3.4函数的应用(Ⅱ)教案学生版

合集下载

函数模型的应用实例(Ⅱ) 必修一教案34

函数模型的应用实例(Ⅱ) 必修一教案34

61456 62828 64563 65994 67207
1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到 0.0001) ,用马尔萨斯 人口增长模型建立我国在这一时期的具体人口增长 模型,并检验所得模型与实际人口数据是否相符; 2)如果按表中的增长趋势,大约在哪一年我国的 人口将达到 13 亿? 探索以下问题: 1)本例中所涉及的数量有哪些? 2)描述所涉及数量之间关系的函数模型是否是确 定的,确定这种模型需要几个因素? 3)根据表中数据如何确定函数模型? 4)对于所确定的函数模型怎样进行检验,根据检 验结果对函数模型又应做出如何评价? 如何根据确定的函数模型具体预测我国某个时间 的人口数,用的是何种计算方法? 本例的题型是利用给定的指数函数模型 y y0ert 解 决实际问题的一类问题,引导学生认识到确定具体函 数模型的关键是确定两个参数 y0 与 t . 完成数学模型的确定之后,因为计算较繁,可以
人教版高中数学必修 1 教案
授课时间: 备课时间: 年 年 月 月 日 日
课题:函数模型的应用实例(Ⅱ) 能够利用给定的函数模型或建立确定性函数模型解决实际问题,
教学目标
进一步感受运用函数概念建立函数模型的过程和方法,对给定的 函数模型进行简单的分析评价. 利用给定的函数模型或建立确定性质函数模型解决实际问题. 将实际问题转化为数学模型,并对给定的函数模型进行简单
教学重点
教学难点
的分析评价. 学法与教学用具 1. 学法:自主学习和尝试,互动式讨论. 2. 教学用具:多媒体 四、 教学设想 (一)创设情景,揭示课题. 现实生活中有些实际问题所涉及的数学模型是
教学过程
确定的,但需我们利用问题中的数据及其蕴含的关系 来建立. 对于已给定数学模型的问题,我们要对所确 定的数学模型进行分析评价,验证数学模型的与所提 供的数据的吻合程度. (二)实例尝试,探求新知 例 1. 一辆汽车在某段路程中的行驶速度与时间 的关系如图所示.

