二次根式的化简(含字母)教学设计

合集下载

初中数学:《二次根式》大单元教学设计全文

初中数学:《二次根式》大单元教学设计全文

4、单元整体规划
单元课时规划
课型课时 概念课(1)
课时目标
学习内容
1、了解二次根式 的概念。
2、理解二次根 式
二次根式的定 义;二次根式 有意义的条件
, a ≥0(a≥0)
有双重非负性,会
确定被开方数中字
母的取值范围,会
利用二次根式的性
质做相关计算。
任务活动
实际情景引入 二次根式的定 义,探讨二次 根式的双重非 负性及应用.
式 的
解:(1)2 7 6 7

2 6 7 4 7
减 法
(2) 80 20 5

4 52 5 5

(4 2 1) 5
3 5
新课讲解

例2计算 (1)2 12 6
1 3 3
48
(2) 12 20 3 5
识 点
解:(1)原式=
2
4 36
3
3
3
16 3
=4 3 2 3 12 3 (化简二次根式)
本章的具体要求:了解二次根式、最简二次根式 的概念,了解二次根式(根号下仅限于数)的加、 减、乘、除运算法则,会用它们进行有关的简单四 则运算.
2:教材分析
本单元属于“数与代数”中实数的内容,是鲁教 版八年级下册第七章,它研究了二次根式的定义和性 质,它是学习二次根式的化简和运算的基础. 学习本 章内容,应注意随时复习有理数及整式运算的有关内 容,是学好本章的关键之一。
=8 a
(合并)
新课讲解
二 练一练 计算
次 根
(1)2 7 6 7 (2) 80 20 5
式 的
解:(1)2 7 6 7

2 6 7 4 7

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

《二次根式的化简》教案(1) (3)

《二次根式的化简》教案(1)  (3)

5.1.2 二次根式的化简〔3〕教学目标1 进一步加深对积的算式平方根的性质的理解,进一步掌握二次根式的化简。

重点、难点重难点:积的算式平方根的性质进行二次根式的化简。

教学过程一 、创设情景,导入新课二、 合作交流,探究新知上面问题中用到了:546⋅= 546⨯,这样计算对吗?你是根据什么法那么想到这样计算的呢?(00)(00)ab a b a b a b ab a b =≥≥∴=≥≥,, P158 例4 化简以下二次根式〔1〕 18 〔2〕 20 〔3〕 72化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外 〔注意:从根号下直接移到根号外的数必须是非负数〕 P158 例5 化简以下二次根式 〔1〕21 〔2〕53最简二次根式:(1) 被开方数中不含得尽方的因数〔或因式〕; (2) 被开方数不含分母。

一次函数复习〔二〕课题第四章一次函数复习〔二〕本课〔章节〕需13课时 ,本节课为第12—13课时,为本学期总第46—47课时教学目标知识与技能:1、使学生理解一次函数的意义,掌握根据条件确定一次函数表达式的方法,会画一次函数图像。

探究并掌握一次函数性质,并用之解决实际问题。

过程与方法:通过例题讲解,使学生体会一次函数性质及应用。

情感态度与价值观:体会函数作为数学模型在分析解决实际问题中的重要作用。

重点 应用一次函数的概念、图像和性质解题难点 一次函数在实际问题中的应用教学方法课型练习 教具 多媒体教学过程: 一、根底练习1.如图1,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,那么不等式20x kx b <+<的解集为〔 〕 A .2x <- B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕个案修改yxO BA〔2题〕yOxB A〔1题〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160314.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?〔直接写出答案〕Ox 〔万升〕y 〔万元〕 CB A 4 10 1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱价4.5元/升. 31日:本月共销售10万升.五月份销售记录一次函数复习〔二〕A .2x <-B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160315.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的C1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱五月份销售记录。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

湘教版数学八年级上册5.1《二次根式的化简》教学设计1

湘教版数学八年级上册5.1《二次根式的化简》教学设计1

湘教版数学八年级上册5.1《二次根式的化简》教学设计1一. 教材分析《二次根式的化简》是湘教版数学八年级上册第五章第一节的内容。

本节课的主要目的是让学生掌握二次根式的化简方法,理解二次根式之间的运算规律,为后续学习二次根式的综合应用打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数、无理数等基础知识,对二次根式有一定的了解。

