自动控制原理实验
自动控制原理实验报告

自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告五个实验

自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。
自动控制原理实验

自动控制原理实验自动控制原理实验是自动控制原理课程的重要组成部分,通过实验可以帮助学生深入理解自动控制原理的相关知识,并且掌握实际操作的能力。
本实验旨在通过具体的实验操作,让学生对自动控制原理的理论知识有更深入的了解,同时培养学生的实际动手能力和解决问题的能力。
一、实验目的。
本实验旨在通过具体的实验操作,让学生对自动控制原理的理论知识有更深入的了解,同时培养学生的实际动手能力和解决问题的能力。
二、实验原理。
自动控制原理是一门研究控制系统的设计与分析的学科,它主要研究用于自动控制的原理、方法和技术。
自动控制原理实验是通过实验来验证自动控制原理的理论知识,包括传递函数、控制器设计、系统响应等内容。
三、实验内容。
1. 搭建控制系统模型,根据所学的自动控制原理知识,搭建相应的控制系统模型,包括传感器、执行器、控制器等组成部分。
2. 系统参数测量,对搭建好的控制系统模型进行参数测量,包括系统的传递函数、阶跃响应等参数。
3. 控制器设计与调试,根据实验要求,设计相应的控制器,并进行调试,观察系统的响应情况。
4. 系统性能分析,对设计好的控制系统进行性能分析,包括稳定性、灵敏度、鲁棒性等指标的评估。
四、实验步骤。
1. 按照实验要求,搭建控制系统模型,包括传感器、执行器、控制器等组成部分。
2. 进行系统参数测量,包括系统的传递函数、阶跃响应等参数的测量。
3. 根据实验要求,设计相应的控制器,并进行调试,观察系统的响应情况。
4. 对设计好的控制系统进行性能分析,包括稳定性、灵敏度、鲁棒性等指标的评估。
五、实验结果与分析。
通过实验操作,我们得到了控制系统的传递函数、阶跃响应等参数,并设计了相应的控制器进行了调试。
通过对系统的性能分析,我们可以得出系统的稳定性较好,对外界干扰具有一定的抵抗能力。
六、实验总结。
通过本次实验,我们深入理解了自动控制原理的相关知识,掌握了实际操作的能力。
同时,我们也发现了一些问题,比如在控制器设计与调试过程中遇到了一些困难,需要进一步加强相关知识的学习和实践能力的培养。
自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验

返回
实验二 典型环节的模拟研究(2学时) 实验三 典型二阶系统实验(2学时)
1、 实验目的:(1)学习系统(或环节)频率特 性的测量方法;(2)学习用频率特性确定数学模型的 方法 。 2、 实验要求:(1)测量并绘制一阶和二阶典型 环节的频率特性;(2)根据一阶和二阶典型环节的频 率特性确定其传递函数;(3)测量并绘制一个闭环系 统的频率特性
返回
实验六 系统的串联校正(2学时)
返回
实验四 根轨迹曲线的计算机绘制(2学时)
1、实验目的(1)训练学生应用计算机进行根轨迹 辅助分析;(2)让学生进一步加深系统零极点分布 对根轨迹形状的影响。 2、实验要求:(1)教师提供辅助分析软件,让学 生尽快学会使用;(2)每个学生做十例以上,并记 录各种根轨迹图。
返回
实验五 频率特性的研究 (2学时)
1、 实验目的:(1)学习正确选择校正装置的 种类及参数;(2)学习系统的调试方法。 2、 实验要求:(1)学生必须根据给定的条件及 指标要求确定校正装置的传递函数;(2)测出系统 的开环频率特性和闭环频率特性;(3)根据频率特 性求取系统的性能指标。
返回
1、 实验目的:(1)学习用阻容元件及线性组件 组成一个二阶系统进行各种实验的方法;(2)研 究阻尼比ξ和无阻尼自然振荡频率ω 对阶跃响应的
n
影响。 2、 实验要求:(1)要求学生画出实验电路图, 选择元器件并按照原理图连接成控制系统;(2) 改变参数,用长余辉示波器观察系统阶跃响应的变 化并记录。
自动控制原理实验(全面)