《三角函数的应用(第二课时)》示范公开课教学设计【高中数学人教版】

《三角函数的应用(第二课时)》示范公开课教学设计【高中数学人教版】

《三角函数的应用(第二课时)》教学设计 1.通过分析和解决现实生活中的实际问题,使学生经历利用三角函数近似刻画实际问题的过程,了解利用数学知识解决实际问题的一般思路,提高数形结合能力. 2.通过例题分析和练习巩固,促进学生养成运用几何直观思考问题的习惯,发展学生的直观想象核心素养.教学重点:通过实例,使学生经历完整的数学建模过程.教学难点:将实际问题转化为数学问题.视频、Geogebra 软件、PPT 课件.资源引用:【数学探究】画函数y =Asin (ωx +φ)的图象【情景演示】潮汐运动(一)整体感知 引导语:匀速圆周运动、简谐运动和交变电流都是理想化的运动变化现象,可以用三角函数模型准确的描述它们的运动变化.在现实生活中也有大量运动变化现象,仅在一定范围内呈现出近似于周期变化特点,这些现象也可以借助三角函数近似的描述.(二)新知探究例1 如图1,某地一天从6~14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式.问题1:如何根据温度变化曲线得到这一天6~14时的最大温差?预设的师生活动:学生回答.预设答案:曲线在自变量为6~14时,图形中的最高点的纵坐标减去最低点的纵坐标就◆ 教学过程◆ 课前准备 ◆ 教学重难点◆ ◆ 教学目标 图1是这一天6~14时的最大温差,观察图形得出这段时间的最大温差为20℃.设计意图:通过问答形式得到(1)的解答.问题2:如何求温度随时间的变化满足的函数关系“b x A y ++=)sin(ϕω”中A ,ω,ϕ,b 的值?★资源名称:【数学探究】画函数y =Asin (ωx +φ)的图象 ★使用说明:本资源为“画函数y =Asin (ωx +φ)的图象”知识探究,通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教学效率.适合教师课堂进行演示讲解.注:此图片为“动画”缩略图,如需使用资源,请于资源库调用.预设的师生活动:学生回答,教师补充,之后学生板演解答过程,教师强调要注意自变量的变化范围.预设答案:A 为最大值减去最小值的差的一半,ω可以利用半周期为14-6=8建立方程得解,ϕ可以利用特殊值求得.所求解析式为π3π10sin()20[416]84y x x =++∈,,. 设计意图:启发学生利用待定系数法解决(2).例2 海水受日月的引力,在一定时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进巷道,靠近码头;卸货后,在落潮时返回海洋.表1是某港口某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似值(精确到0.001 m).(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m 的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?(3)若船的吃水深度为4 m,安全间隙为1.5 m,该船在两点开始卸货,吃水深度以0.3 m/h的速度减少,那么该船在什么时间必修停止卸货,将船驶向较深的水域?★资源名称:【情景演示】潮汐运动★使用说明:本资源通过生活中有关海水潮汐运动的展示,激发学生学习的兴趣.也体现数学来源于生活,又服务于生活.适合教师课堂展示播放.注:此图片为“情景视频”缩略图,如需使用资源,请于资源库调用.问题3:观察表1中的数据,你发现了什么规律?根据数据做出散点图,观察图形,你可以用怎样的函数模型来刻画其中的规律?请试着完成(1)的解答.预设的师生活动:教师提出问题,学生观察数据,发现规律.教师引导学生作散点图,根据散点图特点,选择函数模型,学生根据散点图及有关数据,求出这个函数模型的解析式.得出解析式之后,教师让学生根据解析式填写整点时的水深,完成(1)的解答.预设答案:观察表格中数据可以看出,水深的变化具有周期性,根据表中数据画出散点图如图2.表1从散点图的形状可以判断,这个港口的水深y 与时间x 的关系可以用形如sin()y A x h ωϕ=++的函数来刻画,从数据和图形可以得出:A =2.5,h =5,T =12.4,φ=0; 由2π124T ω==.,得ω=5π31. 所以各港口的水深与时间的关系可用函数y =2.5sin5π31x +5近似描述. 将整点对应的自变量代入解析式求出相应的水深,得到表2完成(1)的解答.设计意图:从所给数据中发现周期性变化规律,引导学生根据散点图特点选择函数模型,并求出函数解析式,并得到(1)的解答.问题4:(2)中,货船需要的安全深度是多少?从函数的解析式来看,满足怎样的条件时,该船能够进入港口?从图象上看呢?预设的师生活动:学生回答,教师补充.预设答案:货船需要的安全水深为4+1.5=5.5 m .从函数的解析式来看,满足y ≥5.5,即2.5sin 5π31x +5≥5.5,该船能够进入港口;从图象上看,就是函数y =2.5sin 5π31x +5的图象在直线y =5.5上方时,该船能够进入港口.利用信息技术绘出两个函数的图象如图3.图2表2求得交点的横坐标分别为:x A ≈0.3975,x B ≈5.8025,x C ≈12.7975,x D ≈18.2025. 问题5:可以将A ,B ,C ,D 点的横坐标作为进出港时间吗?为什么?预设的师生活动:教师请学生们自由回答,答案不唯一.预设答案:事实上为了安全,进港时间要比算出的时间推后一些,出港时间要比算出的时间提前一些,这样才能保证货船始终在安全水域.因此,货船可以在零时30分左右进港,早晨5时45分左右出港;或在下午13时左右进港,下午18时左右出港.每次可以在港口停留5小时左右.设计意图:启发学生数形结合得到(2)的解答.问题6:(3)中,设在x h 时货船的安全水深为y m ,y 与时间x 满足怎样的函数关系?从解析式来看,满足怎样的条件时,该船必须停止卸货?从图象上看呢?预设的师生活动:学生回答,教师补充.预设答案:设在x h 时货船的安全水深为y m ,那么y =5.5-0.3(x -2)(x ≥2).从函数的解析式来看,满足y ≥5.5-0.3(x -2),即2.5sin 5π31x +5≥5.5-0.3(x -2)时,该船能够进入港口;从图象上看,就是函数y =2.5sin5π31x +5的图象在直线y =5.5-0.3(x -2)上方时,该船能够进入港口.利用信息技术绘出两个函数的图象如图4.可以看到在6~8时之间两个函数只有一个交点P ,求得P 点的横坐标为7.016.≈P x 问题7:在船的安全水深正好等于港口水深时停止卸货可以吗?图3图4预设的师生活动:教师请学生们自由回答,答案不唯一.预设答案:为了安全,船停止卸货驶向安全水域的时间要比算出的时间提前一些.因此为了安全,货船最好在6.6时停止卸货,将船驶向较深的水域.设计意图:让学生感受利用数学模型得到的答案要根据实际情况进行检验和调整。

人教版新课程《3.4 函数的应用(一)》导学案(2套)

人教版新课程《3.4   函数的应用(一)》导学案(2套)

