高中数学选修2-1第1章《常用逻辑用语》单元测试题
(常考题)北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)(4)

一、选择题1.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(],4-∞B .[]1,4C .(]1,4D .()1,42.已知实数0x >,0y >,则“1xy <”是“1133log log 0x y +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.下列说法正确的是( )A .命题“,0x x R e ∀∈>”的否定是“,0x x R e ∃∈>”B .命题“已知,x y R ∈,若3,x y +≠则2x ≠或1y ≠”是真命题C .命题“若1,a =-则函数2()21f x ax x =+-只有一个零点”的逆命题为真命题D .“22x x ax +≥在[]1,2x ∈上恒成立”2min min (2)()x x ax ⇔+≥在[]1,2x ∈上恒成立4.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个5.下列命题中正确的是( )A .若p q ∧为真命题,则p q ∨为真命题B .已知x ∈R ,那么1x x+的最小值为2 C .命题“0x ∃∈R ,20010x x ++<”的否定是“x ∀∈R ,210x x ++>” D .命题“若21x >,则1x >”的否命题为“若21x >,则1x ≤” 6.已知命题()0:0,p x ∃∈+∞,00122019xx +=;命题:q 在ABC ∆中,若sin sin A B >,则cos cos A B <.下列命题为真命题的是( )A .p q ∧B .()p q ∨⌝C .()()p q ⌝∨⌝D .()p q ∧⌝7.已知m ,n 为空间中两直线,α,β为两不同平面,已知命题:p 若m α⊂,m β⊥,则αβ⊥;命题:q 若m α⊂,n ⊂α,//m β,//n β,则//αβ.则p ,()q ⌝,()p q ∧,()p q ∨这四个命题中真命题的个数为( )A .1B .2C .3D .48.“12a <<”是“对任意的正数x ,22ax x+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件9.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③B .②④C .②③D .①④10.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件;③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .011.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.14.已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.15.在下列给出的命题中,所有正确命题的序号为__________.①函数3231y x x =-+的图象关于点()0,1成中心对称;②对,x y R ∀∈若0x y +≠,则1x ≠或1y ≠-;③若实数x ,y 满足221x y +=,则2yx +的最大值为3;④若ABC ∆为钝角三角形,则sin cos A B <.16.“1x ≠或2y ≠”是“3x y +≠”的__________条件(填写“充分非必要、必要非充分、充要、既不充分也非必要”)17.命题“,11x x ∀∈+≥R ”的否定是_________.18.已知,R αβ∈,则“αβ=”是“tan tan αβ=”的_________________条件(选填:“充分不必要”;“必要不充分”;“充要”;“既不充分也不必要”).19.已知命题p :存在[]0,1x ∈,使得0x a e -≥成立,命题:q 对任意x ∈R ,240x x a ++> 恒成立,若命题p q ∧⌝是真命题,则实数a 的取值范围是______________.20.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx+1>0.若p ∧q 为真命题,则实数m 的取值范围_____.三、解答题21.已知命题:|1|2a α-<,β:方程2(2)10x a x +++=没有正根.求实数a 的取值范围,使得命题,αβ有且只有一个真命题.22.已知{}2|8200A x x x =--≤,{}|2B x x m =-≤(1)若“∃x ∈A ,使得x ∈B ”为真命题,求m 的取值范围;(2)是否存在实数m ,使“x ∈A ”是“X ∈B ”必要不充分条件,若存在,求出m 的取值范围;若不存在,请说明理由.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足|3|1x -<. (1)若1a =,且p q ∨为真,求实数x 的取值范围;(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 24.已知集合{|24}A x x =<<,函数22()43(0)f x x ax a a =-+≠ (1)解关于x 的不等式()0f x <;(2)记{|()0}B x f x =<(0a >),若x A ∈是x B ∈的充分条件,求a 的取值范围; 25.已知命题甲:关于x 的不等式22(1)0x a x a +-+≤的解集为空集;命题乙:方程2(4)0x a --=有两个不相等的实根. (1)若甲、乙都是真命题,求实数a 的取值范围;(2)若甲、 乙中有且只有一个是假命题,求实数a 的取值范围.26.设命题:p 实数x 满足22430x ax a -+<,其中0a >.命题q :实数x 满足302x x-≥-. (1)若1a =,且p q ∧为真,求实数x 的取值范围.(2)p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】 解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤, 解不等式2x a -<,即22x a -<-<,解得22a x a -<<+, 由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤. 因此,实数a 的取值范围是(]1,4. 故选:C. 【点睛】本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.2.C解析:C 【分析】由不等式111333log log log 0x y xy +=>,求得01xy <<,结合充要条件的判定方法,即可求解. 【详解】由题意,实数0x >,0y >,不等式111333log log log 0x y xy +=>,解得01xy <<, 所以实数0x >,0y >,则“1xy <”是“1133log log 0y +>”的充要条件. 故选:C. 【点睛】本题主要考查了充要条件的判定,以及对数的运算性质,其中解答中熟记充要条件的判定方法,以及熟练应用对数的运算性质是解答的关键,着重考查推理与运算能力,属于基础题.3.B解析:B 【分析】A .注意修改量词并否定结论,由此判断真假;B .写出逆否命题并判断真假,根据互为逆否命题同真假进行判断;C .写出逆命题,并分析真假,由此进行判断;D .根据对恒成立问题的理解,由此判断真假. 【详解】A .“,0x x R e ∀∈>”的否定为“,0x x R e ∃∈≤”,故错误;B .原命题的逆否命题为“若2x =且1y =,则3x y +=”,是真命题,所以原命题是真命题,故正确;C .原命题的逆命题为“若函数2()21f x ax x =+-只有一个零点,则1a =-”, 因为0a =时,()21f x x =-,此时也仅有一个零点,所以逆命题是假命题,故错误;D .“22x x ax +≥在[]1,2x ∈上恒成立”⇔“min2x a x ⎛⎫+≥ ⎪⎝⎭在[]1,2x ∈上恒成立”,故错误. 故选:B. 【点睛】本题考查命题真假的判断,涉及到函数零点、含一个量词的命题的真假判断、不等式恒成立问题的理解等内容,难度一般.注意互为逆否命题的两个命题真假性相同.4.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.5.A解析:A 【分析】对各个命题分别判断.【详解】A. 若p q ∧为真命题,则,p q 都是真命题,∴p q ∨为真命题,正确.B.当0x <时,10x x+<,B 错; C. 命题“0x ∃∈R ,20010x x ++<”的否定是x ∀∈R ,210x x ++≥,C 错; D. 命题“若21x >,则1x >”的否命题为“若21x ≤,则1x ≤”,D 错. 故选:A. 【点睛】本题考查命题真假的判断,解题时可对各个命题分别判断,然后得出正确结论.6.C解析:C 【分析】判断出命题p 、q 的真假,即可判断出各选项中命题的真假,进而可得出结论. 【详解】函数()2xf x x =+在()0,+∞上单调递增,()()1012019f x f ∴>=>,即命题p 是假命题; 又sin sin A B >,根据正弦定理知a b >,可得A B >,余弦函数cos y x =在()0,π上单调递减,cos cos A B ∴<,即命题q 是真命题. 综上,可知()()p q ⌝∨⌝为真命题,p q ∧、()p q ∨⌝、()p q ∧⌝为假命题. 故选:C. 【点睛】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.7.C解析:C 【分析】先判断每个命题的真假,再由复合命题的真值表确定真假。
高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>02.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除4.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧q B.綈p∧qC.p∧綈q D.綈p∧綈q6.在三角形ABC中,∠A>∠B,给出下列命题:①sin∠A>sin∠B;②cos2∠A<cos2∠B;③tan ∠A2>tan∠B2.其中正确的命题个数是()A.0个B.1个C .2个D .3个7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题 9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题 10.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则mn -m 2≤n2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.12.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.13.若不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是__________.14.已知命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0,若“p∧q”为真命题,则实数a的取值范围是__________.三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.16.(12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分不必要条件,求实数m的取值范围.17.(12分)设命题p:∃x0∈R,x20+2ax0-a=0.命题q:∀x∈R,ax2+4x+a≥-2x2+1.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0解析:因为命题“存在x0∈R,2x0≤0”是特称命题,所以它的否定是全称命题.答案:D2.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若(2x-1)x=0,则x=12或x=0,即不一定推出x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件.答案:B3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:一个命题与它的逆否命题是等价命题,选项B中的命题为已知命题的逆否命题.答案:B4.若向量a =(x,3)(x ∈R ),则“x =4是|a |=5”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:由x =4知|a |=42+32=5;反之,由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分不必要条件,故选A.答案:A5.(2013·新课标全国卷Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:命题p 为假,因为当x <0时,2x >3x .命题q 为真,因为f (x )=x 3+x 2-1在(0,+∞)内单调递增,且f (0)=-1<0,f (1)=1>0,所以在(0,1)内函数f (x )必存在零点.所以綈p ∧q 为真命题,故选B.答案:B6.在三角形ABC 中,∠A >∠B ,给出下列命题: ①sin ∠A >sin ∠B ;②cos 2∠A <cos 2∠B ;③tan ∠A 2>tan ∠B 2. 其中正确的命题个数是( ) A .0个 B .1个 C .2个D .3个解析:当∠A 、∠B 均为锐角时,由函数的单调性及不等式的性质知都成立;当∠B 为锐角,∠A 为钝角或直角时,又有∠A 、∠B 为三角形的内角,所以π2≤∠A <π,0<∠B <π2,∠A +∠B <π,即π4≤∠A 2<π2,0<∠B 2<π4,∠B <π-∠A <π2,即tan ∠A 2>tan ∠B 2,sin ∠B <sin(π-∠A )=sin ∠A ,cos ∠B >cos(π-∠A )=-cos ∠A ≥0,所以cos 2∠A <cos 2∠B .答案:D7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题解析:对A 选项,命题的否定是:“∀x ∈R ,使得x 2+x +1<0”,故不正确,对于B 选项,由x >yA /⇒x 2>y 2,且x 2>y 2A /⇒x >y ,故不正确.对于C 选项,若“p ∨q ”为假命题,则“綈p ∧綈q ”为真命题,故不正确.对于D 选项,若α=0,则cos α=1是真命题,故其逆否命题也为真命题,故正确. 答案:D8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题解析:∵p 真,q 假.故p ∧q 为假,p ∧綈q 为真.綈p ∨q 为假,綈p ∧綈q 为假,选D.答案:D9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题解析:根据逆否命题定义知A选项正确.由正切函数单调性,可判断B选项正确.D 选项作为特称命题正确,对于C选项,“綈p∧q”为假,则綈p,q中至少一个为假,故p∨q真假不定,故选C.答案:C10.给出下列三个命题:①若a≥b>-1,则a1+a≥b1+b;②若正整数m和n满足m≤n,则mn-m2≤n2;③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为()A.0个B.1个C.2个D.3个解析:①a1+a≥b1+b⇒1-11+a≥1-11+b⇒11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2(x>0,y>0),取x=m,y=n-m,知本命题为真命题.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.解析:∵命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”是真命题,其逆命题“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”是假命题,如函数y=x+1.