理论力学作业-第五章 刚体动力学的基本概念
大学物理第5章 刚体力学基础ppt课件

z
or
d
F
P
Mz的方向平行于转轴,由右手螺旋定则确定。
2、F不在转轴平面内 把F分解为三个分量 Fz, Fr, Ft, Fr的力矩为零, Fz的力矩不为零, 但不影响刚体的定轴转动, Ft的力矩沿轴向, 它对角动量有贡献。
z
Fz
F
r
o
P Fr
Ft
3、多个力作用于刚体 各外力作用点各不相同,外力对转轴
1、转动定律适用条件:刚体定轴转动。 2、M 一定:作用不同刚体上,J 大时,β 小, 转速不宜
改变,转动惯性大。反之,J 小,转动惯性小。 — 转动惯量是物体转动惯性大小的量度。
M J 类比 F ma
3、刚体转动定律是解决刚体转动问题的重要定律。 应用时应注意以下问题: ① 力矩和转动惯量必须对同一转轴而言。
M
r
m1
对重物应用牛顿第二定律,得
T f m 2 g si n m 2 a
N
T
对滑轮应用转动定律,得
f
• o
T
MTrJ
m2g
关联方程为: a r
J
1 2
m1r 2
TT fN m 2gco s
联立得:
Mm2grsinm2gcos
1 2m1r2m2r2
由于 为常量,故滑轮作匀变速转动.则
2 2
an
l2
9gcos
4
例题5-10 一恒力矩M作用于斜面顶点的滑轮上,滑轮的半径为r,
质量为m1,质量为m2的重物通过一不可伸长的轻绳固定在轮的边
缘,重物沿倾角为α的斜面上升.重物与斜面间的摩擦系数为μ。
求:轮子由静止开始转过角 后获得多大的角速度?
理论力学中的刚体运动与角速度的计算

理论力学中的刚体运动与角速度的计算刚体是指具有一定形状和大小,其内部各点间相对位置不会发生改变的物体。
在理论力学研究中,刚体运动是一个重要且常见的问题,其中角速度的计算是关键的一部分。
本文将介绍刚体运动的基本概念和相关计算方法。
一、刚体运动的基本概念刚体的运动可以分为平动和转动两种形式。
平动是指刚体整体沿直线运动,而转动则是刚体围绕某个轴旋转运动。
在刚体转动的过程中,角速度是一个重要的物理量。
角速度表示刚体某一点在单位时间内绕轴旋转的角度。
通常用符号ω表示,计量单位是弧度/秒。
二、角速度的计算方法1. 定义式计算:对于旋转角速度恒定的情况,可以通过定义式计算角速度。
角速度ω等于单位时间内转过的弧长与转动所需时间的比值。
ω = Δθ / Δt其中,Δθ是转过的弧长,Δt是转动所需时间。
2. 瞬时角速度计算:在某一时刻的瞬时角速度等于通过该点的切线所确定的线速度与该点到轴的距离之比。
即,ω = v / r其中,v表示质点在切线方向上的线速度,r表示质点到该轴的距离。
3. 利用转动惯量计算:转动惯量是刚体抵抗转动的特性参数。
利用转动惯量的计算公式,可以推导出角速度的表达式。
比如,对于圆盘形刚体绕垂直于其平面并通过质心的轴转动的情况,转动惯量I和角速度的关系公式为:Iω = L其中,I表示转动惯量,L表示刚体的角动量。
三、刚体运动与角速度的应用角速度的计算在刚体运动的分析和应用中发挥着重要作用。
下面以两个实例介绍其应用。
实例一:自转的地球地球自转是一个典型的刚体运动问题。
地球自转一周的周期是24小时。
将地球看作一个近似的刚体,其转动惯量与角速度的乘积等于地球的角动量。
通过计算地球的转动惯量和已知的角动量,可以求得地球的角速度。
实例二:陀螺稳定陀螺是另一个常见的刚体运动问题。
陀螺的稳定性与其角速度密切相关。
通过计算陀螺的角速度,可以分析陀螺的稳定性,并设计出能够保持平衡的陀螺。
总结:刚体运动与角速度的计算是理论力学中的重要内容。
《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
(完整word版)理论力学课后答案第五章(周衍柏)(word文档良心出品)

第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论力学的基本概念与原理

理论力学的基本概念与原理理论力学是物理学的重要分支,它研究物体的运动规律和力的作用原理。
本文将介绍理论力学的基本概念与原理,包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
一、质点与刚体的运动在理论力学中,质点与刚体被认为是物体的简化模型。
质点是不具有大小和形状的点,刚体则是一个不变形的物体。
质点的运动可以用坐标表示,而刚体的运动则包括平动和转动。
二、牛顿三大定律牛顿三大定律是理论力学的基石,它们描述了物体的运动规律和力的作用原理。
1. 第一定律:也称为惯性定律,它表明物体在不受力作用时将保持静止或匀速直线运动。
2. 第二定律:也称为动力学定律,它表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 第三定律:也称为作用-反作用定律,它表明任何两个物体之间都会相互施加大小相等、方向相反的作用力。
三、动能定理动能定理描述了力对物体进行功的过程。
根据动能定理,物体的变动动能等于作用在物体上的合外力所做的功。
动能定理可以用公式表示为:W=ΔKE,其中W表示外力所做的功,ΔKE表示物体动能的变化量。
四、动量守恒定律动量守恒定律是理论力学中的一个重要原理,它描述了系统的总动量在没有外力作用时将保持不变。
根据动量守恒定律,一个系统中各个物体的动量之和在碰撞或相互作用前后保持不变。
综上所述,理论力学的基本概念与原理包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
通过研究这些基本概念和原理,我们能够更好地理解和描述物体的运动规律和力的作用原理。
理论力学在解决力学问题、预测物体运动、设计工程等方面具有重要的应用价值。
希望本文对读者理解和掌握理论力学有所帮助。
第二篇动力学第五章刚体动力学的基本概念