自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。
⑵ 掌握参数变化对动态性能的影响。
二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。
⑵ 数字万用表。
三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。
模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。
图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。
3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。
4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。
⑵ T=2,ξ=0.5 时的阶跃响应曲线。
四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。
⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。
⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。
自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 线性定常系统的瞬态响应与稳定性分析例1系统传递函数为4324327182313()5972s G s s ss s s s s ++++=++++,求系统的单位脉冲响应和单位阶跃响应解析表达式。
(1) 求脉冲响应解析表达式,输入以下程序: num=[1 7 18 23 13]; den=[1 5 9 7 2]; G=tf(num,den); Impulse(G)[k,p,r]=residue(num,den); %应用MATLAB 求传递函数的留数 k=k',p=p',r=r'解得:k = 1.0000 1.0000 2.0000 2.0000 p = -2.0000 -1.0000 -1.0000 -1.0000 r = 1根据k 、p 、r 的值可以写出脉冲响应C(S)的部分分式2(0.5s+1)(s)=(s+1)(0.5s +s+1)K G s 经拉普拉斯反变换有:-2t -t -t -t (t)=e +e +2te +t2e +(t)c δ 脉冲响应曲线:5101500.20.40.60.811.21.41.61.82Impulse ResponseTime (sec)A m p l i t u d e(2) 求单位阶跃响应的解析表达式由于单位阶跃响应解析(s)=G(s)/s Y ,只要将G(s)的分母多项式乘以s ,即分母多项式的系数向量den 增加一个零,然后使用上述求脉冲响应的方法。
程序如下:num=[1 7 18 23 13]; den=[1 5 9 7 2]; G=tf(num,den); step(G)[k,p,r]=residue(num,[den,0]); k=k',p=p',r=r' 运行结果:k = -0.5000 -5.0000 -4.0000 -2.0000 6.5000 p = -2.0000 -1.0000 -1.0000 -1.0000 0 r = []根据k 、p 、r,可以直接写出系统的阶跃响应为-2t -t -t 2-t (t)=-0.5e -5e -4te -t e +6.5c 阶跃响应曲线:0510151234567Step ResponseTime (sec)A m p l i t u d e思考题:(1) 观察运行结果,在运用留数定理分解传递函数的过程中k 、p 、r 分别代表什么?(2) 观察系统的阶跃响应曲线,推算该系的阻尼比的取值范围。
例2传递函数3215()61320G s s ss =+++,使用MATLAB 语句求系统()G s 的静态放大倍数、自然振荡频率和阻尼比。
G=tf([15],[1 6 13 20]);[wn,ksai,p]=damp(G); k=dcgain(G);k,wn=wn',ksai=ksai',p=p'运行结果: k = 0.7500 %静态系数wn = 2.2361 2.2361 4.0000 %自然振荡频率 ksai = 0.4472 0.4472 1.0000 %阻尼比 p = -1.0000 - 2.0000i -1.0000 + 2.0000i -4.0000 %极点例3:系统的传递函数为543232()312203525s G s s ss s s +=+++++,判断系统的稳定性。
采用观察极点实部正负的方法判定系统的稳定性程序:den=[1 3 12 20 35 25];r=roots(den)运行结果: r =0.0000 + 2.2361i 0.0000 - 2.2361i -1.0000 + 2.0000i -1.0000 - 2.0000i -1.0000思考题:本题的运行结果说明了系统稳定还是不稳定?例4、已知单位负反馈系统的传递函数为:2(0.5s+1)(s)=(s+1)(0.5s +s+1)K G s 是确定系统稳定时的K 值的范围。