再由互为逆否命题真假性相同知,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是1个.答案:1个12.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 解析:∵命题“ax 2-2ax -3>0不成立”是真命题,∴不等式ax 2-2ax -3≤0对于任意的实数x 恒成立,(1)当a =0时,符合条件;(2)当⎩⎪⎨⎪⎧a <0,Δ≤0,即-3≤a <0.由(1)、(2)得实数a 的取值范围是{a |a =0或a ≤-3}. 答案:-3≤a ≤013.若不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是__________.解析:∵|x -1|<a ⇔1-a <x <1+a ,又∵不等式|x -1|<a 成立的充分条件是0<x <4, ∴⎩⎪⎨⎪⎧ 1-a ≤0,1+a ≥4,即⎩⎪⎨⎪⎧a ≥1,a ≥3,∴a ≥3. 答案:[3,+∞)14.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p ∧q ”为真命题,则实数a 的取值范围是__________.解析:∵“p ∧q ”为真命题,∴p ,q 均为真命题. 由p 为真命题得a ≤1.由q 为真命题得a ≤-2或a ≥1. ∴当p ,q 同时为真时,有a ≤-2或a =1. 答案:a ≤-2或a =1三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.(3分)否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0.(6分)逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.(9分)原命题、逆命题、否命题、逆否命题均为真命题. (12分)16.(12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分不必要条件,求实数m 的取值范围.解:由题意p :-2≤x -3≤2, ∴1≤x ≤5.∴綈p :x <1或x >5.(4分) q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.(8分) 又∵綈p 是綈q 的充分不必要条件, ∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5. ∴2≤m ≤4.(12分)17.(12分)设命题p :∃x 0∈R ,x 20+2ax 0-a =0.命题q :∀x ∈R ,ax 2+4x +a ≥-2x 2+1.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.解:当命题p 为真时,Δ=4a 2+4a ≥0得a ≥0或a ≤-1,当命题q 为真时,(a +2)x 2+4x +a -1≥0恒成立,∴a +2>0且16-4(a +2)(a -1)≤0,即a ≥2.(6分)由题意得,命题p和命题q一真一假.当命题p为真,命题q为假时,得a≤-1;当命题p为假,命题q为真时,得a∈∅;∴实数a的取值范围为(-∞,-1].(12分)18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.解:甲命题为真时,Δ=(a-1)2-4a2<0,即a>13或a<-1.乙命题为真时,2a2-a>1,即a>1或a<-12.(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a的取值范围是{a|a<-12或a>13}.(7分)(2)甲、乙中有且只有一个是真命题,有两种情况:甲真乙假时,13<a≤1,甲假乙真时,-1≤a<-12,∴甲、乙中有且只有一个真命题时,a的取值范围为{a|13<a≤1或-1≤a<-12}.(14分)。
泰安市高中数学选修2-1第一章《常用逻辑用语》检测题(含答案解析)

一、选择题1.“a b >”是“b a a b e e ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.命题“若{}n a 是等比数列,则n n k n k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0 B .1C .2D .3 3.下列4个命题中正确命题的个数是( )①已知a ,b 表示直线,α表示平面,若//a α,//b α,则//a b ;②ABC 中,若A B >,则sin sin A B >;③若平面向量a ,b ,c ,满足//a b ,//b c ,则存在a ,c 不共线;④等差数列{}n a 中,n a m =,()m a n m n =≠,则0m n a +=.A .4个B .3个C .2个D .1个4.下列命题中为真命题的是( )A .若命题p :“2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--≤”B .直线,a b 为异面直线的充要条件是直线,a b 不相交C .“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充要条件D .0x ≠则12x x+≥ 5.下列说法正确的个数是( )①“若4a b +≥,则,a b 中至少有一个不小于2“的逆命题是真命题②命题“设,a b ∈R ,若6a b +≠,则3a ≠或3b ≠”是一个真命题③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->”④1a b +>是a b >的一个必要不充分条件A .0B .1C .2D .36.已知命题4:0,4p x x x ∀>+≥;0x 命题001:(0,),22x q x ∃∈+∞=,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题7.已知0a b >>,给出下列命题:①1=,则1a b -<; ②若331a b -=,则1a b -<;③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<.其中真命题的个数是( )A .1B .2C .3D .4 8.命题:p 关于x 的不等式2240x ax ++>对一切x ∈R 恒成立,:q 函数()()32x f x a =-是增函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数a 取值范围为( )A .()(),22,-∞-+∞B .(][),21,2-∞-C .(](],21,2-∞-D .(][),22,-∞-+∞9.下列有关命题的说法错误的是( ) A .“若22am bm <,则a b <”的逆命题为假命题B .命题“如果()()150x x +-=2=”的否命题是真命题C .若p q ∧为假命题,则p 、q 均为假命题D .若p q ∨为假命题,则p 、q 均为假命题10.已知()0,x π∈,则“6x π>”是“1sin 2x >”成立的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要 11.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 12.已知2:11x p x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( )A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞ 二、填空题13.下列命题中假命题的序号是________.①若“1x >则21x >”的逆命题;②“若1sin 2α≠,则6πα≠”;③“若0xy =,则0x =且0y =”的逆否命题;④“在ABC 中,若sin sin A B >,则A B >”.14.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 15.命题p :(x ﹣m )2>3(x ﹣m )是命题q :x 2+3x ﹣4<0成立的必要不充分条件,则实数m 的取值范围为____.16.有下列命题:①在ABC 中,若角A B >,则sin sin A B >;②函数2y ax bx c =++为偶函数的充要条件是0b =;③b =,,a b c 成等比的必要不充分条件;④若函数()()2f x x x c =-在2x =处有极大值,则c 的值为2或6; ⑤1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值是2. 其中正确命题的序号是____________(注:把你认为正确的命题的序号都填上). 17.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”;②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->”;④命题“若x y =,则sin sin x y =”的逆否命题为真命题.其中所有正确命题的序号是_________.18.若命题“存在实数x ,使得()222(2)40a x a x -+--≥成立”是假命题,则实数a 的取值范围是________.19.命题“,11x x ∀∈+≥R ”的否定是_________.20.“01x <<”是“2log (1)1x +<”的_____条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).三、解答题21.已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0).(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.22.已知[]:1,1p m ∀∈-,253a a --≥;:q x R ∃∈,220x ax ++<.若p 为真而q 为假,求a 的取值范围.23.已知0a >,设命题:p 函数x y a =在R 上单调递增;命题:q 不等式210ax ax -+>对x R ∀∈恒成立.若p 且q 为假,p 或q 为真,求a 的取值范围.24.已知p :关于x ,y 的方程C :x 2+y 2﹣4x +6y +m 2﹣3=0表示圆;q :圆x 2+y 2=a 2(a >0)与直线3x +4y ﹣5m +10=0有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围. 25.设函数(),,x x P f x x x M∈⎧=⎨-∈⎩,其中,P M 是非空数集. 记()(){}()(){}|,,|f p y y f x x P f M y y f x x M ==∈==∈,.(1)若[]()0,3,,1P M ==-∞-,求()()f p f M ⋃;(2)若P M ⋂=∅,且()f x 是定义在R 上的增函数,写出满足条件的集合P ,M ,并说明理由;(3)判断命题“若P M ⋃≠R ,则()()f p f M ⋃≠R ”的真假,并加以证明. 26.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】构造函数()xf x e x =+利用单调性判断.【详解】设()x f x e x =+,()e 10x f x '=+>,所以()f x 为增函数, 由于a b >,所以()()f a f b >,所以b a a b e e ->-;反之b a a b e e ->-成立,则有()()f a f b >,所以a b >.所以是充要条件,故选C.【点睛】本题主要考查充要条件的判定,明确两者之间的推出关系是判定的关键.2.A解析:A【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数.【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题,从而,逆否命题是真命题; 反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na a n n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题.故选:A .【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.3.B解析:B【分析】对于①由线面平行的性质知:a 与b 不一定平行,故①错误;对于②,运用三角形的边角关系和正弦定理可判断②正确;对于③,由于向量的平行不满足传递性,故③正确;对于④,由等差数列的性质和通项公式可知④正确.从而得到正确的答案.【详解】对于①,当//a α,//b α时,a 与b 也可能相交或异面,故①错误;对于②,在ABC 中,2sin 2sin sin sin (A B a b R A R B A B R >⇔>⇔>⇔>为ABC 的外接圆的半径),故②正确;对于③,若平面向量a ,b ,c ,满足//a b ,//b c ,当0b =时,a 与c 可以不共线,故③正确;对于④,由n a m =,()m a n m n =≠⇒公差1n m a a m n d n m n m--===---,0m n m a a nd n n +∴=+=-=,故④正确.故选:B .【点睛】本题主要考查线面平行的性质、正弦定理与三角形的边角关系、向量共线及等差数列的性质、通项公式等知识点,属于中档题.4.A解析:A【分析】A ,根据一个是特称命题的否定,变为全称命题,即可判断;B ,根据空间中两条直线的位置关系得到结果;C ,根据两条直线垂直的条件得到a 的值;D 、根据基本不等式得到,这个不等式大于等于2或小于等于2-.【详解】解:对于A ,根据特称命题的否定形式知道:命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”,故A 是真命题;对于B ,直线a ,b ,为异面直线的充要条件是直线a ,b 不相交且不平行,故B 为假命题;对于C ,“直线0x ay -=与直线0x ay +=互相垂直” ⇔ “1a =±”,故“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充分不必要条件,故C 为假命题;对于D ,若0x >,则12x x +,或若0x <,则12x x +-,故D 为假命题. 故选:A .【点睛】本题考查命题的否定,考查函数的值域,考查空间中两条直线的位置关系,考查特称命题和全称命题的否定,属于中档题.5.C解析:C【解析】对于①,原命题的逆命题为:若,? a b 中至少有一个不小于2,则4a b +≥,而4,?4a b ==-满足,? a b 中至少有一个不小于2,但此时0a b +=,故①是假命题;对于②,此命题的逆否命题为“设,?a b R ∈,若3a =且3b =,则6a b +=”,此命题为真命题,所以原命题也是真命题,故②是真命题;对于③“20000x R x x ∃∈-<,”的否定是“20x R x x ∀∈-≥,”,故③是假命题;对于④,由a b >可推得1a b >-,故④是真命题,故选C .点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真假.6.C解析:C【分析】根据均值不等式得到p 为真命题,根据指数函数单调性得到q 为假命题,对比选项得到答案.【详解】0x >时,44x x +≥=,当2x =时等号成立,故p 为真命题; 当0x >时,0221x >=,故q 为假命题.则()p q ∧⌝是真命题,()p q ⌝∧是假命题.故选:C.【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力. 7.B解析:B【分析】①1=1=,然后两边平方,再通过作差法即可得解; ②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断;③若1a b e e -=,则111a b a b b b b e e ee e e-+===+,再利用0b >,得出1b e >,从而求得a b e -的范围,进而判断;④取特殊值,a e =,1b =即可判断.