3.4 函数的应用(一)1.能够利用给定的函数模型或建立函数模型解决实际问题;2.经历建立函数模型解决实际问题的过程,提高综合运用数学知识和方法解决实际问题的能力。

1.教学重点:建立函数模型解决实际问题;2.教学难点:选择适当的方案和函数模型解决实际问题。

1.一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?一次函数:;反比例函数:;二次函数:;幂函数:。

一、探索新知例1 .设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元).(1)求y关于x的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?例2 一辆汽车在某段路程中的行驶速率v(单位:km/h)与时间t(单位:h)的关系如图1所示,(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.1.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费多少元;(2)当x⩾100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?这节课你的收获是什么?参考答案:知识梳理:一次函数:)0(≠+=k b kx y 反比例函数:)0(≠=k x k y二次函数:)0(2≠++=a c bx ax y 幂函数 )(为常数ααx y = 学习过程:例题解析见教材93页例1.,94页例2. 达标检测1.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250. ∴每台彩电的原价为2 250元. 【答案】 2 2502.【解析】 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 500【新教材】3.4 函数的应用(一)(人教A 版)1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.一、预习导入阅读课本93-94页,填写。

函数题的应用教案模板高中

函数题的应用教案模板高中

教学目标:1. 让学生理解函数在解决实际问题中的应用,提高学生的应用能力。

2. 培养学生运用函数知识分析问题、解决问题的能力。

3. 培养学生的数学思维和创新能力。

教学重点:1. 理解函数在解决实际问题中的应用。

2. 掌握函数模型的选择和建立。

3. 能够运用函数知识解决实际问题。

教学难点:1. 理解函数模型的选择和建立。

2. 解决实际问题时的创新思维。

教学过程:一、导入1. 引入实际问题:举例说明函数在生活中的应用,如物价、人口、温度等。

2. 提出问题:如何运用函数知识解决这些问题?二、新课讲解1. 函数模型的选择和建立- 举例说明不同类型的问题应选择合适的函数模型。

- 讲解函数模型建立的方法和步骤。

2. 函数在解决实际问题中的应用- 举例说明函数在解决实际问题中的应用,如求最大值、最小值、预测等。

- 讲解解决实际问题的步骤和方法。

三、课堂练习1. 课堂练习1:选择合适的函数模型解决实际问题。

2. 课堂练习2:运用函数知识解决实际问题。

四、讨论与交流1. 学生展示自己的解题过程,互相交流心得体会。

2. 教师点评学生的解题方法,总结解题技巧。

五、课堂小结1. 总结本节课所学内容,强调函数在解决实际问题中的应用。

2. 鼓励学生在生活中运用函数知识解决实际问题。

六、课后作业1. 完成课后练习题,巩固所学知识。

2. 寻找生活中的实际问题,尝试运用函数知识解决。

教学反思:1. 本节课是否达到了教学目标?2. 学生是否掌握了函数在解决实际问题中的应用?3. 学生在解决实际问题时是否具有创新思维?4. 教学过程中是否存在不足,如何改进?教学评价:1. 学生对函数在解决实际问题中的应用的理解程度。

2. 学生解决实际问题的能力。

3. 学生创新思维的培养情况。

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册
(3)实验法:在教学过程中,教师引导学生利用计算机软件绘制函数图像,观察函数2.教学手段
(1)多媒体设备:教师利用多媒体课件,生动形象地展示函数的性质和图像,激发学生的学习兴趣,提高教学效果。
(2)教学软件:教师运用教学软件,如数学建模软件、函数图像绘制工具等,辅助教学,使学生更好地理解函数的应用。
核心素养目标分析
本节课的核心素养目标主要围绕数学抽象、数学建模、数学运算、直观想象四个方面展开。
首先,通过实际问题引入函数模型,培养学生从复杂问题中抽象出函数关系的能力,即数学抽象素养。学生需要能够识别实际问题中的数量关系,自主构建函数模型,从而培养其抽象思维能力。
其次,通过对实际问题进行数学建模,让学生学会如何用函数来描述现实世界中的变化规律,培养学生的数学建模素养。学生需要能够将现实问题转化为数学问题,运用函数理论知识进行分析,进而提高其解决实际问题的能力。
(3)学生可以利用在线函数图像绘制工具,自主探索函数的性质和变化规律,加深对函数概念的理解。
(4)建议学生学习一些数学软件的使用方法,如MATLAB、Python等,掌握这些软件在函数分析和应用方面的功能,提高自己的实际问题解决能力。
内容逻辑关系
①函数应用的基本概念:
-重点词汇:函数、自变量、因变量、函数值、定义域、值域等。
选择几个典型的函数应用案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解函数应用的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数应用相关的主题进行深入讨论。