程序如下:K=[0.2 0.7 1.2 1.7] t=0:0.01:40; for i=1:4 k=K(i);numg=[0.5*k];deng=[0.5 1.5 2 1 0]; numh=[1]; denh=[1];[num,den]=feedback(numg,deng,numh,denh); sys=tf(num,den) step(sys,t); hold on grid on endlegend('k=0.2','k=0.7','k=1.2','k=1.7')51015202530354000.20.40.60.811.21.41.61.8Step ResponseTime (sec)A m p l i t u d e思考题:K 取何值时,系统的稳定性比较好?例5闭环系统的开环传递函数243226()210s G s sss s++=++,求静态误差系数pk、vk、ak程序如下G=tf([1 2 6],[1 2 10 0 0]); sG=tf([1 2 6 0],[1 2 10 0 0]); ssG=tf([1 2 6 0 0],[1 2 10 0 0]);kp=dcgain(G),kv=dcgain(sG),ka=dcgain(ssG)运行结果: kp = Inf kv = Inf ka =0.6000系统的静态误差系数pk=∞、v k =∞、0.6a k =实验三 控制系统的频率特性例1已知系统开环传递函数为2()()(0.5)(0.610)G s H s s s s k s *=+++,绘制系统根轨迹,并求出闭环系统临界稳定时的根轨迹增益值。
程序如下:num=1;den=conv([1 0],conv([1 0.5],[1 0.6 10])); rlocus(num,den) %绘制根轨迹图[K,poles]=rlocfind(num,den) %在窗口中出现十字光标,在表示阻尼比为0.7的那根线附近附近略微偏下处点击鼠标左键。
运行结果:根轨迹图:-8-6-4-202468-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i s得出的结果存在误差,非一定的。
Select a point in the graphics window selected_point = 0.0190 - 2.1118i K = 26.2380 poles =-0.5564 + 2.3335i -0.5564 - 2.3335i 0.0064 + 2.1352i 0.0064 - 2.1352i例2 已知系统开环传递函数为()()(1)(1)G s H s s s s k*=++,绘制系统根轨迹,并且确定阻尼比0.7ζ=时,闭环极点的位置及相应的根轨迹增益。
程序如下: num=1;den=conv([1 0],[1 2 1]); rlocus(num,den) grid[K,P]=rlocfind(num,den)运行结果:-3.5-3-2.5-2-1.5-1-0.50.51-2.5-2-1.5-1-0.500.511.522.5Root LocusReal AxisI m a g i n a r y A x i s和上题一样,由于手动移动鼠标,不确定 Select a point in the graphics window selected_point = -0.3063 + 0.2717i K = 0.2273P = -1.4026 -0.2987 + 0.2698i -0.2987 - 0.2698i例3设单位负反馈系统的开环传递函数为4()(1)(2)G s s s =++,利用MATLAB 软件绘制其开环幅相曲线。
程序: num=4;den=[1,3,2];nyquist(num,den) 运行结果:-1-0.500.51 1.52Nyquist DiagramReal AxisI m a g i n a r y A x i s思考题:该系统的nyquist 曲线反映出该系统的哪些信息?例4已知一系统的开环传递函数2322()586s s G s s s s +-=+++试完成以下任务: (1)求其零极点增益形式并绘制出零极点分布图。
(2)绘制出系统的nuquist 图 (3)绘制出系统的bode 图 程序:num=[1 1 -2;]; den=[1 5 8 6];G1=tf(num,den) %建立传递函数[z,p,k]=tf2zp(num,den); %求出零点、极点、增益z=z' p=p' kg2=zpk(z,p,k) %传递函数的零极点增益形式 pzmap(G1) %画出零极点分布图 figure nyquist(G1) %绘制出nyquiset 图figuremargin(G) %绘制bode 图运行结果:P ole-Zero MapReal AxisI m a g i n a r y A x i s-3.5-3-2.5-2-1.5-1-0.500.51-1.5-1-0.50.511.5-1-0.8-0.6-0.4-0.200.20.4Nyquist DiagramReal AxisI m a g i n a r y A x i sM a g n i t u d e (d B )10-210-110101102P h a s e (d e g )Bode DiagramGm = 9.54 dB (at 0 rad/sec) , P m = InfFrequency (rad/sec)思考题;试从该系统的bode 图判断该系统是否稳定?例5设单位负反馈系统的开环传递函数为4()(1)(2)G s s s s =++,利用MA TLAB 软件绘制其开环对数频率特性曲线、尼柯尔斯曲线,计算稳定裕度。
程序:n=[4];d=[1 3 2 0]; margin(n,d); grid n=[4];d=[1 3 2 0]; ngrid('new'); nichols(n,d)绘制bode 图:M a g n i t u d e (d B )10-210-110101102P h a s e (d e g )Bode DiagramGm = 3.52 dB (at 1.41 rad/sec) , P m = 11.4 deg (at 1.14 rad/sec)Frequency (rad/sec)稳定裕度如图所示为:相角交界频率 1.41/grad s w=,幅值裕度 3.52h dB =,开环截止频率 1.14/c rad s w =,相角裕度11.4γ︒=。