但部分学生对二次根式的化简和运算规律理解不深,容易混淆。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.知识与技能:让学生掌握二次根式的化简方法,理解二次根式之间的运算规律。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。

四. 教学重难点1.重点:二次根式的化简方法。

2.难点:二次根式之间的运算规律。

五. 教学方法1.情境教学法:通过生活实例引入二次根式的化简,使学生能够更好地理解抽象的数学概念。

2.启发式教学法:引导学生主动思考、探索,培养学生的创新意识。

3.合作学习法:学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示二次根式的化简和运算规律。

2.练习题:准备一些有关二次根式化简的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如估算房屋面积、计算物体体积等,引入二次根式的化简。

引导学生思考:如何将复杂的二次根式化为简单的形式?2.呈现(10分钟)展示二次根式的化简和运算规律,引导学生观察、总结。

示例:将二次根式 () 化简为最简形式。

学生思考、讨论,教师引导总结:( = = = 3)3.操练(10分钟)让学生独立完成一些有关二次根式化简的练习题,教师巡回指导。

1.将 () 化简为最简形式。

2.() 等于多少?3.计算 (( + ) ( - )) 的值。

4.巩固(10分钟)学生分组讨论,探索二次根式之间的运算规律。

八年级数学二次根式的化简教学设计2_2

八年级数学二次根式的化简教学设计2_2

八年级数学二次根式的化简教学设计2_2一、教学目标1.知识与技能:(1)掌握二次根式的化简方法;(2)能够运用化简方法化简二次根式。

2.过程与方法:(1)采用讲解和示范相结合的方法,引导学生理解和掌握二次根式的化简方法;(2)运用举例和练习相结合的方式,帮助学生熟练掌握化简二次根式的方法。

3.情感态度与价值观:(1)培养学生对数学的兴趣,提高数学学习的积极性;(2)培养学生合作意识和团队精神,通过小组合作学习,培养学生的互助精神。

二、教学重点掌握二次根式的化简方法。

三、教学难点运用化简方法化简二次根式。

四、教学过程与内容1.导入新知识(1)教师出示一个二次根式,如√(180);(2)引导学生思考,如何将√(180)进行化简?2.引入化简二次根式方法(1)引导学生回顾基本的化简方法:将含有平方数因子的根式进行合并;(2)引导学生回忆上节课学习的对数的性质,特别是乘法、除法和幂运算的性质;(3)引导学生观察已知例子的化简方法,如将√(180)分解为√(36)×√(5);(4)提示学生进行思考,思考其他化简方法。

3.讲解化简二次根式方法(1)讲解化简二次根式的方法。

首先,要观察根号内的数,找出平方数因子;然后,将平方数因子分解出来,与其他非平方数因子分开;最后,将分开的因子进行合并。

(2)通过讲解示例,如√(50)的化简过程为:将50分解为25×2,√(25)×√(2)=5√(2)。

4.练习与巩固(1)用几个简单的例子巩固学生对于化简二次根式方法的掌握;(2)让学生在小组内互相提问,解答各自的问题;(3)引导学生观察一些特殊的化简方法,如√(72)的化简过程为:将72分解为36×2,√(36)×√(2)=6√(2)。

五、课堂小结与作业布置1.小结本节课所学的内容,强调掌握二次根式的化简方法;2.布置作业:完成课堂练习笔记,巩固化简二次根式方法;3.预习下节课内容:解一元二次方程。

