“a>1”是“<1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2.(多选)下列命题中为真命题的是A.“a-b=0”的充要条件是“=1”B.“a>b”是“<”的既不充分也不必要条件C.命题“x R,-<0”的否定是x R,-0”D.“a>2,b>2”是“ab>4”的必要条件3.某班从A,B,C,D四位同学中选拔一人参加校艺术节展演,在选拔结果公布前,甲、乙、丙、丁四位教师预测如下:甲说:“C或D被选中,”乙说:“B被选中,”丙说:“A,D均未被选中,”丁说:“C被选中.”若这四位教师中只有两位说的话是对的,则被选中的是A.AB.BC.CD.D【思维升华】4.满足“闭合开关K1”是“灯泡R亮”的充要条件的电路图是A. B.C. D.5.设a,b∈R,则“a>b”是“a|a|>b|b|”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件充分条件、必要条件的应用【方法储备】1.求参数的取值范围:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,由集合之间的关系列不等式(或不等式组)求解;(2)要注意区间端点值的检验........,不等式是否能够取等号决定端点值得取舍,处理不当容易出现漏解或增解的现象.2.探求某结论成立的充分、必要条件:(1)准确化简条件,即求出每个条件对应的充要条件;(2)问题的形式:①“p是q的……”,②“p的……是q”,②要转化为①,再求解;(3)准确判断两个条件之间的关系:①转化为两个命题关系的判断;②借助两个集合之间的关系来判断.【精研题型】6.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若q是p的必要不充分条件,则实数a的取值范围是A. B.C. D.7.“,”为真命题的一个充分不必要条件是A. B. C. D.【思维升华】8.“关于的方程有解”的一个必要不充分条件是A. B.C. D.9.已知函数的定义域是,不等式的解集是.(1)若,求实数的取值范围;(2)若,且是的充分不必要条件,求的取值范围.【特别提醒】对于不等式问题:小范围可以推出大范围,大范围推不出小范围全称命题与特称命题【方法储备】1.全称(或特称)命题的否定:①将全称(或存在)量词改为存在 (或全称) 量词; ②结论否定;即全称命题的否定是特称命题;特称命题的否定是全称命题. 2. 全称命题与特称命题真假的判断:3.常见词语的否定形式有:【精研题型】10.命题“∃x∈R,”的否定是A.∀x∈R,B.∃x∈R,C.∀x∈R,D.∃x∈R,11.(多选)若“∀x∈M,|x|>x”为真命题,“∃x∈M,x>3”为假命题,则集合M可以是A.{x|x<-5}B.{x|-3<x<-1}C.{x|x>3}D.{x|0≤x≤3}12.公元1637年前后,法国学者费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的”.被提出后,经历许多著名数学家猜想论证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明.其中“一般地,将一个高于二次的幂分成两个同次幂之和,这是不可能的”,这句话用数学语言可以表示为A.∀x,y,z,n,m,p∈Z且n≥2,x n+y m≠z p恒成立B.∀x,y,z,n,p∈Z且n>2,x n+y n≠z p恒成立C.∀x,y,z,n∈Z且n>2,x n+y n≠z n恒成立D.∀x ,y ,z ,n ∈Z 且n≥2,x n +y n ≠z n 恒成立【思维升华】13. (多选)下列四个关于三角函数的全称量词命题与存在量词命题,其中真命题为 A., B.,C.,D.,14. 在①∃x ∈R ,x 2+2x +2-a =0,②存在集合A ={x |2<x <4},非空集合B ={x |a <x <3a },使得A ∩B =∅这两个条件中任选一个,补充在下面问题中,并求解问题中的实数a .问题:求解实数a ,使得命题p :∀x ∈{x |1≤x ≤2},x 2-a ≥0,命题q :_______都是真命题.注:如果选择多个条件分别解答,按第一个解答计分.全称(存在)量词命题的综合应用【方法储备】含有量词的命题求参数的问题是恒成立或有解问题:(1)全称量词命题()x M a f x ∀∈>,(或()a f x <)为真:不等式恒.成立问题,通常转化为求()f x 的最大值(或最小值),即max ()a f x >(或min ()a f x <);(2)存在量词命题()x M a f x ∃∈>,(或()a f x <)为真:不等式能.成立问题,通常转化为求()f x 的最小值(或最大值),即min ()a f x >(或max ()a f x <).【精研题型】15. 若“,使得成立”是假命题,则实数的取值范围是 .16.已知定义在R上的函数f(x)满足f(x)+f(−x)=2,且在[0,+∞)上单调递减,若对任意的x∈R,f(x2−a)+f(x)<2恒成立,则实数a的取值范围为A. B.(-∞,-1) C. D.(1,+∞)17.若∃x0∈R,为假,则实数a的取值范围为.【思维升华】18.已知函数f(x)=x,g(x)=-x2+2x+b,若对任意的x1∈[1,2],总存在x2∈[1,9],19.(多选)已知p:,q:,则下列说法正确的是A.p的否定是:B.q的否定是:C.p为真命题时,D.q为真命题时,。