【详解】解:①1=,1=,所以1a b =++所以11a b -=+,即①错误;若331a b -=,则331a b -=,即23(1)(1)a a a b -++=,因为0a b >>,所以22a b >,所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确;若1a b e e -=, 则111a b a b b b b e e e e e e-+===+, 因为0b >,所以12a b e e -<<<,所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=,但1a b ->,所以④错误;所以真命题有②③,故选:B .【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.8.B解析:B【分析】先求得命题,p q 为真命题时,a 的取值范围.根据“p q ∨”为真命题,“p q ∧”为假命题可知,p q 一真一假,由此进行分类讨论,求得a 的取值范围.【详解】当p 为真命题时,24160a ∆=-<,解得22a -<<.当q 为真命题时,321,1a a -><.由于“p q ∨”为真命题,“p q ∧”为假命题,所以,p q 一真一假.当p 真q 假时,221a a -<<⎧⎨≥⎩,解得12a ≤<; 当p 假q 真时,221a a a ≤-≥⎧⎨<⎩或,解得2a ≤-.综上所述,实数a 的取值范围是(][),21,2-∞-.故选:B【点睛】 本小题主要考查一元二次不等式恒成立问题,考查根据含有逻辑联结词命题的真假性求参数的取值范围,考查分类讨论的数学思想方法,属于基础题.9.C解析:C【分析】写出逆命题和否命题,判断正误,根据或和且的命题真假判断命题真假得到答案.【详解】逆命题为:若a b <,则22am bm <,当0m =是不成立,故为假命题,A 正确;否命题为:如果()()150x x +-≠2≠,为真命题,B 正确;若p q ∧为假命题,则p 、q 不同时为真,C 错误;若p q ∨为假命题,则p 、q 均为假命题,D 正确;故选:C .【点睛】本题考查了逆命题和否命题,或和且命题的判断,意在考查学生的推断能力.10.B解析:B【分析】 求出不等式1sin 2x >在()0,x π∈上的解,然后利用集合的包含关系即可得出结论. 【详解】 ()0,x π∈,解不等式1sin 2x >,得566x ππ<<, 5,66ππ⎛⎫ ⎪⎝⎭ ,6ππ⎛⎫ ⎪⎝⎭,因此,“6x π>”是“1sin 2x >”成立的必要不充分条件. 故选:B.【点睛】 本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题.11.A解析:A【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断.D 用等价命题来判断.【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠, 故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误. 故选:A【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题. 12.A解析:A【分析】由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案.【详解】解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<,∴:11p x -<<,由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件;当3a >时,解得:q x a >或3x <,满足条件;当3a <时,解得:3q x >或x a <,∴13a ≤<,综上:1a ≥,故选:A .【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.①③【分析】根据四种命题的关系判断①②③由正弦定理判断④【详解】①若则的逆命题是若则这显然是假命题如;②若则的逆否命题是若则是真命题原命题也是真命题;③若则且的逆否命题是若或则是假命题④在中若则由得解析:①③【分析】根据四种命题的关系判断①②③,由正弦定理判断④.【详解】①若“1x >则21x >”的逆命题是若21x >,则1x >,这显然是假命题,如2x =-; ②“若1sin 2α≠,则6πα≠”的逆否命题是若6πα=,则1sin 2α=,是真命题,原命题也是真命题;③“若0xy =,则0x =且0y =”的逆否命题是若0x ≠或0y ≠,则0xy ≠,是假命题, ④在ABC 中,若sin sin A B >,则由sin sin a b A B=得a b >,∴A B >,为真命题. 故答案为:①③【点睛】关键点点睛:本题考查命题的真假判断,在一个命题不能或不易判断其真假时,可考虑其逆否命题,判断出逆否命题的真假后,原命题的真假随之而得.特别是对一些否定性命题,含有至少、至多等词语的命题.常常选择判断其逆否命题的真假来判断原命题的真假. 14.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断.【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③.【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.15.m≥1或m≤﹣7【分析】先求出命题p 和命题q 中不等式的解再根据必要不充分条件列不等式求解【详解】解:由x2+3x ﹣4<0得﹣4<x <1由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0即x >解析:m ≥1或m ≤﹣7【分析】先求出命题p 和命题q 中不等式的解,再根据必要不充分条件列不等式求解.【详解】解:由x 2+3x ﹣4<0得﹣4<x <1,由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0,即x >m +3或x <m ,若p 是q 的必要不充分条件,则1≤m 或m +3≤﹣4,即m ≥1或m ≤﹣7,故答案为:m ≥1或m ≤﹣7.【点睛】本题考查二次不等式的求解,考查充分性,必要性的应用,是中档题.16.①②【分析】分别对所给选项进行逐一判断即可【详解】若角则由正弦定理得所以故①正确;若是偶函数则即所以反过来当时显然为偶函数故②正确;若时满足但不成等比;若成等比则不一定有所以是成等比的既不充分也不必解析:①②【分析】分别对所给选项进行逐一判断即可.【详解】若角A B >,则a b >,由正弦定理,得2sin 2sin R A R B >,所以sin sin A B >,故①正确;若2()f x ax bx c =++是偶函数,则()()f x f x =-,即22ax bx c ax bx c ++=-+,所以0b =,反过来,当0b =时,2()f x ax c =+,显然为偶函数,故②正确;若0,0b a ==时,满足b =,,a b c 不成等比;若,,a b c 成等比,则b =不一定有b =,所以b =,,a b c 成等比的既不充分也不必要条件,故③错;若函数()()2f x x x c =-在2x =处有极大值,则'(2)0f =,即2(2)4(2)0c c -+-=,解得2c =或6c =,当2c =时,'()(2)(32)f x x x =--,此时2x =是极小值点, 所以不满足题意,故④错;令sin (0,1)t x =∈,则1(2,)y t t=+∈+∞,无最小值,故⑤错.故答案为:①②【点睛】本题考查命题真假的判断,涉及到奇偶性、充分条件、必要条件、极值、最值等,考查学生的逻辑推理能力,是一道中档题.17.④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若解析:④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断.【详解】解:①根据否命题的定义可知,命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题,得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为:④.【点睛】本题考查命题的真假判断,以及充分必要条件、四种命题的关系和真假性的判断,属于基础题.18.(﹣22【分析】由原命题的否定为真命题得到∀实数x 使得(a ﹣2)x2+2(a ﹣2)x ﹣4<0成立然后分二次项系数为0和不为0讨论当二次项系数不为0时需要二次项系数小于0且判别式小于0求解【详解】命题解析:(﹣2,2].【分析】由原命题的否定为真命题得到∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立,然后分二次项系数为0和不为0讨论,当二次项系数不为0时,需要二次项系数小于0,且判别式小于0求解.【详解】命题“存在实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4≥0成立”是假命题,则其否定为“∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立”是真命题,当a =2时,原不等式化为﹣4<0恒成立;当a ≠2时,则()2204(2)1620a a a -⎧⎨=-+-⎩<<,解得﹣2<a <2.综上,实数a 的取值范围是(﹣2,2].故答案为:(﹣2,2].【点睛】本题考查命题的真假判断与应用,考查了复合命题的真假判断,训练了不等式恒成立的解法,是中档题.19.【分析】根据全称命题的否定是特称命题解答【详解】由题意命题为全称命题则它的否定为:故答案为:【点睛】本题考查含一个量词的命题的否定属于基础题 解析:,11x x ∃∈+<R【分析】根据全称命题的否定是特称命题解答。
人教版高中数学选修2-1第一章 常用逻辑用语练习题及答案

选修2-1第一章《常用逻辑用语》单元练习班级 姓名 学号 得分1.给出以下四个命题:①若y x N y x +∈+,,是奇数,则y x ,中一个是奇数一个是偶数;②若32<≤-x ,则0)3)(2(≤-+x x ;③若0==y x ,则022=+y x ;④若0232=+-x x ,则1=x 或2=x .那么 ( )A.①的逆命题为假B.②的否命题为真C.③的逆否命题为假D.④的逆命题为真2.若p 是q 的必要条件,则必有 ( )A. p q ⇒B. q p ⌝⇒C. q p ⌝⇒⌝D. p q ⌝⇒⌝3.有金盒、银盒、铅盒各一个,只有一个盒子里有藏宝图.金盒上写有命题p :藏宝图在这个盒子里;银盒上写有命题q :藏宝图不在这个盒子里;铅盒上写有命题r :藏宝图不在金盒子里.命题p 、q 、r 中有且只有一个是假命题,则藏宝图不在 ( )A.金盒里B.银盒里C.铅盒里D.不能确定4.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是 ( )A.①④⑤B.①②④C.②③⑤D. ②④⑤5.命题“所有的互斥事件都是对立事件”的否命题和命题的否定 ( )A.均为真命题B.均为假命题C.只有否命题为真命题D. 只有命题的否定为真命题6.如果命题“)(q p 或⌝”为假命题,则 ( )A.q p ,均为真命题B.q p ,均为假命题C.q p ,中至少有一个真命题D.q p ,中至多一个真命题7.不等式2x 2-5x -3<0的一个必要不充分条件可以是 ( ) A.132x -<< B. 102x -<< C.132x -<< D.16x -<< 8. 命题“对任意的01,23≤+-∈x x R x ”的否定是 ( ) A.不存在01,23≤+-∈x x R x B.存在01,23≥+-∈x x R xC.存在01,23>+-∈x x R xD. 对任意的01,23>+-∈x x R x9.对任意实数x , 若不等式k x x >+++|1||2|恒成立, 则实数k 的取值范围是 ( )A. k ≥1B. k <1C. k ≤1D. k >110.若关于x 的不等式22x x a <--至少有一个实数解,求实数a 的取值范围为 ( )A. (B. (2,2)-C. 99(,)44-D. 77(,)44-11.“a b Z +∈”是“20x ax b ++=有且只有整数解的” 条件.12.在一次模拟打飞机的游戏中,小李连续射击两次,设命题1p 为“第一次射击击中飞机”,命题2p 为“第二次射击击中飞机”,则命题“12()p p ⌝∨”可以表示 .13.方程22(21)0x k x k +-+=有两个大于1的实数根的充要条件为 .14.命题“已知,,,a b c d R ∈,若,a b c d ==,则a c b d +=+”的否命题为 ;并且否命题为 命题.(填“真”与“假”)15.设p :实数x 满足22430,(0)x ax a a -+<<,q :实数满足260x x --<或2280x x +->,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.16.已知命题:,p x R ∃∈使220ax x a ++≥,当a A ∈时,p 为假命题,求集合A .新 课标 第一 网17.设函数()lg(5)f x ax =-的定义域为A ,若命题:3p A ∈与:5q A ∈有且只有一个为真命题,求实数a 的取值范围.18. 设,m n N +∈,求证:33n m -为偶数的充要条件是n m -为偶数.新 课 标第 一 网参考答案:1-10 DDBBA CDCBC 11.必要不充分 12.两次都未击中飞机 13.k <-214. “已知,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+” 假命题15.(]2,4,03⎡⎫-∞--⎪⎢⎣⎭ 16. (),1-∞- 17.51,3⎛⎤ ⎥⎝⎦18.略。
北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(含答案解析)

一、选择题1.命题“若{}n a 是等比数列,则n n kn k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0B .1C .2D .32.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .33.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 05.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.9k >是方程22194x y k k +=--表示双曲线的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件8.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 9.在平面直角坐标系1A xy -中,直线134x y+=与x 、y 轴分别交于点2A 、3A ,记以点(1,2,3)i A i =为圆心,半径为r 的圆与三角形123A A A 的边的交点个数为M .对于下列说法:①当1i =时,若3M =,则125r =;②当2i =时,若04r <<,则2M =;③当3i =时,M 不可能等于3;④M 的值可以为0,1,2,3,4,5.其中正确的个数为( ) A .1B .2C .3D .410.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .311.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③ B .②④C .②③D .①④12.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题13.给出下列命题:①纯虚数z 的共轭复数是z -; ②若120z z -=,则12z z =;③若12R z z +∈,则1z 与2z 互为共轭复数; ④若120z z -=,则1z 与2z 互为共轭复数. 其中正确命题的序号是_________. 14.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥;④20182019log 2019log 2020>. 以上结论正确的个数为______. 15.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________.16.定义在R 上的函数()f x ,给出下列三个论断: ①()f x 在R 上单调递增;②1x >;③()(1)f x f >.