2.7 第1课时 二次根式及其化简 教案

2.7 第1课时 二次根式及其化简 教案

一、情境导入问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?(2)面积为S 的正方形的边长是多少?(3)要修建一个面积为 6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念【类型一】二次根式的定义下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】二次根式有意义的条件当x________,x+3+1x+1在实数范围内有意义.解析:要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简化简下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本题主要考查运用ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43;(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a ,c 9,a 2+b 2,a 2中,最简二次根式共有( ) A .1个 B .2个C .3个D .4个解析:8a 中有因数4;c 9中有分母9;a 3中有因式a 2.故最简二次根式只有a 2+b 2.故选A. 方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a (a ≥0)的式子有意义的条件:a ≥0性质:(a )2=a (a ≥0),a 2=a (a ≥0)最简二次根式 1.若-1<x <0,则22)1(+-x x 等于 A.2x +1 B.1 C.-1-2x D.1-2x 2.下列等式成立的是A.2)2(2-=-B.4x =x 2C.b -122++b b =-1D.36x x =3.若1)3()2(22=-+-a a ,则a 的取值范围是A.2≤a ≤3B.a ≥3或a ≤2C.a ≤2D.a ≥34.化简a +2)1(a -等于A.2a -1B.1C.1或-1D.2a -1或15.计算22)21()12(a a -+-的值是A.2-4a 或4a -2B.0C.2-4aD.4a -26.当3323+-=+x x x x 时,x 的取值范围是 A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤07.当2m +7<0时,16914422++++-m m m m 化简为A.-5mB.mC.-m -2D.5m8.当a >0时,化简3ax -的结果是A.x axB.-x ax -C.x ax -D.-x ax9.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为。

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《16.1二次根式化简》教学设计
姜杰
本节课教学内容“二次根式”是湘教版八年级下册第四章第l 节第一课时。

主要内容是学习二次根式的定义和性质,重点是对二次根式的性质的理解及应用2. 难点是性质的区别与联系.本节课是一节新授课。

在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决.在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法。

在整个学习过程中,突出引导学生自己得出结论,特别是二次根式的两个性质,学生自己就初步得出了结论,培养了学生总结规律的能力。

16.1二次根式
教学目的:
1、使学生理解二次根式的意义
2、理解和应用二次根式的性质a 0≥()0≥a 和()()02≥=a a a 及掌握二次根式 的化简.
3、掌握用解一元二次不等式的方法求二次根式的被开方数中字母的取值范围;
4、培养学生观察、分析、归纳、概括的能力。

教学重点:理解二次根式的意义及其性质 教学难点:难点是理解性质及掌握二次根式 的化简.
教具:多媒体课件
教学过程:
一、复习:
请回答下列问题
二次根式的性质
求下列各数的算术平方根的平方值,并说出这些值与原来的各数有什么关系? 5.0,9
4,0,2,4 问:如果用字母a 表示数,上述结论是否成立?成立的条件是什么? 答:如字母,0≥a 那么()a a =2,
我们得到 二次根式的基本性质 (1)
()()02≥=a a a
请判断下列各式是否成立? 2a 2a
(1)()552= (2)()552=- (3)()552-=- (4)()()0222≥=m m m 例2计算
(1)253⎪⎪⎭
⎫ ⎝⎛ (2)()232 (3)()272- (4)()
2n m 观察分析:
二次根式的基本性质(2) 二次根式 的化简
例3 见微课
练习3:化简
三、小结:
1、把非负数a 的算术平方根a 叫做二次根式。

二次根式有两上要点:(1)要含有;(2)被开方数是非负数
2、讨论二次根式的被开方数中字母的取值范围问题,实际上是解所含字母的不等式。

3、计算或化简含有二次根式的式子时,应注意其中的二次根式的被开方数是在非负数条件下进行的,特别要]注意其中的隐含条件。

四、作业
课后练习节选
五、教学反思:
二次根式的教学设计是从二次根式的定义、二次根式的性质两个方面内容展开的,反思这节课的特点:课堂设计新颖,创造性地使用了教材:设计能遵循学生的思维,突破思维的障碍,在正误之间迂回辨析,激发了学生思维的有效性;诠释了概念产生的背景和过程,并且值得关注的是在性质、例题、习题的教学中,回归了定义,突出了概念课的特色。

).
0()4()3(3)6()2(3)1(2222<--a b a ;
)(;;
π.____0____02)1(222=<=≥a a a a a a 时,当;时,当)(的取值有没有限制?中2a ⎪⎪⎩⎪⎪⎨⎧<-=>)0a (a )0a (00a (a a a 2,,),==。

相关文档
最新文档