《函数的应用》教案

《函数的应用》教案

《函数的应用》教案《函数的应用》教案教学目标1.能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.2.通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.3.通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.教学建议教材分析(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.教法建议(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的.信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.教学设计示例函数初步应用教学目标1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.2.通过对实际问题的研究,培养学生分析问题,解决问题的能力3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.教学重点,难点重点是应用问题的阅读分析和解决.难点是根据实际问题建立相应的数学模型教学方法师生互动式教学用具投影仪教学过程b一.提出问题数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.问题一:如图,△是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域.(板书) (作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在,再由另一个学生说出面积的计算方法.当时,,(采用直接计算的方法)当时,.(板书)(计算第二段时,可以再画一个相应的图形,如图)综上,有,此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为.(板书)问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.下面我们一起看第二个问题问题二:某工厂制定了从1999年底开始到2005年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生产总值相比,增长率为多少?(投影仪打出)首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年计划的总产值.设1999年总产值为,第一步让学生依次说出2000年到2005年的年总产值,它们分别为:2000年2003年2001年2004年2002年2005年(板书)第二步再让学生分别算出第一个三年总产值和第二个三年总产值=++=.=++=.(板书)第三步计算增长率..(板书)计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为,其中为基数,为增长率,为时间.所以经常会用到指数函数有关知识加以解决.总结后再提出最后一个问题问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为件.(1)写出礼品价值为元时,所获利润(元)关于的函数关系式;(2)请你设计礼品价值,以使商场获得最大利润.(为节省时间,应用题都可以用投影仪打出)题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.解:.(板书)完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即(2)若使利润最大应满足同时成立即解得当或时,有最大值.由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.三.小结通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.四.作业略五.板书设计2.9函数初步应用问题一:解:问题二分析问题三分析小结:。