以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:________. 17.已知命题:P :不等式20x mx m -+>的解集为R ;Q :不等式2x x m --<的解集为R ,若命题P 与命题Q 中至少有一个为假命题,则m 的取值范围为_______________. 18.设集合{1,2}A =,2{|10}B x x ax =--≤,若x A ∈是x B ∈的充分条件,则实数a 的取值范围是________ 19.“”是“函数为R 上的增函数”的_______.(填“充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件”中的一个) 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知命题:|1|2a α-<,β:方程2(2)10x a x +++=没有正根.求实数a 的取值范围,使得命题,αβ有且只有一个真命题.22.已知命题p :[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立;命题q :220x ax ++=有两个不同的实数根,若p q ∨为真,且p q ∧为假,求实数a 的取值范围.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足|3|1x -<. (1)若1a =,且p q ∨为真,求实数x 的取值范围;(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.已知a R ∈,p :“[]1,3x ∀∈,20x a -≥”,q :“方程2220x ax ++=无实数解”. (1)若p 为真命题,求实数a 的取值范围;(2)若“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围. 25.已知命题p :实数x 满足245220x x ⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的取值范围.26.设命题:p 对任意[]0,1x ∈,不等式2234x m m -≥-恒成立,命题:q 存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若p ,q 有且只有一个为真,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数. 【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题, 从而,逆否命题是真命题;反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na a n n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题. 故选:A . 【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.2.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.3.C解析:C 【解析】0a <时,“函数()()2311f x ax a x =--+在区间[)1,+∞上不是增函数”,0a =时,()1f x x =+在[)1,+∞上是增函数,0a >时,令3112a a-≤,得01a <≤,∴“()()2311f x ax a x =--+在区间[)1,+∞上是增函数” 的充分必要条件“01a ≤≤”,故选C.4.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102x m ⎛⎫+-> ⎪⎝⎭,即112x m ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件.故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.7.B解析:B 【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->, ∴方程22194x y k k +=--表示双曲线,反之,若已知方程22194x y k k +=--表示双曲线,(9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件.故选:B . 【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用8.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.9.B解析:B 【分析】 作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A ,分别考虑圆心和半径r 的变化,结合图形,即可得到所求结论. 【详解】作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A ,①当1i =时,若3M =,当圆222x y r +=与直线相切,可得125r =; 当圆经过点(3,0),即3r =, 则125r =或3r =,故①错误; ②当2i =时,若04r <<,圆222(3)x y r -+=,当圆经过O 时,3r =,交点个数为2,4r =时,交点个数为1,则2M =,故②正确;③当3i =时,圆222(4)x y r +-=,随着r 的变化可得交点个数为1,2,0,M 不可能等于3,故③正确;④M 的值可以为0,1,2,3,4,不可以为5,故④错误. 故选:B. 【点睛】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.10.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】 取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题,不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】2222x y x y ++≥ 且224x y+≤ ,224222x y x y x y ++∴≤⇒⇒+≤ ,等号成立的条件是x y =, 又2x y xy +≥,0,0x y >>221xy xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立,∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.二、填空题13.①④【分析】对于①根据纯虚数和共轭复数的定义可知正确;对于②由得出再由复数相等和共轭复数的定义可知不一定有可知②不正确;对于③则可能均为实数但不一定相等或与的虚部互为相反数但实部不一定相等即可判断出解析:①④ 【分析】对于①,根据纯虚数和共轭复数的定义可知正确;对于②,由120z z -=得出12z z =,再由复数相等和共轭复数的定义,可知不一定有12z z =,可知②不正确;对于③,12R z z +∈,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,,即可判断出③;对于④,由120z z -=得出12z z =,则1z 与2z 互为共轭复数,则④正确;综合得出答案. 【详解】解:根据纯虚数和共轭复数的定义,可知命题①显然正确; 对于②,若120z z -=,只能得到12z z =,不一定有12z z =,所以命题②不正确;对于③,若12R z z +∈,则12,z z 可能均为实数,但不一定相等, 或1z 与2z 的虚部互为相反数,但实部不一定相等, 则1z 与2z 不一定互为共轭复数,所以命题③不正确; 由120z z -=得出12z z =,则1z 与2z 互为共轭复数,可知命题④正确;所以正确命题的序号是①④.故答案为:①④. 【点睛】本题考查复数相关命题的真假,考查对复数的概念中实数、虚数、纯虚数以及相等复数和共轭复数的特征的理解,属于基础题.14.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<=2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.15.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.16.①②推出③;【分析】写出答案再根据函数单调性得到证明【详解】①②推出③;证明:在单调递增且当时有得证故答案为:①②推出③【点睛】本题考查了利用函数单调性判断命题意在考查学生的推断能力解析:①②推出③; 【分析】写出答案,再根据函数单调性得到证明. 【详解】 ①②推出③;证明:()f x 在R 单调递增且当1x >时,有()(1)f x f >,得证. 故答案为:①②推出③ 【点睛】本题考查了利用函数单调性判断命题,意在考查学生的推断能力.17.【分析】先求得均为真命题时的取值范围再求得至少有一个为假命题时的取值范围【详解】当为真命题时解得当为真命题时解得故均为真命题时的取值范围是所以命题与命题中至少有一个为假命题则的取值范围为故填:【点睛 解析:(,0][2,)-∞+∞【分析】先求得,P Q 均为真命题时m 的取值范围,再求得,P Q 至少有一个为假命题时m 的取值范围. 【详解】当P 为真命题时,240m m ∆=-<,解得04m <<.当Q 为真命题时,2x x m x m x x m x m --=--≤+-=<,解得22m -<<.故,P Q 均为真命题时m的取值范围是()0,2,所以命题P 与命题Q 中至少有一个为假命题,则m 的取值范围为(,0][2,)-∞+∞.故填:(,0][2,)-∞+∞. 【点睛】本小题主要考查命题真假性,考查不等式的解集恒成立问题,属于基础题.18.【分析】解不等式求得集合B 再根据充分必要条件可得不等式组即可求得实数的取值范围【详解】因为集合所以解可得因为集合且是的充分条件所以解不等式组可得所以即实数的取值范围为故答案为:【点睛】本题考查了充分解析:3[,)2+∞【分析】解不等式,求得集合B,再根据充分必要条件可得不等式组,即可求得实数a 的取值范围. 【详解】因为集合2{|10}B x x ax =--≤ 所以解210x ax --≤可得224422a a a a x -+++≤≤因为集合{1,2}A =且x A ∈是x B ∈的充分条件所以22412422a a a a ⎧-+≤⎪⎪⎨++⎪≤⎪⎩解不等式组可得032a a ≤⎧⎪⎨≤⎪⎩所以32a ≤,即实数a 的取值范围为3[,)2+∞故答案为: 3[,)2+∞ 【点睛】本题考查了充分必要条件的简单应用,含参数一元二次不等式的解法,属于中档题.19.充分不必要条件【解析】【分析】先从充分性进行研究再从必要性角度研究从而得到结果【详解】解:当k>1时故函数f(x)=kx+2为R 上的增函数满足充分性当函数f(x)=kx+2为R 上的增函数时可以得到k解析:充分不必要条件. 【解析】 【分析】先从充分性进行研究,再从必要性角度研究,从而得到结果. 【详解】 解:当时,故函数为R 上的增函数,满足充分性,当函数为R 上的增函数时,可以得到,故不满足必要性,故本题的答案是充分不必要条件.【点睛】本题考查了充分必要条件,解题此类问题首先要搞清楚什么是条件,什么是结论,由条件得出结论满足充分性,由结论推出条件满足必要性.20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题 错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(4,1][3,)--+∞【分析】先求得命题,αβ为真命题时,实数a 的取值范围,再根据命题,αβ有且只有一个真命题,分类讨论,即可求解. 【详解】由题意,命题:|1|2a α-<,即212a -<-<,解得13a -<<, 命题β:方程2(2)10x a x +++=没有正根,可得分为两类:一是方程无根,二是方程由两个非正实根, 令()2(2)1f x x a x =+++,则()01f =,当方程无根时,2(2)40a ∆=+-<,解得40a ;当方程有两个非正根时,则满足0202a ∆≥⎧⎪⎨+-<⎪⎩,解得0a ≥,所以当方程2(2)10x a x +++=没有正根时,a 的取值方程为4a >-; 又因为命题,αβ有且只有一个真命题, 当α真β假时,即134a a -<<⎧⎨≤-⎩,此时a φ∈;当α假β真时,即134a a a ≤-≥⎧⎨>-⎩或,此时41a -<≤-或3a ≥,所以命题,αβ有且只有一个真命题时,实数a 的取值范围是(4,1][3,)--+∞. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中正确求解命题,αβ为真命题时,实数a 的取值范围,再分类讨论求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.22.221a -≤或224a <<. 【分析】先求出当p 真、q 真时,a 的取值范围,由p 、q 一真一假列式计算即可.【详解】命题p 真:[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立()2max 57231a a m a ⇒-+≥+=⇒≤或4a ≥;命题q 真:220x ax ++=有两个不同的实数根280a a ⇒∆=->⇒<-a >若p q ∨为真,且p q ∧为假,则p 、q 一真一假,当p 真q假时,141a a a a ≤≥⎧⎪-≤⎨-≤⎪⎩或当p 假q真时,144a a a a <<⎧⎪⇒<<⎨-⎪⎩∴实数a的取值范围为:1a -≤≤或4a <<. 【点睛】本题考查了复合命题真假的判断,考查了一元二次不等式的解法,考查了计算能力与分类讨论思想的应用,属于基础题. 23.(1)(1,4);(2)4,23⎡⎤⎢⎥⎣⎦.【分析】(1)分别求解当命题p 命题q 为真时x 的取值范围,在分“p 真q 假”和“q 真p 假”两种情况求对应的实数x 的取值范围即可.(2)根据0a >再因式分解求得命题p :3a x a <<,再根据p ⌝是q ⌝的充分不必要条件可知p ⌝对应的集合是q ⌝对应的集合的子集,再根据集合区间端点的位置关系求出实数a 的取值范围即可. 【详解】(1)由22430x ax a -+<得()(3)0x a x a --<, 当1a =时,13x <<,即p 为真时,(1,3)x ∈. 由|3|1x -<,得131x -<-<,得24x <<, 即q 为真时,(2,4)x ∈. 若p q ∨为真,则p 真或q 真, 所以实数的取值范围是(1,4).(2)由22430x ax a -+<得()(3)0x a x a --<,0,a >3a x a ∴<<.由|3|1x -<,得131x -<-<,得24x <<. 设{|3},A x x a x a =≤≥或{|24}B x x x =≤≥或, 若p ⌝是q ⌝的充分不必要条件,则A 是B 的真子集,故0234a a <≤⎧⎨≥⎩, 所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦.【点睛】本题主要考查了根据充分与必要条件求解参数的范围问题.需要根据参数的范围求解对应的集合区间,再根据区间端点的位置关系列式求出参数的范围.属于中档题. 24.(1)1a ≤; (2)a ≤1a <<.【分析】(1)依题意可得()2mina x≤,由[]1,3x ∈,即可得解;(2)首先求出命题q 是真命题时参数的取值范围,再根据命题“p q ∨”为真命题,命题“p q ∧”为假命题,可得两命题一真一假,分类讨论最后取并集可得; 【详解】(1)∵命题[]1,3x ∀∈,20x a -≥为真命题, ∴()2mina x≤,又∵[]1,3x ∈,∴1a ≤.(2)若命题q 是真命题,∴2480a ∆=-<,∴a <<因为命题“p q ∨”为真命题,命题“p q ∧”为假命题,所以两命题一真一假,当命题p 为真,命题q为假,1a a a ≤⎧⎪⎨≤≥⎪⎩∴a ≤当命题p 为假,命题q为真,1a a >⎧⎪⎨<⎪⎩∴1a <<综上所述:a ≤1a <<【点睛】本题考查命题的真假的判断与应用,不等式恒成立,二次函数的简单性质的应用,考查计算能力,属于中档题.25.(1){1x x ≤-或}1x ≥;(2)[]1,0-. 【分析】(1)根据题意得(22)(221)0x x -⋅-≥,进而得122x≤或22x ≥,即可得{1x x ≤-或}1x ≥(2)解不等式2(21)(1)0x m x m m -+++≥得{B x x m =≤或}1x m ≥+,结合(1)得{1A x x =≤-或}1x ≥,根据题意得AB ,进而根据集合关系即可得答案.【详解】(1)由命题p 为真命题,则245220x x ⋅-⋅+≥可化为(22)(221)0x x -⋅-≥解得122x≤或22x ≥,所以实数x 的取值范围是{1x x ≤-或}1x ≥ (2)命题q :由2(21)(1)0x m x m m -+++≥, 得[]()(1)0x m x m --+≥,解得x m ≤或1x m ≥+. 设{1A x x =≤-或}1x ≥,{B x x m =≤或}1x m ≥+ 因为命题q 是命题p 的必要不充分条件,所以AB111m m ≥-⎧⎨+≤⎩,解得10m -≤≤, 所以实数m 的取值范围为[]1,0-. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对的集合与p 对应集合互不包含. 26.(1)13m ≤≤;(2)1m <或23m <≤ 【分析】(1)p 为真命题时,任意[]0,1x ∈,不等式2234x m m -≥-恒成立可转化为()2min 234x m m -≥-,求解即可(2)由题可得,p q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围. 【详解】对于p :()2min 234x m m -≥-成立,而[]0,1x ∈,有()min 233x -=-,∴234m m -≥-,∴13m ≤≤.q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立,只需()2min210x x m -+-≤,而()2min212x x m m -+-=-+,∴20m -+≤,∴2m ≤;(1)若p 为真,则13m ≤≤;(2)若p ,q 有且只有一个为真,则,p q 一真一假.若q 为假命题,p 为真命题,则132m m ≤≤⎧⎨>⎩,所以23m <≤;若p 为假命题,q 为真命题,则132m m m ⎧⎨≤⎩或,所以1m <.综上,1m <或23m <≤. 【点睛】思路点睛:本题考查根据命题的真假求参数,解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.。