高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版

高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版

专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。

高考第一轮复习集合与常用逻辑用语

高考第一轮复习集合与常用逻辑用语

年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。

这些内容大多是以其他数学知识为载体,具有较强的综合性。

3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。

命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。

难点:集合的表示及充分必要条件的判定。

一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。

(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。

(3)集合的表示法:、、、。

(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.教材回顾
1.命题的概念 在数学中用语言、符号或式子表达的,可以判断真假 的陈述 句叫做命题.其中 判断为真 的语句叫真命题, 判断为假 的 语句叫 假命题 .
2.四种命题及其关系 (1)四种命题
原命题:若 p 则 q 否命题:若p则q
逆命题:若q则p 逆否命题:若q则p
一.教材回顾
(2)四种命题间的逆否关系
苏教版普通高中课程标准实验教科书 普通高中数学高考一轮复习——集合与常用逻辑用语
东台市唐洋中学 高二数学组
常用逻辑用语
授课教师:张祖辉
考纲要求
1.理解四种命题的意义及相互关系. 2.理解充分条件、必要条件、充要条件等概念. 3.掌握简单的逻辑连接词,能够判断复合命题的真假 4.掌握全称命题与存在性命题的否定
注:否命题与命题的否定是两个不同的概念: ①否命题是将原命题的条件否定作为条件,将原命题的结论 否定作为结论构造的一个新的命题;
②命题的否定只是否定命题的结论,常用于反证法.
一.教材回顾
5.复合命题真假的判断
“p且q”真假的判断:__一__假_则__假_,__同__真_则__真_________ “p或q”真假的判断:__一__真_则__真_,__同__假_则__假_________
若 pq , qp ,我p 们 是 q 的 称 _既_ 不充_分又_ _ 不_ 必_要_ _ 条件_ __ __ _
一.教材回顾
4.命题的否定
" x M ,P (x)的 " 否 _ 定 _ x _ M,为 _ p _ (_ x)____________ "x M ,P (x)的 " 否 _定 _x _M 为 _ ,p _ _ (x)_ __ __ __ __ ___
参考答案:-3≤a≤5
跟踪训练3.求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一 个必要不充分条件 参考答案:a≤5
三.考点突破
考点4 与逻辑有关的参数范围问题 例4 已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只
有一个实数x0满足不等式x02+2ax0+2a≤0,若命题”pvq”是假命题, 求实数a的范围
②A B⇔A∩B=∅ ;
③A B⇔B A;
④A B⇔存在 x∈A,使得 x∉ B.
其中真命题的序号是_④_____(把符合要求的命题序号都填上).
三.考点突破
跟踪训练1. 给出如下三个命题: ①四个非零实数 a,b,c,d 依次成等比数列的充要条件是 ad =bc; ②设 a,b∈R,且 ab≠0,若ab<1,则ba>1; ③若 f(x)=log2x,则 f(|x|)是偶函数.
跟踪训练2. (2010·山东)设{an}是首项大于零的等比数列,则 “a1<a2”是“数列{an}是递增数列”的___充__要_________条件
三.考点突破
考点3 结合充要条件求参数
例3 已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0},
求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件
参考答案:a<-2或a>2
跟踪训练4.(2014·西安模拟)命题p:任意的实数x都有ax2>-ax1恒成立1,命题q:关于x的方程x2-x+a=0有实数根。若命题“p 或q”为真,“p且q”为假,求实数a的取值范围
参考答案:a<0或1/4<a<4
小结回顾
3.(2011·安徽)命题“所有能被 2 整除的整数都是偶数”的否定 是__有__的__能___被__2_整__除__的__整__数__不_ 是偶数 4.命题“若 a>b,则 2a>2b-1”的否命题为_若__a_≤_b__,则__2_a_≤_2.b-1
三.考点突破
考点1 命题正误的判断 例1 (2011·海南三亚)设集合 A、B,有下列四个命题: ①A B⇔对任意 x∈A 都有 x∉ B;
其中不正确命题的序号是______________
三.考点突破
P={x|x2-8x-20≤0},集合 S={x||x-1|≤m}. (1)若 PUS=P,求实数 m 的取值范围.
(2)是否存在实数 m,使得 x P 是 x S 的充要条件
参考答案:(1)m≤3. (2) 不存在
二.课堂热身
1.(2011·陕西)设 a,b 是向量,命题“若 a=-b,则|a|=|b|” 的逆命题是__若__|_a_|=__|b_|_,__则__a_=_-_b
2.(2011·山东)对于函数 y=f(x),x∈R,“y=|f(x)|的图象关于 y 轴对称”是“y=f(x)是奇函数”的__必__要__不__充__分________条件.
(3)四种命题的真假关系 ①两个命题互为逆否命题,它们有 相同 的真假性; ②两个命题互为逆命题或互为否命题,它们的真假性 没有关系 .
一.教材回顾
3.四种条件关系
如果命题“若p则q为真”,我们记作______p__ __q______________
若 p q ,我 p 是 q 的 们 _ 充分_称 条_ 件 _ _q _ 是 ,p _ 的 _ _ 必要_ _ 条_ 件__ __ 若 p q, q p,我们 p是 q的 称 _充_ 分必_ 要条__ 件__________ 若 p q, qp ,我们 p是 q的 称 _充_ 分不_必_ 要_条_件_________ 若 pq , q p,我们 p是 q的 称 _必_ 要不_充_ 分_条_件_________
相关文档
最新文档