4.5 函数的应用(二) 教学设计-2020年秋高中数学人教版(2019)必修一

4.5 函数的应用(二) 教学设计-2020年秋高中数学人教版(2019)必修一

单元教学设计:4.5 函数的应用(二)一、内容和内容解析1.内容函数的零点与方程的解;用二分法求方程的近似解;函数模型在实际问题中的应用.2.内容解析“函数的应用(二)”是在第三章“函数的应用(一)”的基础上,从两个方面介绍函数的应用.一是数学学科内部的应用,利用所学过的函数研究一般方程的解;二是实际应用,建立实际问题的函数模型,并通过函数模型反映实际问题的变化规律,从而分析和解决实际问题.通过“函数的应用(二)”,使学生进一步理解指数函数和对数函数,学会选择合适的函数类型刻画现实问题的变化规律.基于以上分析,确定本单元教学的重点:函数零点与方程解的关系,函数零点存在定理的应用,用二分法求方程近似解的思路与步骤,用函数建立数学模型解决实际问题的基本过程.二、目标和目标解析1.目标(1)结合二次函数的图象,了解函数零点存在定理.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路与步骤.(3)进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.2.目标解析达成上述目标的标志是:(1)结合二次函数的图象,进一步了解函数的零点与方程解的关系,并能用函数取值规律来刻画图象穿过x轴的图象特点.(2)结合具体连续函数及其图象的特点,探索用二分法求方程近似解的思路,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性并了解二分法中的算法思想.(3)结合现实情境中的具体问题,能利用已知函数模型解决实际问题.通过比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”、“直线上升”、“指数爆炸”等术语的现实含义,会选择合适的函数模型解决实际问题.三、教学问题诊断分析在零点存在定理的教学中,学生从具体的函数图象概括出一般化的特征,并用取值规律这一代数形式来表达,这种从形到数的转化是学生思维的障碍.在二分法教学中,从具体的函数出发利用二分法求方程的近似解较为容易,但把二分法的步骤抽象成一般化的算法并用符号来表示是一个难点.在函数模型的应用教学中,利用已知函数模型解决实际问题容易操作,但选择合适的函数模型解决实际问题,需要对不同函数模型的增长规律有一定的了解,并且需要符合实际问题中的条件限制.结合以上分析确定本节课的教学难点:函数零点存在定理的导出,用二分法求方程近似解的算法,选择恰当的函数模型分析和解决实际问题.四、教学过程设计4.5.1 函数的零点与方程的解(一) 引言思考:我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点,像ln 260x x +-=这样不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?(二) 函数的零点与方程的解的关系对于一般函数=y f x (),我们把使=0f x ()的实数x 叫做函数=y f x ()的零点. 这样,函数=y f x ()的零点就是方程=0f x ()的实数解,也就是函数=y f x ()的图象与x 轴的公共点的横坐标.所以方程=0f x ()有实数解 ⇔函数=y f x ()有零点⇔函数=y f x ()的图象与x 轴有公共点.由此可知,求方程=0f x ()的实数解,就是确定函数=y f x ()的零点.对于不能用公式求解的方程=0f x (),我们可以把它与相应的函数=y f x ()联系起来,利用函数的图象和性质找出零点,从而得到方程的解.(三) 零点存在定理的导出探究:对于二次函数2=23f x x x --(),观察它的-2 -1 O 1 2 3 4 xy 2 1 -1 -2-2 -1O 1 2 3 4 x y2 1-3 -4 -1 -2图象,发现它在区间24[,]上有零点.这时,函数图象与x 轴有什么关系?在区间20-[,]上是否也有这种关系?你认为应如何利用函数f x ()的取值规律来刻画这种关系?可以发现,在零点附近,函数图象是连续不断的,并且“穿过”x 轴.函数在端点=2x 和=4x 的取值异号,即240f f ()()<,函数2=23f x x x --()在区间24(,)内有零点=3x ,它是方程223=0x x --的一个根.同样地,200f f -()()<,函数2=23f x x x --()在20-(,)内有零点=1x -,它是方程223=0x x --的另一个根.一般地,我们有:函数零点存在定理:如果函数=y f x ()在区间a b [,]上的图象是一条连续不断的曲线,且有0f a f b ()()<,那么,函数=y f x ()在区间a b (,)内至少有一个零点,即存在c a b ∈(,),使得=0f c (),这个c 也就是方程=0f x ()的解.问题1:条件“连续不断”可以去掉吗?师生活动:学生画出反例,教师强调,图象间断了,虽然函数值异号,仍然没有零点.所以我们要求函数图象连续不断.追问:反之成立吗?即如果函数=y f x ()在区间a b (,)内存在零点,是否有0f a f b ()()<?师生活动:学生举例说明,教师强调,“连续不断”和“0f a f b ()()<”是“函数存在零点的”充分条件,而非必要条件. 设计意图:让学生理解零点存在定理的功能是给出一个判定零点存在的充分条件.(四) 零点存在定理的应用例1 求方程ln 260x x +-=的实数解的个数.分析:可以先列出函数=ln 26y x x +-的对应值表,为观察、判断零点所在区间提供帮助.解:设函数=ln 26f x x x +-(),列出函数=y f x ()的对应值表.根据已有对数知识容易发现2=ln 220f -()<,3=ln 30f ()>,则230f f ()()<. 由函数零点存在定理可知,函数=ln 26f x x x +-()在区间23(,)内至少有一个零点. 