成都市高中数学选修2-1第一章《常用逻辑用语》测试题(含答案解析)

一、选择题1.已知x ∈R ,条件2:p x x <,条件1:q a x ≥,若p 是q 的充分不必要条件,则实数a 的取值不可能是( )A .12B .1C .2D .2-2.已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 3.已知命题p :23100x x -->,命题q :23x m m +>﹣,若p ⌝是q ⌝的充分不必要条件,则实数m 的取值范围是( )A .[﹣1,2]B .(﹣∞,﹣1]∪[2,+∞)C .(﹣∞,﹣1)∪(2,+∞)D .(﹣1,2) 4.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题5.下列命题中正确命题的个数是( )①对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++>; ②命题“已知x ,y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题;③设a ,b 是非零向量,则“a b =”是“a b a b +=-”的必要不充分条件; ④3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件. A .1 B .2 C .3 D .46.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( )A .0B .1C .2D .3 7.“12a <<”是“对任意的正数x ,22a x x +≥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③ B .②④ C .②③ D .①④9.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( )A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞ 10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 11.条件甲:关于x 的不等式 sincos 1a x b x +>的解集为空集,条件乙:1a b +≤,则甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 12.下列说法中正确的是( )A .命题“若21x =,则1x =”的否命题是“若21x =,则1x ≠”B .“1x =-”是“220x x --=”的必要不充分条件C .命题“若x y =,则sin sin x y =”的逆否命题是真命题D .“tan 1x =”是“4x π=”的充分不必要条件二、填空题13.若“x ∀∈R ,使210x ax ++≥”为假命题,则实数a 的取值范围为______.14.有下列五个命题:①函数y =2020x在区间(,0)(0,)-∞+∞上是单调递减的;②“0k ≠”是“函数1y kx =+的图像表示一条直线”的充分不必要条件;③函数y =[)0,+∞上是单调递减的;④函数y x =--{|1}y y ≤;⑤22(2)5y x a x =+-+在(4,+∞)上是增函数,则实数a 的取值范围是2a >-;⑥已知函数()y f x =在R 上是单调递增的,若0a b +>,则()()()()f a f b f a f b +>-+-.其中所有正确命题的题号是__________.15.若“x l >”是“x a ≥”的充分不必要条件,则a 的取值范围为______.16.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”;②“1x =-”是“2560x x --=”的必要不充分条件;③命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +->”;④命题“若x y =,则sin sin x y =”的逆否命题为真命题.其中所有正确命题的序号是_________.17.已知命题:P 方程2410x x m ++-=有两个不等的负根;命题:q 方程24420x x m ++-=无实根.若P 、q 两命题中一真一假,则m 的取值范围是__________.18.设α:13x ≤≤;β: 124m x m +≤≤+,m R ∈,若α是β的充分不必要条件,则m 的取值范围是________19.若命题p :∃x ∈R ,ax 2+4x +a <﹣2x 2+1是假命题,则实数a 的取值范围是________. 20.“”是“”的_____条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.22.已知0c >,设p :函数x y c =在R 上递减; q :不等式|2|1x x c +->的解集为R ,如果“p 或q ”为真,且“p 且 q ”为假,求c 的取值范围.23.命题:p 方程210x mx ++=有两个不等的实数根, 命题:q 方程244210()x m x +++=无实数根.若“p 或q ”为真命题,“p 且q ”为假命题.求m 的取值范围.24.已知p :关于x ,y 的方程C :x 2+y 2﹣4x +6y +m 2﹣3=0表示圆;q :圆x 2+y 2=a 2(a >0)与直线3x +4y ﹣5m +10=0有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围.25.已知命题p :关于x 的方程x 2-(3m -2)x +2m 2-m -3=0有两个大于1的实数根. (1)若命题p 为真命题,求实数m 的取值范围;(2)命题q :3-a <m <3+a ,是否存在实数a 使得p 是q 的必要不充分条件,若存在,求出实数a 的取值范围;若不存在,说明理由.26.命题p :关于x 的方程()21210m x x m +-+-=有实数解;命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立; 若命题p 和命题q 都是真命题,则实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先解出命题所对应的集合,再将条件之间的关系转化为集合间的关系,即可得解.【详解】因为x ∈R ,条件2:p x x <,条件1:q a x≥,所以p 对应的集合()0,1A =,q 对应的集合1B xa x ⎧⎫=≥⎨⎬⎩⎭, 又p 是q 的充分不必要条件,所以AB , 当0a =时,集合{}100B x x x x ⎧⎫=≥=>⎨⎬⎩⎭,满足题意; 当>0a 时,集合110B x a x x x a ⎧⎫⎧⎫=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭,此时需满足11a ≥即01a <≤; 当0a <时,集合()11,0,B x a x a ⎧⎫⎛⎤=≥=-∞⋃+∞⎨⎬ ⎥⎩⎭⎝⎦,满足题意; 所以实数a 的取值范围为(],1-∞.所以实数a 的取值不可能是2.故选:C.【点睛】关键点点睛:解决本题的关键是把命题间的关系转化为集合间的关系及分类求解命题q 对应的集合.2.C解析:C【分析】利用函数3y x =,2x y =的单调性,结合充分条件和必要条件的性质判断即可.【详解】函数3y x =在R 上单调递增,则33b a a b <⇔<函数2x y =在R 上单调递增,则22a b a b <⇔<则“33a b <”是 “22a b <”的充要条件故选:C【点睛】本题主要考查了判断充要条件,涉及了利用函数的单调性比较大小,属于中档题. 3.B解析:B【分析】由p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件, 由23100x x -->得5x >或2x <-,只需235m m -+≥,即可.【详解】由23100x x -->得5x >或2x <-,因为p ⌝是q ⌝的充分不必要条件,所以q 是p 的充分不必要条件,所以235m m -+≥,解得2m ≥或1m ≤-.故选:B .【点睛】本题考查充分必要条件求参数取值范围问题,难度一般.4.C解析:C【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D.【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C 错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是“若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C.【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.5.A解析:A【分析】①根据特称命题的否定是全称命题,判断①错误;②原命题与它的逆否命题真假性相同,判断它的逆否命题的真假性即可;③利用向量的平行四边形法则,转化为平行四边形的对角线的关系,判断即可;④计算直线()320m x my ++-=与直线650mx y -+=互相垂直的等价条件为0,3m =,即可.【详解】对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∃∈,均有210x x ++≥,故①不正确;命题“已知x ,y R ∈,,若3x y +≠,则2x ≠或1y ≠”的逆否命题为:“已知x ,y R ∈,,若2x =且=1y ,则3x y +=”为真命题,故②正确;设a ,b 是非零向量,则“a b =”是“a b a b +=-”的既不充分也不必要条件,故③不正确;直线()320m x my ++-=与直线650mx y -+=互相垂直,则0,3m =,故④不正确. 故选:A【点睛】本题考查了命题的否定,逆否命题,充要条件等知识点,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.6.C解析:C【分析】 判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案.【详解】取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真.故选:C .【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.7.A解析:A【分析】已知“对任意的正数x ,22a x x +≥”利用分离参数,求出a 的范围, 再根据充分必要条件的定义进行判断.【详解】由对任意的正数x ,22a x x+≥成立时, 可得222a x x ≥-, 22111222()222y x x x =-=--+≥,12a ∴≥ 即对任意的正数x ,22a x x +≥成立推不出12a <<,当12a <<成立时,可推出2222a a x x x x+⨯=>>, 即12a <<能推出对任意的正数x ,22a x x+≥, 所以“12a <<”是“对任意的正数x ,22a x x +≥”的充分不必要条件, 故选:A【点睛】本题主要考查了充分不必要条件,二次函数的最值,均值不等式,属于中档题. 8.B解析:B【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案.【详解】平面区域为D 满足不等式()()22124x y -+-≤,画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方,所以命题p :()x y D ∀∈,,28x y +≤,是假命题,不存在(),x y D ∈,在直线21x y +=-的下方所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题.故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.9.A解析:A【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围.【详解】 由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤,由条件:q x a >得q ⌝:x a ≤,∵p ⌝是q ⌝的充分不必要条件,∴1a ≥,故选:A .【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.10.C解析:C【分析】利用基本不等式和充分,必要条件的判断方法判断.【详解】2222x y x y ++≥ 且224x y +≤ ,224222x y x y x y ++∴≤⇒≤⇒+≤ ,等号成立的条件是x y =,又2x y xy +≥ ,0,0x y >>221xy xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.A解析:A【分析】分别求出条件甲、乙所对应的,a b 的关系式,比较两个关系式所表示的图形,可得出结论.【详解】由题意,当0a b 时,不等式 sincos 1a x b x +>的解集为空集, 当,a b 不都为0时,()22sin cos sin a x b x a b x ϕ+=++,22sin ba b ϕ=+,22cos aa b ϕ=+.因为()22sin 1a b x ϕ++>的解集为空集,所以221a b +≤,即221a b +≤.如下图,221a b +≤表示以原点为圆心,半径为1的圆及其内部,1a b +≤表示为圆内接正方形及其内部,所以甲是乙的必要不充分条件.故答案为:A.【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档题.12.C解析:C【分析】对选项逐个进行判断,即可得出结论.【详解】A :命题“若21x =,则1x =”的否命题是“若21x ≠,则1x ≠”,故A 不正确;B :“1x =-”是“220x x --=”的充分不必要条件,故B 不正确;C :命题“若x y =,则sin sin x y =”是真命题,所以命题“若x =y ,则sinx =siny ”的逆否命题是真命题,故C 正确;D : “tan 1x =”是“4x π=”的必要不充分条件,故D 不正确.故选:C .【点睛】本题考查命题的真假判断与应用,考查四种命题,考查充要条件,属于中档题. 二、填空题13.【分析】根据 是假命题得出它的否定命题是真命题求出实数a 的取值范围【详解】∵命题 是假命题∴是真命题即使不等式有解;所以解得:或∴实数a 的取值范围是故答案为:【点睛】关键点点睛:根据特称命题与全称命 解析:(,2][2,)-∞-+∞【分析】根据“R x ∀∈,210x ax ++> ”是假命题,得出它的否定命题是真命题,求出实数a 的取值范围.【详解】∵命题“R x ∀∈,210x ax ++> ”是假命题,∴R x ∃∈,210x ax ++≤是真命题,即R x ∃∈使不等式210x ax ++≤有解;所以240a ∆=-≥,解得:2a ≤-或2a ≥.∴实数a 的取值范围是(,2][2,)-∞-+∞.故答案为:(,2][2,)-∞-+∞.【点睛】关键点点睛:根据特称命题与全称命题的真假求参数,转化为一元二次不等式能成立问题是解题的关键,属于中档题.14.②④⑥【分析】根据单调性的定义判断命题①③⑤⑥根据充分不必要条件的定义判断②结合二次函数性质求出函数值域判断④【详解】函数例如此时函数在不是减函数①错误;时函数的图象是一条直线充分的但时函数的图象也解析:②④⑥【分析】根据单调性的定义判断命题①③⑤⑥,根据充分不必要条件的定义判断②,结合二次函数性质求出函数值域判断④.【详解】 函数2020y x=,例如11x =-,21x =,此时122020202020202020x x =-<=,函数在(,0)(0,)-∞+∞不是减函数,①错误;0k ≠时,函数1y kx =+的图象是一条直线,充分的,但0k =时函数1y kx =+的图象也是一条直线,不必要.②正确;函数y =的定义域是[1,1]-,③错误;2(1)121)2y x x =--=-+-+=-+,0≥,所以21)1≥,21)21y =-+≤,值域为(,1]-∞,④正确;22(2)5y x a x =+-+22(2)5(2)x a a =+-+--在(4,+∞)上是增函数,则24a -+≤,2a ≥-,⑤错;0a b +>,则,a b b a >->-,又函数()y f x =在R 上是单调递增,则()(),()()f a f b f b f a >->-,所以()()()()f a f b f a f b +>-+-,⑥正确. 故答案为:②④⑥.【点睛】关键点点睛:本题考查函数的单调性,函数的值域与充分不必要条件.单调性中强调区间内自变量的任意性,即函数()f x 在(,)a b 和(,)m n 是都是增函数,不能直接说明()f x 在(,)(,)a b m n 上是增函数(减函数也是如此).15.【分析】根据充分条件和必要条件的定义进行求解即可【详解】若是的充分不必要条件则则故答案为【点睛】本题主要考查充分条件和必要条件的判断比较基础判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题则 解析:a 1≤【分析】根据充分条件和必要条件的定义进行求解即可.【详解】若“x l >”是“x a ≥”的充分不必要条件,则(1,)[,)a +∞⊆+∞,则a 1≤,故答案为a 1≤【点睛】本题主要考查充分条件和必要条件的判断,比较基础.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.16.④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若解析:④【分析】①根据命题的否命题和原命题之间的关系判断;②利用充分条件和必要条件的定义判断;③利用特称命题的否定判断;④利用逆否命题的等价性进行判断.【详解】解:①根据否命题的定义可知,命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题,得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为:④.【点睛】本题考查命题的真假判断,以及充分必要条件、四种命题的关系和真假性的判断,属于基础题.17.【分析】首先求出当两个命题是真命题时的取值范围再根据两命题中一真一假列不等式求的取值范围【详解】若方程有两个不等的负根则解得:若方程无实根则解得:当真假时解得:;当假真时解得:综上可知:的取值范围是 解析:(1,3][5,)⋃+∞【分析】首先求出当,p q 两个命题是真命题时,m 的取值范围,再根据P 、q 两命题中一真一假,列不等式求m 的取值范围.【详解】:p 若方程有两个不等的负根,则()1212164104010m x x x x m ⎧∆=-->⎪+=-<⎨⎪=->⎩ ,解得:15m <<:q 若方程无实根,则()164420m ∆=-⨯-<,解得:3m >,当p 真q 假时,153m m <<⎧⎨≤⎩,解得:13m <≤; 当p 假q 真时,153m m m ≤≥⎧⎨>⎩或 ,解得:5m ≥, 综上可知:m 的取值范围是13m <≤或5m ≥.故答案为:(1,3][5,)⋃+∞【点睛】本题考查根据命题的真假求参数的取值范围,重点考查根据一元二次方程实数根求参数的取值范围,属于基础题型.18.【分析】α是β的充分不必要条件可知即可求解【详解】因为α:;β:α是β的充分不必要条件所以即解得故答案为:【点睛】本题主要考查了充分不必要条件真子集的概念属于中档题 解析:102m -≤≤ 【分析】α是β的充分不必要条件可知[1,3] [1,24]m m ++,即可求解.【详解】因为α:13x ≤≤;β: 124m x m +≤≤+,m R ∈,α是β的充分不必要条件 所以[1,3] [1,24]m m ++,即11324m m +≤⎧⎨≤+⎩,解得102m -≤≤. 故答案为:102m -≤≤ 【点睛】本题主要考查了充分不必要条件,真子集的概念,属于中档题.19.【分析】利用命题p 为假命题得到非p 为真命题即∀x ∈Rax2+4x+a≥﹣2x2+1恒成立即可求出实数a 的取值范围【详解】∵∃x ∈Rax2+4x+a <﹣2x2+1是假命题∴非p 为真命题即∀x ∈Rax2解析:[)2,+∞【分析】利用命题p 为假命题,得到非p 为真命题,即∀x ∈R ,ax 2+4x +a ≥﹣2x 2+1恒成立,即可求出实数a 的取值范围.【详解】∵∃x ∈R ,ax 2+4x +a <﹣2x 2+1是假命题,∴非p 为真命题,即∀x ∈R ,ax 2+4x +a ≥﹣2x 2+1恒成立,∴∀x ∈R ,(a +2)x 2+4x +a ﹣1≥0恒成立,若a +2=0,即a =﹣2,不等式等价为4x ﹣3≥0,解得x 34≥,不满足条件. 若a +2≠0,要使不等式恒成立,则必有()()20164210a a a +⎧⎨=-+-≤⎩>,即2260a a a -⎧⎨+-≥⎩>, ∴223a a a -⎧⎨≥≤-⎩>或,解得a ≥2. 故答案为a ≥2.【点睛】本题主要考查含有量词的命题的否定的应用,命题p 为假命题,得到非p 为真命题,是解决本题的关键.20.必要不充分条件【解析】【分析】由a2>1解得a>1或a<-1由a3>1解得a>1进而判断出结论【详解】由a2>1解得a>1或a<-1由a3>1解得a>1因为(-∞-1)∪(1+∞)⊃≠(1+∞)所以解析:必要不充分条件【解析】【分析】由,解得或,由解得,进而判断出结论. 【详解】 由,解得或, 由解得, 因为, 所以“”是“”的必要不充分条件, 故答案是:必要不充分条件.【点睛】该题考查的是有关必要不充分条件的判断,涉及到的知识点有不等式的解法,必要不充分条件的定义,属于简单题目. 三、解答题21.(1)[)2,3;(2)12a <<.【分析】(1)当1a =时,分别求出p ,q 成立的等价条件,利用p q ∧为真可得x 的取值范围; (2)由题可得q 是p 的充分不必要条件,得Q P ,从而可得a 的取值范围.【详解】(1)当1a =时,由()()130x x --<,得p :13x <<,由428x ≤≤,得:q 23x ≤≤,由p ∧q 为真,即p ,q 均为真命题,因此x 的取值范围是[)2,3.(2)若¬p 是¬q 的充分不必要条件,可得q 是p 的充分不必要条件,由题可得命题p 对应的集合{}3P x a x a =<<,命题q 对应的集合{}23Q x x =≤≤, 所以Q P ,因此2a <且33a <,解得12a <<.即实数a 的取值范围是12a <<.【点睛】本题考查充分必要条件的定义和应用,考查复合命题的真假判断,考查分析解决问题的能力,属于基础题. 22.[)10,1,2⎛⎤+∞ ⎥⎝⎦【分析】 计算p 为真时()0,1c ∈,q 为真时12c >,讨论p 真q 假,或p 假q 真两种情况,分别计算得到答案.【详解】p :函数x y c =在R 上递减,故()0,1c ∈;q :不等式|2|1x x c +->的解集为R ,当2x c ≥时,|2|221x x c x c +-=->,即12c x <-,故min 11222c x c ⎧⎫<-=-⎨⎬⎩⎭, 解得12c >; 当2x c <时,|2|21x x c c +-=>,解得12c >. 综上所述:12c >. “p 或q ”为真,且“p 且 q ”为假,故p 真q 假,或p 假q 真.当p 真q 假时,0112c c <<⎧⎪⎨≤⎪⎩,故10,2c ⎛⎤∈ ⎥⎝⎦;当p 假q 真时,112c c ≥⎧⎪⎨>⎪⎩,故[)1,c ∈+∞. 综上所述:[)10,1,2c ⎛⎤∈+∞ ⎥⎝⎦.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和转化能力.23.3m ≤-或2m >或21m -≤<-根据题意可知,p q 命题一个是真命题,一个是假命题;先求出两个命题都为真时参数的范围,再分类讨论,先交后并即可.【详解】若p 真:则可得240m =->,解得2m >或2m <-, 若q 真:则可得()2162160m =+-<,解得3<1m -<-. 因为“p 或q ”为真命题,“p 且q ”为假命题,故可得,p q 一个是真命题,一个是假命题.当p 真q 假,则2m >或2m <-,且3m ≤-或1m ≥-,解得3m ≤-或2m >. 当p 假q 真222131m m m -⎧⇒-<-⎨-<<-⎩∴3m ≤-或2m >或21m -≤<-.【点睛】本题考查由命题的真假求参数的范围问题,属基础题.24.(),2-∞.【分析】转化条件为p :44m <<-,q :22a m a ≤≤+-,再根据p 是q 的必要充分条件即可得解.【详解】∵p :关于x ,y 的方程2224630C x y x y m +++:--=表示圆;∴()()2222316x y m ++--=表示圆,即2160m ->,∴44m <<-; ∵q :圆2220x y a a +>=()与直线345100x y m +-+=有公共点.∴510m d a -+=≤,解得22a m a ≤≤+-;∵p 是q 的必要不充分条件,∴2424a a ->-⎧⎨+<⎩,解得2a <; 故实数a 的取值范围是(),2-∞.【点睛】本题考查了圆的解析式、直线与圆的位置关系、条件之间的关系,属于中档题. 25.(1)m >2;(2)存在a ≤1.【分析】(1)求出两个根x =m +1或x =2m -3,满足m +1>1且2m -3>1即可求出;(2)设集合A ={}|2m m >,集合B ={}|33m a m a -<<+,由题可得B A ,讨论B =∅和B ≠∅两种情况可求出.(1)由x 2-(3m -2)x +2m 2-m -3=0得[x -(m +1)][x -(2m -3)]=0,所以x =m +1或x =2m -3,因为命题p 为真命题,所以m +1>1且2m -3>1,得m >2.(2)设集合A ={}|2m m >,集合B ={}|33m a m a -<<+,因为p 是q 的必要不充分条件,所以B A ,当B =∅时,33a a -+≥,解得a ≤0;当B ≠∅时,33,32,a a a -<+⎧⎨-≥⎩解得01a <≤. 综上所述:存在a ≤1,满足条件.【点睛】结论点睛:本题考查根据必要不充分条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含.26.⎢⎣【分析】对于命题p ,讨论1m =-和1m ≠-时,结合判别式求出m 范围;对于命题q ,根据()1123x x g x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调性求出最值即可得出m 范围,联立两个命题即可得出答案. 【详解】命题p :关于x 的方程()21210m x m +-+-=有实数解,讨论如下:①1m =-显然成立;②1m ≠-时,()()()224110m m ∆=--+-≥,整理的220m -≥解得:m ≤≤1m ≠-;∴命题p为真命题时,m ≤ 命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立 令()1123x x g x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,[)0,x ∈+∞ 函数()y g x =在[)0,+∞单调递减,()(],2g x m m ∈+ 不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭恒成立,∴0m ≥;因为命题p和命题q都是真命题,所以m的范围⎢⎣.【点睛】方法点睛:解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.。
选修2-1数学第1章_常用逻辑用语单元练习题含答案

选修2-1数学第1章常用逻辑用语单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知命题"∀x∈R,ax2+4x+1>0"是假命题,则实数a的取值范围是( )A.(4,+∞)B.(0,4]C.(−∞,4]D.[0,4)2. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m//α”是“m//n”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3. 设命题P:∃n∈N,n2<2n,则¬P为()A.∀n∈N,n2<2nB.∃n∈N,n2≥2nC.∀n∈N,n2≥2nD.∃n∈N,n2>2n4. 命题“∀x∈R,sin x+1≥0”的否定是( )A.∃x0∈R,sin x0+1<0B.∀x∈R,sin x+1<0C.∃x0∈R,sin x0+1≥0D.∀x∈R,sin x+1≤05. 已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q6. 若命题p的否命题是命题q,命题q的逆否命题是命题r,则r是p的()A.逆否命题B.否命题C.逆命题D.原命题7. 命题p:|x|<a(a>0),命题q:{x|−2<x<3},若p是q的必要条件,则a的取值范围是( )A.{a|a≤3}B.{a|a≥3}C.{a|a>3}D.{a|a<3}8. 若原命题是“若x=2,则x2−x−2=0”,则它的逆命题、否命题和逆否命题三个命题中真命题的个数是( )A.0个B.1个C.2个D.3个9. 已知命题p:∃x∈R,使x2+x+1<0;命题q:∀x∈R,都有e x≥x+1.下列结论中正确的是()A.命题“p∧q”是真命题B.命题“p∧¬q”是真命题C.命题“¬p∧q”是真命题D.命题“¬p∨¬q”是假命题10. 设x∈R,若“x>3”是“x>2m2−1”的充分不必要条件,则实数m的取值范围是( )A.[−√2, √2]B.(−1, 1)C.(−√2,√2)D.[−1,1]11. 下列说法正确的是()A.“x2+x−2>0”是“x>l”的充分不必要条件B.“若am2<bm2,则a<b的逆否命题为真命题C.命题“∃x∈R,使得2x2−1<0”的否定是:“∀x∈R,均有2x2−1<0”,则tan x=1的逆命题为真命题D.命题“若x=π412. 下列命题不是“∃x∈R,x2>3”的表述方法的是()A.有一个x∈R,使得x2>3成立B.对有些x∈R,x2>3成立C.任选一个x∈R,都有x2>3成立D.至少有一个x∈R,使得x2>3成立13. 已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α,β构成直二面角”是“m⊥β的________条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)14. 