再利用画图软件画出函数=ln 26f x x x +-()的图象,我们看到f x ()是定义域上的单调递增函数,f x ()在区间23(,)内只有一个零点.问题2:为什么由230f f ()()<还不能说明函数f x ()? 师生活动:学生举例说明已知0f a fb ()()<,函数在区间a b (,)内可能存在多个零点.追问1:在原有条件的基础上添加什么条件能够保证f x ()只有一个零点?师生活动:如果函数具有单调性,就能保证只有一个零点. 由此我们得出函数零点存在定理的推论:若=y f x ()在区间a b [,]上是单调函数,其图象是一条连续不断的曲线,且有O 5 10 x y14 12 10 8 6 4 2-2 -4 -60f a f b ()()<,则函数=y f x ()在区间a b (,)内有且仅有一个零点,即存在唯一的c a b ∈(,),使得=0f c ().事实上,=ln y x 与=26y x -在0x ∈+∞(,)上都是增函数,所以=ln 26f x x x +-(),0x ∈+∞(,)是增函数.所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.追问2:你能用定义法证明函数=y f x ()是增函数吗? 师生活动:120x x ∀∈+∞,(,),且12x x <,有121122=ln 26ln 26f x f x x x x x -+-+-()()()-()1122=ln2x x x x +-().因为120x x <<,所以1201x x <<,所以12ln0x x <,又因为120x x -<,于是1122ln20x x x x +-()<,即12f x f x ()<(). 所以,函数=ln 26f x x x +-()在区间0+∞(,)上单调递增.设计意图:让学生认识到零点存在定理可以证明函数有零点,但不能断定函数无零点或零点个数,如果要判断零点的个数,还要与结论“函数在单调区间上最多有一个零点”相结合.4.5.2 用二分法求方程的近似解(一) 二分法的引入我们已经知道,函数=ln 26f x x x +-()在区间23(,)内存在一个零点.进一步的问题是,如何在满足一定精确度的前提下求出这个零点呢?(二) 二分法的形成这个问题中设定的精确度为01.,可以理解为近似值与精确值之间的误差不超过01.. 一个直观的想法是:如果能将零点所在的区间尽量缩小,直到区间长度小于等于01.,那么区间内的任意一点都可以作为函数零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.取区间23(,)的中点25.,用计算工具算得250084f ≈-(.)..因为2530f f (.)()<,所以零点在区间253(.,)内,区间长度为0.5.再取区间253(.,)的中点275.,用计算工具算得2750512f ≈(.)..因为252750f f (.)(.)<,所以零点在区间25275(.,.)内,区间长度为0.25.由于23(,) 253(.,) 25275(.,.),所以零点所在的范围变小了. 如果重复上述步骤,那么零点所在的范围会越来越小.零点所在区间 区间长度 中点的值 中点的函数值23(,) 125. 0084-. 253(.,) 05. 275. 0512. 25275(.,.) 025. 2625. 0215. 252625(.,.) 0125.25625 .0066.2525625 (.,.)00625 .……这样,我们就可以通过有限次重复相同的步骤,将零点所在范围缩小到满足一定精确度的区间.因为区间2525625 (.,.)的长度为00625.,所以区间2525625 (.,.)内任意一点都可以作为零点的近似值,为了方便,我们把区间的一个端点=25x .作为函数=ln 26f x x x +-()零点的近似值,也即方程ln 260x x +-=的近似解.2.5 2.75 2.625 O 2 3 x y0.5 - 0.4 - 0.3 - 0.2 - 0.1 --0.1- -0.2- -0.3- -0.4- -0.5-这样求方程近似解的方法称为二分法,我们来看二分法的定义:对于在区间a b [,]上图象连续不断且0f a f b ()()<的函数=y f x (),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(三) 二分法的步骤我们依据解决上述问题的过程来概括一下:给定精确度ε,用二分法求函数=y f x ()零点0x 的近似值的一般步骤: 1.确定零点0x 的初始区间a b [,],验证0f a f b ()()<. 2.求区间a b (,)的中点c .3.计算f c (),并进一步确定零点所在的区间:(1)若=0f c ()(此时0=x c ),则c 就是函数的零点; (2)若0f a f c ()()<(此时0x a c ∈(,)),则令=b c ; (3)若0f c f b ()()<(此时0x c b ∈(,)),则令=a c . 4.判断是否达到精确度ε:若|a b ε-|<,则得到零点近似值a (或b );否则重复步骤2~4.(四) 二分法的应用例2 借助信息技术,用二分法求方程237xx +=的近似解(精确度为0.1)解:原方程即237=0xx -+,令=237xf x x -+(),用信息技术画出函数=y f x ()的图象,结合计算容易发现120f f ()()<,说明该函数在区间12(,)内存在零点0x .-5 O 5 10 xy16141210 8 64 2-2 -4 -6取区间12(,)的中点1=15x .,用信息技术算得15033f ≈(.)..因为1150f f ()(.)<,所以0115x ∈(,.).再取区间115(,.)的中点2=125x .,用信息技术算得125087f ≈-(.)..因为125150f f (.)(.)<,所以012515x ∈(.,.).同理可得,0137515x ∈(.,.),0137514375 x ∈(.,.). 由于137514375|=0062501 -|...<., 所以,原方程的近似解可取为1375..问题3:如果精确度改为0.01?0.001?0.000 1?怎样做才不会给我们带来过大的运算负担呢?师生活动:我们从二分法中提炼出了算法思想,借助于Excel 表格当中的函数功能呈现出来,具体来看:我们利用Excel 表格中的七列依次呈现区间端点a ,b ,区间中点c ,函数值f a (),f c (),f b ()和区间长度b a -,首先,我们输入初始区间12(,),然后,我们对单元格D3到H3依次应用公式完成输入,公式在编辑栏可见.对于单元格B4,我们利用Excel 的内置函数If 语句,它实现的功能是,如果0f a f c ()()<,则区间的左端点就是a ,否则是c ,同样,对于单元格C4,如果0f a f c ()()<,则区间的右端点就是c ,否则是b .接下来,我们选中单元格D3到H3,将鼠标移到单元格的右下角,鼠标指针变成十字形状,按住鼠标向下拖动一行,即可实现对单元格D4到H4的自动填充,更进一步的,我们选中单元格B4到H4,重复相同的操作,可以实现对以下若干行的自动填充.我们可以根据题目精确度的要求,选择拖动到哪一行结束.这个问题的解决让我们体会到,对于人工运算很耗时耗力的问题,如果借助于计算机,可以瞬间完成,既省时省力,又准确无误,可见,工具的选择和使用至关重要.设计意图:让学生体会信息技术在处理计算量较大而且有重复步骤的问题时的重要价值.4.5.3 函数模型的应用引言:以上,我们学习了函数在数学内部的应用,接下来我们学习函数模型的实际应用. (一) 已知函数模型例3 阅读下面资料并回答问题.良渚遗址位于浙江省杭州市余杭区良渚和瓶窑镇,1936年首次发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,于是推测古城存在时期为公元前3300年~前2500年.你知道考古学家在测定遗址年代时用了什么数学知识吗?在前面的学习中,我们得到了一个预备知识,注释:当生物死亡后,它机体内原有的碳14含量y 会随死亡年数x 在初始量k 的基础上按确定的比率p 衰减(p 称为衰减率),并满足函数关系=1xy k p k -∈R ()(,010 k p x ≠且0;<<;≥),大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.分析:首先,我们需要求出函数关系中的参数p ,明确函数解析式.然后,把0.552k 作为函数值代入解析式,求出死亡年数.解:根据已知条件,573011=2k p k -(),从而51=p -,所以生物体内碳14含量y 与死亡年数x 之间的函数解析式是5=xy k (.由样本中碳14的残留量约为初始量的55.2%可知,5=552xk (.%k ,即 5=0552x(..解得5=log552x ..由计算工具得 4 912x ≈.因为2010年之前的4 912年是公元前2903年,所以推断此水坝大概是公元前2903年建成的.设计意图:培养学生阅读理解的能力,培养学生从数学的角度分析和解决问题的能力. (二) 选择恰当的函数模型在实际问题中,有的能应用已知的函数模型解决,有的需要根据问题的条件建立函数模型加以解决.例4 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?问题1:你能根据对三种投资回报的描述,建立三种投资方案所对应的函数模型吗?师生活动: 设第x 天所得回报是y 元,则方案一可以用函数*=40y x ∈N ()进行描述;方案二可以用函数*=10y x x ∈N ()进行描述;方案三可以用函数1*=042x y x -⨯∈N .()进行描述.设计意图:培养学生把实际问题数学化的意识和能力.问题2:要对三个方案作出选择,就要对它们的增长情况进行分析.怎样借助已有函数模型,分析解决当前的问题?师生活动:首先我们可以画出三个函数的图象.通过图象我们直观地看到,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但是增长情况并不精确,不能体现投资收益与投资期限之间的关系.接下来,我们计算三种方案每天的回报数以及回报数的增长情况.x方案一方案二方案三y增加量/元y 增加量/元y增加量/元1 40 10 10 04.2 40 0 20 10 08. 04.3 40 0 30 10 16. 08.4 40 0 40 10 32. 16.5 40 0 50 10 64. 32.6 40 0 60 10 128.64.7 40 0 70 10 256. 128. 8 40 0 80 10 512. 256. 9 40 0 90 10 1024. 512. 10 40 0 100 10 2048.1024.… … … … … ……3040300102147483648 . 1073741824 .通过表格,我们可以发现,每天的回报数,在第1~3天,方案一最多;在第4天,方案一和方案二一样多;在第5~8天,方案二最多;第9天开始,方案三最多.但是,这似乎也不能体现投资收益与投资期限之间的关系.接下来,我们再看累计的回报数,=10y x =40y1=042x y -⨯.问题3:根据以上对函数模型增长情况的分析,我们该如何选择投资方案呢?师生活动:教师引导学生根据累计的回报数作为划分投资期限的标准.投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.设计意图:使学生认识到要作出正确选择,除了考虑每天的收益外,还要考虑一段时间内累计的回报.通过以上三种呈现方式可知,尽管方案一、方案二在第1天所得回报远大于方案三,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的.由此,我们更直观的理解了“直线上升”、“指数爆炸”的实际含义.接下来,我们一起来归纳一下用函数建立数学模型解决实际问题的基本过程:首先,我们要把实际问题化归为函数模型,经过运算和推理求出函数模型的解,然后,用数学问题的解来解释说明实际问题,使实际问题得以解决。