全称命题“∀x>0,3x2+2x>2”的否定是________.15. 命题p:“若x>1,则x2>1”,命题q:“若x≤1,则x2≤1”,q是p________(“否命题”,”命题的否定”).16. “任意一个不大于0的数的立方不大于0”用“∃”或“∀”符号表示为________.17. 判断下列命题是全称量词命题还是存在量词命题,并用量词符号表达出来.(1)正方形是菱形;(2)有的假分数小于等于1;(3)关于x的方程ax+b=0都有唯一解.18. 已知k∈R.设p:∀x∈[1,2],(k+1)x−2>0恒成立,命题q:∀x∈R,使得x2+ kx+1≥0.(1)若p∧q是真命题,求k的取值范围;(2)若p∧(¬q)为假.p∨(¬q)为真,求k的取值范围.19. 证明:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.20. 已知a>0,设p:函数y=a x在R上是增函数;q:不等式ax2−ax+1>0对∀x∈R恒成立.若“p∨q”为真,“p∧q”为假,求实数a的取值范围.21. 命题:“若a2+b2=0,则a=b=0”是命题:“若a≠0或b≠0,则a2+b2≠0”的_____.(填:逆命题,否命题,逆否命题)22. 命题p:实数x满足x2−4ax+3a2<0,其中a<0,命题q:实数x满足x2−x−6≤0,且q是p的必要不充分条件,求a的取值范围.参考答案与试题解析选修2-1数学第1章常用逻辑用语单元练习题含答案一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】C【考点】全称命题与特称命题命题的真假判断与应用【解析】此题暂无解析【解答】解:当原命题为真命题时,a>0且Δ<0,所以a>4,故当原命题为假命题时,a≤4.故选C.2.【答案】B【考点】必要条件、充分条件与充要条件的判断直线与平面平行的判定【解析】本题考查空间中线面位置关系以及充分条件、必要条件的判断.【解答】解:若m//α,m⊄α,n⊂α,不一定推出m//n,直线m与n可能异面,若m⊄α,n⊂α,m//n,由线面平行的判定定理知m//α.故“m//α”是“m//n”的必要不充分条件.故选B.3.【答案】C【考点】命题的否定【解析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以命题P:∃n∈N,n2<2n的否定是∀n∈N,n2≥2n;故选:C4.【答案】A【考点】全称命题与特称命题【解析】利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“∀x∈R,sin x+1≥0”的否定是“∃x0∈R,sin x0+1<0”.故选A.5.【答案】B【考点】逻辑联结词“或”“且”“非”指、对数不等式的解法【解析】本题考查含有逻辑联结词的命题及其真假判断.【解答】解:命题p中,∀x>0,x+1>1,所以ln(x+1)>ln1=0,p为真命题,¬p为假命题.命题q中,令a=−2,b=−3,满足a>b,但(−2)2<(−3)2,所以q为假命题,¬q为真命题,所以p∧(¬q)为真命题.故选B.6.【答案】C【考点】四种命题间的逆否关系【解析】利用四种命题之间的关系进行判断即可.【解答】解:设命题p的条件为m,结论为n,则p:m⇒n,则q:¬m⇒¬n,因为q的逆否命题是命题r,所以r:n⇒m.所以r是p的逆命题.故选C.7.【答案】B【考点】根据充分必要条件求参数取值问题【解析】此题暂无解析【解答】解:因为|x|<a(a>0),所以−a<x<a.p :−a <x <a ,q :−2<x <3,若p 是q 的必要条件,则{x|2<x <3}⊆{x|−a <x <a},所以{−a ≤−2,a ≥3,所以a ≥3.故选B .8.【答案】B【考点】四种命题的真假关系【解析】首先判断原命题是正确的,则原命题的逆否命题就是正确的,再判断原命题的逆命题的真假,用特例判断是一个假命题,则原命题的否命题是一个假命题.【解答】解:若x =2,则x 2−x −2=22−2−2=0成立,∴ 原命题是正确的,∴ 逆否命题是正确的.原命题的逆命题是:若x 2−x −2=0,则x =2,解x 2−x −2=0可得:x 1=−1,x 2=2,∴ 原命题的逆命题是一个假命题,∴ 原命题的否命题也是一个假命题,∴ 它的逆命题、否命题、逆否命三个命题中,真命题的个数是1.故选B .9.【答案】C【考点】复合命题及其真假判断【解析】首先判断命题p 和q 的真假,再利用真值表对照各选项选择.命题p 的真假结合二次函数的图象只需看△,命题q 通过求导得f(x)最小值来确定真假.【解答】命题P 是假命题;因为x 2+x +1=(x +12)2+34>0,所以∀∈R ,x 2+x +1>0. 命题q 是真命题;令f(x)=e x −x −1,f′(x)=e x −1,当x >0时,f′(x)>0,f(x)递增,当x <0时,f′(x)<0,f(x)递减,f(x)min =f(0)=0,∴ f(x)≥0,∴ e x ≥x +1 (x ∈R),∴ “¬p ∧q “是真命题.10.C【考点】充分条件、必要条件、充要条件根据充分必要条件求参数取值问题【解析】x>3”是“x>2m2−1”的充分不必要条件,可得3≥2m2−1,解得m范围.【解答】解:因为“x>3”是“x>2m2−1”的充分不必要条件,所以3>2m2−1,解得−√2<m<√2.故选C.11.【答案】B【考点】四种命题的定义【解析】选项A,根据充分条件和必要条件判断即可,选项B,根据逆否命题及其真假判断即可,选项C,根据命题的否定判断即可,选项D,根据逆命题及其真假判断即可.【解答】解:选项A,x2+x−2>0,解得x<−2或x>1,故“x2+x−2>0”是“x>l”的必要不充分条件,故A错误,选项B,“若am2<bm2,则a<b”的逆否命题为“若a≥b,则am2≥bm2”为真命题,故B正确,选项C,命题“∃x∈R,使得2x2−1<0”的否定是:“∀x∈R,均有2x2−1≥0,故C 错误,选项D,命题“若x=π4,则tan x=1”的逆命题“若tan x=1,则x=π4”,因为tan x=1,则x=kπ+π4”,故D错误,故选:B.12.【答案】C【考点】全称命题与特称命题全称量词与存在量词【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【考点】充分条件、必要条件、充要条件【解析】根据充分条件和必要条件的定义分别进行判断即可.【解答】解:已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α,β构成直二面角”不能推出“m⊥β;若“m⊥β,m为平面α内的一条直线,则“α⊥β,能推出“α,β构成直二面角;由充要条件定义可知:α,β表示两个不同的平面,m为平面α内的一条直线,则“α,β构成直二面角”是“m⊥β的:必要不充分条件.故答案为:必要不充分.14.【答案】“∃x>0,3x2+2x≤2”【考点】全称命题的否定【解析】无【解答】解:根据全称命题的否定是特称命题知,命题“∀x>0,3x2+2x>2”的否定是“∃x>0,3x2+2x≤2”.故答案为:“∃x>0,3x2+2x≤2”.15.【答案】否命题【考点】四种命题的定义非命题【解析】根据由命题“若m,则n”的否命题是“若非m,则非n”,判断即可.【解答】解:由命题“若m,则n”的否命题是“若非m,则非n”,可知“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”.故答案为:否命题.16.【答案】∀x≤0,x3≤0【考点】全称命题与特称命题全称量词与存在量词【解析】此题暂无解析三、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )17.【答案】解:(1)全称量词命题;用量词符号表达为:∀x 是正方形,x 是菱形.(2)存在量词命题;用量词符号表达为:∃x 是假分数,有x ≤1.(3)全称量词命题;用量词符号表达为:∀a ,b ∈R ,关于x 的方程ax +b =0都有唯一解.【考点】全称命题与特称命题【解析】无无无【解答】解:(1)全称量词命题;用量词符号表达为:∀x 是正方形,x 是菱形.(2)存在量词命题;用量词符号表达为:∃x 是假分数,有x ≤1.(3)全称量词命题;用量词符号表达为:∀a ,b ∈R ,关于x 的方程ax +b =0都有唯一解.18.【答案】解:(1)若p 为真,即p:∀x ∈[1,2],(k +1)x −2>0恒成立,可得{(k +1)−2>0,2(k +1)−2>0,解得k >1,若q 为真,即q:∀x ∈R ,使得x 2+kx +1≥0,则Δ=k 2−4≤0,解得−2≤k ≤2若p ∧q 是真命题,则p ,q 为真,可得{k >1,−2≤k ≤2,所以1<k ≤2,所以k 的取值范围(1,2].(2)因为p ∧(−q )为假,p ∨(¬q )为真,所以p ,¬q 一真一假,即p ,q 同真同假.当p ,q 都真时,由(1)知1<k ≤2当p ,q 都假时,{k ≤1,k <−2或k >2,即k <−2,综上可得1<k ≤2或k <−2,故a 的范围为{k|1<k ≤2或k <−2}.逻辑联结词“或”“且”“非”命题的真假判断与应用【解析】此题暂无解析【解答】解:(1)若p 为真,即p:∀x ∈[1,2],(k +1)x −2>0恒成立,可得{(k +1)−2>0,2(k +1)−2>0,解得k >1,若q 为真,即q:∀x ∈R ,使得x 2+kx +1≥0,则Δ=k 2−4≤0,解得−2≤k ≤2若p ∧q 是真命题,则p ,q 为真,可得{k >1,−2≤k ≤2,所以1<k ≤2,所以k 的取值范围(1,2].(2)因为p ∧(−q )为假,p ∨(¬q )为真,所以p ,¬q 一真一假,即p ,q 同真同假.当p ,q 都真时,由(1)知1<k ≤2当p ,q 都假时,{k ≤1,k <−2或k >2,即k <−2,综上可得1<k ≤2或k <−2,故a 的范围为{k|1<k ≤2或k <−2}.19.【答案】证明:必要性:由于方程ax 2+bx +c =0有一个正根和一个负根.设方程的两根为x 1,x 2,所以Δ=b 2−4ac >0,x 1x 2=c a <0, 所以ac <0.充分性:由ac <0,可推得b 2−4ac >0,及x 1x 2=c a <0.所以方程ax 2+bx +c =0有两个相异实根,且两根异号.即方程ax 2+bx +c =0有一正根和一负根.综上可知:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【考点】必要条件、充分条件与充要条件的判断【解析】根据韦达定理,先判断出“一元二次方程ax2+bx +c =0有一个正根和一个负根”能推出“ac <0”成立,反之再由韦达定理,判断出“ac <0”成立能推出“一元二次方程ax2+bx +c =0有一个正根和一个负根”,利用充要条件的有关定义得到结论.证明:必要性:由于方程ax2+bx+c=0有一个正根和一个负根.设方程的两根为x1,x2,所以Δ=b2−4ac>0,x1x2=ca<0,所以ac<0.充分性:由ac<0,可推得b2−4ac>0,及x1x2=ca<0.所以方程ax2+bx+c=0有两个相异实根,且两根异号.即方程ax2+bx+c=0有一正根和一负根.综上可知:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.20.【答案】解:若p真,则a>1.若q真,则Δ=a2−4a<0,解得0<a<4.∵p∧q为假,p∨q为真,∴命题p,q一真一假.∴当p真q假时,{a>1,a≥4,∴a≥4;当p假q真时,{0<a≤1,0<a<4,∴0<a≤1;综上,a的取值范围是(0, 1]∪[4, +∞).【考点】全称命题与特称命题复合命题及其真假判断逻辑联结词“或”“且”“非”函数恒成立问题【解析】通过指数函数的单调性,一元二次不等式的解为R时判别式△的取值求出命题p,q下a 的取值范围,而根据p且q为假,p或q为真知道p真q假,或p假q真,分别求出这两种情况下a的取值范围再求并集即可.【解答】解:若p真,则a>1.若q真,则Δ=a2−4a<0,解得0<a<4.∵p∧q为假,p∨q为真,∴命题p,q一真一假.∴当p真q假时,{a>1,a≥4,当p假q真时,{0<a≤1,0<a<4,∴0<a≤1;综上,a的取值范围是(0, 1]∪[4, +∞).21.【答案】逆否命题【考点】四种命题间的逆否关系【解析】命题的逆否命题是将命题的假设的否定作为结论,将命题的结论得否定作为假设.【解答】解:"a=b=0"的否定是"a≠0或b≠0",且其作为新命题的假设;"a2+b2=0 "的否定是"a2+b2≠0",且其作为新命题的结论.故答案为:逆否命题.22.【答案】解:由x2−4ax+3a2<0(a<0),得3a<x<a,即p:3a<x<a.由x2−x−6≤0得−2≤x≤3,即q:−2≤x≤3.因为q是p的必要不充分条件,所以−2≤3a<0,解得−23≤a<0.即a的取值范围−23≤a<0.【考点】根据充分必要条件求参数取值问题一元二次不等式的解法【解析】结合一元二次不等式的解法,利用充分条件和必要条件的定义进行判断.【解答】解:由x2−4ax+3a2<0(a<0),得3a<x<a,即p:3a<x<a.由x2−x−6≤0得−2≤x≤3,即q:−2≤x≤3.因为q是p的必要不充分条件,所以−2≤3a<0,解得−23≤a<0.即a的取值范围−23≤a<0.。
(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(包含答案解析)

一、选择题1.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( ) A .p ∧q B .¬p ∨q C .¬p ∧qD .¬p ∨q ⌝2.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .33.下列命题中为真命题的是( )A .若命题p :“2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--≤”B .直线,a b 为异面直线的充要条件是直线,a b 不相交C .“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充要条件D .0x ≠则12x x+≥ 4.下列说法中错误的是( )A .命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”.B .在ABC 中,sin sin cos cos A B A B A B <⇔<⇔>.C .已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.D .从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.5.设a ,b ,c +∈R ,则“1abc =”是a b c+≤++”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要的条件6.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③一组数据a ,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为ˆˆˆy a bx=+中,ˆ2b=,1x =,3y =,则ˆ1a =. 其中真命题为( ) A .①②④B .②④C .②③④D .③④7.下列说法正确的是( )A .命题“,0x x R e ∀∈>”的否定是“,0x x R e ∃∈>”B .命题“已知,x y R ∈,若3,x y +≠则2x ≠或1y ≠”是真命题C .命题“若1,a =-则函数2()21f x ax x =+-只有一个零点”的逆命题为真命题D .“22x x ax +≥在[]1,2x ∈上恒成立”2min min (2)()x x ax ⇔+≥在[]1,2x ∈上恒成立8.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”; ②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个9.已知m ,n 为空间中两直线,α,β为两不同平面,已知命题:p 若m α⊂,m β⊥,则αβ⊥;命题:q 若m α⊂,n ⊂α,//m β,//n β,则//αβ.