3.4函数的奇偶性 教案-2021-2022学年人教版(山东专用)中职数学第一册

3.4函数的奇偶性 教案-2021-2022学年人教版(山东专用)中职数学第一册

授课班级21机1、汽1 授课内容 3.4函数的奇偶性授课地点835、803 授课时间12.8-12.9教学目标知识目标理解函数奇偶性的概念能力目标能根据函数的图像判断简单函数的奇偶性素质目标通过函数奇偶性体会生活中关于数学的对称美教学重难点教学重点能根据函数的图像判断简单函数的奇偶性教学难点理解函数奇偶性的概念教学过程教学环节教学内容学生活动教师活动设计意图一、回顾旧知,做实铺垫二、引课示标,明确方向多媒体展示山东剪纸的相关图片让学生仔细观察,并总结特点通过对于图形的观察与分析教师展示函数图像,让学生观察函数图像的特点,从而引出本节课的学习目标能根据函数的图像判断简单函数的奇偶性(重点)理解函数奇偶性的概念(难点)自学范围:课本49-51自学时间:10分钟完成以下知识点内容补充及自测题:让学生仔细观察总结特点学生自读学习目标,明确本节课的学习任务引导学生又图片发现对称图形和中心对称图形教师强调学习重难点,提醒学生上课时的注意方向培养学生的观察能力及概况能力学生明确学习目标三、自学质疑,合作探究判断一个函数f(x)的奇偶性,首先考虑函数的定义域是否关于________对称.(1)若不对称,则函数f(x)既不是奇函数,也不是偶函数.(2)若对称,则当f(-x)=-f(x)时,函数f(x)为________.当f(-x)=f(x)时,函数f(x)为________.当f(-x)≠f(x),且f(-x)≠-f(x)时,函数f(x)既不是奇函数也不是偶函数.当f(-x)=f(x),且f(-x)=-f(x)时,函数f(x)既是奇函数又是偶函数.常见函数函数的奇偶性(1)对于常量函数y=c (c为常数且c≠0),若定义域关于原点对称,则是________.(2)若f(x)=0,函数定义域关于原点对称,则f(x) 既是奇函数又是偶函数,反之亦然.奇函数与偶函数的单调性如果一个函数是奇函数,那么它在关于原点对称的区间上单调性相同;如果一个函数是偶函数,那么它在关于原点对称的区间上单调性相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4 函数的应用(Ⅱ)
【学习要求】
1.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义.
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
【学法指导】
通过建立指数函数、对数函数、幂函数模型解决生活实际问题,体验函数模型应用的广泛性,提高应用已学知识分析问题解决问题的能力.
研一研:问题探究、课堂更高效
探究点一 指数函数型
例1 1995年我国人口总数是12亿.如果人口的自然年增长率控制在1.25%,问哪一年我国人口总数将超过14亿?
小结:解决应用题的步骤:(1)读题,找关键点;(2)抽象成数学模型;(3)求出数学模型的解;(4)做答.
跟踪训练1物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度
是T,则T -T α=(T 0-T α)·⎝⎛⎭⎫12t h ,其中T α表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的
房间中,如果咖啡降到40℃需要20 min,那么降温到35℃时,需要多长时间(结果精确到0.1)?
探究点二 复利问题
例2 有一种储蓄按复利计算利息,本金为a 元,每期利率为r,设本利和为y,存期为x,写出本利和y 随存期x 变化的函数式.如果存入本金1 000元,每期利率2.25%,试计算5期后的本利和是多少(精确到0.01元)?
小结:复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息.
跟踪训练2 某公司为应对金融危机的影响,拟投资100万元,有两种投资方案可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少钱?(结果精确到0.01万元)
探究点三 对数函数模型的应用
例3 1999年10月12日“世界60亿人口日”提出了“人类对生育的选择将决定世界未来”的主题,控制人口急剧增长的紧迫任务摆在我们的面前.
(1)世界人口在过去40年内翻了一番,问每年人口平均增长率是多少?
(2)我国人口在1998年底达到12.48亿,若将人口平均增长率控制在1%以内,我国人口在2008年底至多有多少亿? 以下数据供计算时使用
小结:(1)解决应用题的基础是读懂题意,理顺数量关系,关键是正确建模,充分注意数学模型中元素的实际意义.
(2)对数函数模型的一般表达式为:f(x)=mlog a x+n(m,n,a为常数,a>0,a≠1).
跟踪训练3燕子每年秋天都要从北方飞到南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为
函数v=5log2Q
10,单位是m/s,其中Q表示燕子的耗氧量.
(1)计算:燕子静止时的耗氧量是多少个单位?
(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?
练一练:课堂检测、目标达成落实处
1.细菌繁殖时,
A.75
B.100
C.150
D.200
2.某厂日产手套总成本y(元)与手套日产量x(双)的关系式为y=5x+4 000,而手套出厂价格
为每双10元,则该厂为了不亏本,日产手套至少为()
A.200双
B.400双
C.600双
D.800双
3.如图所示,要在一个边长为150 m的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为________m(精确到0.01 m).
课堂小结:
1.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.
2.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母、列表、画图等使实际问题数学符号化.。

相关文档
最新文档