则p ,()q ⌝,()p q ∧,()p q ∨这四个命题中真命题的个数为( )A .1B .2C .3D .410.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( ) A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞11.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件12.下列命题正确的是( )A .“若x =3,则x 2﹣2x ﹣3=0”的否命题是:“若x =3,则x 2﹣2x ﹣3≠0”B .在△ABC 中,“A >B ”是“sinA >sinB ”的充要条件 C .若p ∧q 为假命题,则p ∨q 一定为假命题D .“存在x 0∈R ,使得e x 0≤0”的否定是:不存在x 0∈R ,使得e 0x >0”二、填空题13.已知{}|13A x x =-<<, {}11|B x x m =-<<+,若x B ∈成立的一个必要不充分条件是x A ∈,则实数m 的取值范围是_______________. 14.有下列五个命题:①函数y =2020x在区间(,0)(0,)-∞+∞上是单调递减的;②“0k ≠”是“函数1y kx =+的图像表示一条直线”的充分不必要条件;③函数y =[)0,+∞上是单调递减的;④函数y x =--{|1}y y ≤;⑤22(2)5y x a x =+-+在(4,+∞)上是增函数,则实数a 的取值范围是2a >-;⑥已知函数()y f x =在R 上是单调递增的,若0a b +>,则()()()()f a f b f a f b +>-+-.其中所有正确命题的题号是__________.15.已知命题p :2,20x R x x m ∃∈++≤,命题q :幂函数113()m f x x +-=在(0,)+∞是减函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数m 的取值范围是_________.16.已知命题p :x R ∀∈,240x mx ++≥;命题q :0(0,)x ∃∈+∞,000xe mx -=,若p q ∧为真命题,则实数m 的取值范围是_______________;17.若命题“存在实数x ,使得()222(2)40a x a x -+--≥成立”是假命题,则实数a 的取值范围是________.18.若命题“2,390x R x ax ∃∈-+≤”为假命题,则实数a 的取值范围是_______. 19.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________. 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题:q 实数x 满足428x ≤≤.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 22.已知1:22x p x +>-,2:50q x ax -+>. (1)若p ⌝为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.23.命题p :函数()()22lg 430y x ax aa =-+->有意义;命题q :实数x 满足302x x -<-. (1)当1a =且p q ∧为真时,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论. 25.已知0a >,命题:p 函数2(1)y a x =-在(0,)+∞上为增函数;命题:q 当1,22x ⎡⎤∈⎢⎥⎣⎦时函数11()f x x x a=+>恒成立.如果p q ∨为真命题,p q ∧为假命题,求a 的范围. 26.已知函数()f x 对一切,x y R ∈都有22()()(23)1f x y f y x x x y y y +--=+++++成立.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当304x ≤≤时,不等式()2f x x a <+恒成立,Q :当[]2,2x ∈-时,()()g x f x ax =+不是单调函数,求满足P 为真命题且Q 为假命题的a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.2.B解析:B【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.3.A解析:A 【分析】A ,根据一个是特称命题的否定,变为全称命题,即可判断;B ,根据空间中两条直线的位置关系得到结果;C ,根据两条直线垂直的条件得到a 的值;D 、根据基本不等式得到,这个不等式大于等于2或小于等于2-.【详解】解:对于A ,根据特称命题的否定形式知道:命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”,故A 是真命题;对于B ,直线a ,b ,为异面直线的充要条件是直线a ,b 不相交且不平行,故B 为假命题;对于C ,“直线0x ay -=与直线0x ay +=互相垂直” ⇔ “1a =±”,故“1a =”是“直线0x ay -=与直线0x ay +=互相垂直”的充分不必要条件,故C 为假命题;对于D ,若0x >,则12x x+,或若0x <,则12x x +-,故D 为假命题. 故选:A . 【点睛】本题考查命题的否定,考查函数的值域,考查空间中两条直线的位置关系,考查特称命题和全称命题的否定,属于中档题.4.C解析:C 【分析】选项A 根据命题的否定判断,选项B 根据正弦定理及两角和的余弦公式判定即可,选项C 可根据均值及方差的性质判断,选项D 根据互斥事件与对立事件的定义判断即可. 【详解】A 中根据命题的否定可知,命题“1x ∀>,20x x ->”的否定是“01x ∃>,2000x x -≤”正确;B 中A B <可知a b <,根据正弦定理可得sin sin A B <,同理可知由sin sin A B <可得a b <,可得A B <,即sin sin A B A B <⇔<,因为cos y x =在(0,)x π∈上单调递减,且(0,),(0,)A B ππ∈∈,所以cos cos A B A B <⇔>,故正确;C 中设原数据中方差为2s ,则加入一个新数据3后平均值为63337⨯+=,方差为2226(33)677s s ⨯+-=,故不正确;D 中,事件“至多一个红球”与“都是红球”不能同时发生,而且在一次试验中有且只有一个事件发生, 故互斥且对立正确. 故选:C 【点睛】本题主要考查了命题的否定,三角形中的充要条件,平均值与方差,互斥与对立事件,属于中档题.5.A解析:A 【分析】证充分性时,利用“1”的代换,通过基本不等式论证,必要性时,取特殊值即可. 【详解】 因为1abc =,所以222c b a c a b a b c +++++=≤++=++,当且仅当1a b c ===,取等号,故充分,当4a b c ===a b c≤++,故不必要, 故选:A. 【点睛】本题主要考查逻辑条件涉及了基本不等式,还考查了运算求解的能力,属于中档题.6.B解析:B 【分析】利用概率统计中的系统抽样、平均数、众数、中位数及线性回归直线方程的概念及应用,对选项逐项判定,即可求解. 【详解】由题意,对于①中,7,,33,46x 的公差为4671341d -==-, 所以71320x =+=,即样本中另一位同学的编号为20,所以不正确;对于②中,数据1,2,3,3,4,5的平均数为12344536x +++++==,众数为3,中位数为3332+=,所以数据的平均数、众数和中位数是相同的,所以是正确. 对于③中,数据a ,0,1,2,3的平均数为01236155a a x +++++===,解得1a =-,所以方差为2222221[(11)(01)(11)(21)(31)]25s =--+-+-+-+-=,对于④中,因为ˆ2b=,所以ˆˆ2y a x =+,根据回归直线方程ˆˆ2y a x =+必过样本中心点(1,3),即ˆ321a=+⨯,解答ˆ1a =,所以是正确的. 故选:B . 【点睛】本题主要考查了命题的真假判定及应用,着重考查了系统抽样、平均数、众数、中位数的概念与计算,以及线性回归方程的应用,属于中档试题.7.B解析:B 【分析】A .注意修改量词并否定结论,由此判断真假;B .写出逆否命题并判断真假,根据互为逆否命题同真假进行判断;C .写出逆命题,并分析真假,由此进行判断;D .根据对恒成立问题的理解,由此判断真假. 【详解】A .“,0x x R e ∀∈>”的否定为“,0x x R e ∃∈≤”,故错误;B .原命题的逆否命题为“若2x =且1y =,则3x y +=”,是真命题,所以原命题是真命题,故正确;C .原命题的逆命题为“若函数2()21f x ax x =+-只有一个零点,则1a =-”, 因为0a =时,()21f x x =-,此时也仅有一个零点,所以逆命题是假命题,故错误;D .“22x x ax +≥在[]1,2x ∈上恒成立”⇔“min2x a x ⎛⎫+≥ ⎪⎝⎭在[]1,2x ∈上恒成立”,故错误. 故选:B. 【点睛】本题考查命题真假的判断,涉及到函数零点、含一个量词的命题的真假判断、不等式恒成立问题的理解等内容,难度一般.注意互为逆否命题的两个命题真假性相同.8.C【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.9.C解析:C 【分析】先判断每个命题的真假,再由复合命题的真值表确定真假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-1第一章《常用逻辑用语》单元测试题
一、选择题:
1.命题“梯形的两对角线互相不平分”的形式为( )
A .p 或q
B .p 且q
C .非p
D .简单命题
2.若命题p :2n -1是奇数,q :2n +1是偶数,则下列说法中正确的是( )
A .p 或q 为真
B .p 且q 为真
C . 非p 为真
D . 非p 为假
3.对命题p :A ∩∅=∅,命题q :A ∪∅=A ,下列说法正确的是( )
A .p 且q 为假
B .p 或q 为假
C .非p 为真
D .非p 为假
4.“至多四个”的否定为( )
A .至少有四个
B .至少有五个
C .有四个
D .有五个
5.下列存在性命题中,假命题是( )
A .∃x ∈Z ,x 2-2x-3=0
B .至少有一个x ∈Z ,x 能被2和3整除
C .存在两个相交平面垂直于同一条直线
D .∃x ∈{x 是无理数},x 2是有理数
6.A 、B 、C 三个命题,如果A 是B 的充要条件,C 是B 的充分不必要条件,则C 是A 的( )
A .充分条件
B .必要条件
C .充要条件
D .既不充分也不必要条件
7.下列命题:
①至少有一个x 使x 2+2x +1=0成立; ②对任意的x 都有x 2+2x +1=0成立;
③对任意的x 都有x 2+2x +1=0不成立; ④存在x 使x 2+2x +1=0成立;
其中是全称命题的有( )
A .1个
B .2个
C .3个
D .0
8.全称命题“所有被5整除的整数都是奇数”的否定( )
A .所有被5整除的整数都不是奇数
B .所有奇数都不能被5整除
C .存在一个被5整除的整数不是奇数
D .存在一个奇数,不能被5整除
9.使四边形为菱形的充分条件是( )
A .对角线相等
B .对角线互相垂直
C .对角线互相平分
D .对角线垂直平分
10.给出命题:
①x ∈R ,使x 3<1; ②∃x ∈Q ,使x 2=2; ③∀x ∈N ,有x 3>x 2; ④∀x ∈R ,有x 2+1>0.
其中的真命题是( )
A .①④
B .②③
C .①③
D .②④
二、填空题:
11.由命题p :“矩形有外接圆”,q :“矩形有内切圆”组成的复合命题“p 或q ”“p 且q ”“非p”形式的命题中
真命题是__________.
12.命题“不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是__________.
13.已知:对+∈∀R x ,x
x a 1+<恒成立,则实数a 的取值范围是__________. 14.命题“∀x ∈R ,x 2-x +3>0”的否定是__________.
15.设A={x|x 2+x -6=0},B={x|mx+1=0},写出B A 的一个充分不必要条件__________.
三、解答题:
16.把命题“平行于同一直线的两条直线互相平行”写成“若p 则q”的形式,并写出它的逆命题、否命题、
逆否命题,再判断这四个命题的真假.
17.写出下列命题的非命题
(1)p :方程x 2-x -6=0的解是x =3;
(2)q :四边相等的四边形是正方形;
(3)r :不论m 取何实数,方程x 2+x +m =0必有实数根;
(4)s :存在一个实数x ,使得x 2+x +1≤0.
18.为使命题p (x ):1sin 2sin cos x x x -=-为真,求x 的取值范围。
19.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p
且q ”为假,求m 的取值范围.
20.已知条件p :x>1或x<-3,条件q :5x -6>x 2,则⌝p 是⌝q 的什么条件?
21.设函数f (x )的定义域为R ,若存在常数m >0,使|f (x )|≤m |x |对一切实数x 均成立,则称f (x )为F 函数.给出
下列函数:
①f (x )=0;②f (x )=2x ;③f (x )=)cos (sin 2x x +; ④1
)(2++=
x x x x f . 你认为上述四个函数中,哪几个是F 函数,请说明理由.
选修2-1《常用逻辑用语》单元测试题参考答案
1.C 2.A 3.D 4.B 5.C 6.A 7.B 8.C 9.D 10.A
11.p 或q 12.若x 23≤-≥x 且,则x 2+x-60≤ 13.2<a 14.∃x ∈R ,x 2-x +3≤0 15. m=0。
16.若两直线平行于同一条线,则它们相互平行.
逆命题:若两条直线互相平行,则它们平行于同一条直线.(真命题)
否命题:若两条直线不平行于同一条直线,则它们不相互平行.(真命题)
逆否命题:若两直线互相不平行,则它们不平行于同一条直线.(真命题)
17.(1)⌝p :方程x 2-x -6=0的解不是x =3;(2)⌝q :四边相等的四边形不是正方形;
(3)⌝r :存在实数m ,使得方程x 2+x +m =0没有实数根;(4)⌝s :对所有实数x ,都有x 2+x +1>0; 18.222
1sin 2(sin cos )sin cos sin cos sin cos 2sin cos x x x x x x x x x x x -=---+-=== 命题p 等价于:sin cos 0x x -≥,即52,2,44x k k k Z ππππ∈++∈⎡⎤⎢⎥⎣⎦
19.若方程x 2
+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2
即p :m >2
若方程4x 2+4(m -2)x +1=0无实根
则Δ=16(m -2)2-16=16(m 2-4m +3)<0
解得:1<m <3.即q :1<m <3.
因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以p 、q 至少有一为假,
因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真.
∴⎩⎨⎧<<≤⎩
⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.
20.⌝p :-3<x<1, ⌝q :x≥3或x ≤2
显然A B ,故⌝p 是⌝q 的充分不必要条件
21. 对于①,显然m 是任意正数时都有0≤m |x |,f (x )=0是F 函数;
对于②,显然m≥2时,都有|2x |≤m |x |,f (x )= 2x 是F 函数;
对于③,当x =0时,|f (0)|=2,不可能有|f (0)| ≤m |0|=0
故f (x )=)cos (sin 2x x + 不是F 函数;
对于④,要使|f (x )|≤m |x |成立,即21x
m x x x ≤++
当x =0时,m 可取任意正数;当x ≠0时,只须m ≥21
1x x ++的最大值;
因为x 2+x +1=2133()244x ++
≥,所以m ≥43,因此,当m ≥43时,1)(2++=x x x x f 是F 函数;。