第二篇动力学第五章刚体动力学的基本概念第二篇动力学第五章刚体动力学的基本概念一、目的要求1.深入地理解力、刚体、平衡和约束等重要概念。
2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。
3.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。
4. 理解力对点之矩的概念,并能熟练地计算。
5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
6.明确和掌握约束的基本特征及约束反力的画法。
7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容1.重要概念1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下不变形的物体。
刚体是静力学中的理想化力学模型。
3)约束:对非自由体的运动所加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力;主动力、约束反力6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力FR 等效,则力FR 称为力系的合力,而力系中的各力称为合力FR 的分力。
理论力学简明教程第五章答案

第五张 刚体力学平动中见彼此,转动中见分高低.运动美会让你感受到制造的乐趣.走过这遭,或许会有曾经沧海难为水的感叹.别忘了,坐标变换将为你迷津救渡,同时亦会略显身手.【要点分析与总结】1 刚体的运动(1)刚体内的任一点的速度、加速度(A 为基点)A r υυω'=+⨯()()A d r a a r dtωωω'⨯'=++⨯⨯ (2)刚体内的瞬心S :()21s A A r r ωυω=+⨯〈析〉ω为基点转动的矢量和,12ωωω=++A r r r '=+dr dtυ=*A A A dr dr d r r r dt dt dt υωυω''''=+=++⨯=+⨯ ()A d r d d a dt dt dtωυυ'⨯==++()r ωω'⨯⨯ 值得注意的是:有转动时r '与r ω'⨯的微分,引入了r ω'⨯与()r ωω'⨯⨯项。
2 刚体的动量,角动量,动能 (1)动量:c P m υ=(2)角动量: x x xx xy xz i i i y yxyy yz y zx zyzz z z L J J J L r m L J J J J J J J L ωυωωω⎛⎫⎛⎫⎛⎫-- ⎪ ⎪⎪=⨯===-- ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭∑式中:转动惯量()()()222222xx yy zz J y z dmJ z x dm J x y dm ⎧=+⎪⎪=+⎨⎪=+⎪⎩⎰⎰⎰惯量积xx yy zz J xydm J yzdm J zxdm ⎧=⎪⎪=⎨⎪=⎪⎩⎰⎰⎰且c c cL r m L υ'=⨯+* l e 方向(以l 为轴)的转动惯量:(),,l l J e J e J ααβγβγ⎛⎫ ⎪== ⎪ ⎪⎝⎭222222xx yy zz yz zx xy J J J J J J αβγβγγααβ=++---(,,αβγ别离为l e 与,,x y z 轴夹角的余弦) * 惯量主轴惯量主轴能够是对称轴或对称面的法线若X 轴为惯量主轴,那么含X 的惯量积为0,即: 0==xy xz J J 若,,x y z 轴均为惯量主轴,那么:xx yy zz L J i J j J k =++ 〈析〉成立的坐标轴轴应尽可能的是惯量主轴,如此会降低解题繁度。
考研理论力学知识点梳理

考研理论力学知识点梳理理论力学作为计算力学的基础学科,是研究物体运动状态和运动规律的学科。
它包括刚体力学、连续体力学和流体力学等内容。
在考研中,理论力学是一个重要的科目,掌握其中的知识点对于考生来说至关重要。
本文将对考研理论力学的知识点进行梳理和总结。
一、刚体力学刚体是一个可以看作是集合在一起并且彼此不能改变相对位置的质点的系统。
在刚体力学中,主要有以下几个知识点需要掌握:1. 平面运动和空间运动:- 平面运动包括平面内运动和平面外运动,分别可以通过平面极坐标和空间直角坐标进行描述。
- 空间运动则需要通过空间直角坐标进行描述,包括平动、转动和一般运动三种情况。
2. 刚体的运动学关系:- 刚体的位移、速度、加速度之间存在一些重要的关系,如刚体的加速度等于刚体的角加速度与刚体中心的半径之积。
3. 刚体的动力学关系:- 刚体的动力学关系可以通过牛顿第二定律进行描述,即物体所受合外力等于物体的质量乘以加速度。
4. 刚体的静力学关系:- 刚体的静力学关系包括平衡条件和稳定条件,通过受力分析和力矩的平衡条件可以求解刚体的平衡问题。
二、连续体力学连续体力学是研究连续介质(如弹性体、流体等)内部相互作用和响应的学科。
在连续体力学中,需要掌握以下几个知识点:1. 物质描述和空间描述:- 物质描述是以质点的某一点或一组点为参考,通过观测质点在任意时刻的位置来描述运动状态。
- 空间描述则是以空间中某个点为参考,通过观测该点与周围点之间的变形和位移来描述运动状态。
2. 连续介质的性质:- 连续介质的性质包括连续性、物质存在性以及物质划分的单元等。
3. 连续介质的运动规律:- 连续介质的运动规律可以通过质点的导数来表示,如速度场的梯度代表速度场的变化率。
4. 连续介质的动力学方程:- 连续介质的动力学方程包括质量守恒、动量守恒和能量守恒三个方程,通过这些方程可以求解介质的运动问题。
三、流体力学流体力学是研究流体(包括液体和气体)的运动规律和力学性质的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W
W W
F W
WW
F W
W W
W
W
W W
F
F
F
F
F
F
F
F W
W FF
FF
FF
FF
题5-9图
F
2
题5-9图题5ຫໍສະໝຸດ 9图题5-9图W W
F W
F
F W
F
5-5 画出下列各图中指定物体或物系的受力图。未画重力的构件的重量不计,所 有接触处均为光滑接触,系统处于平衡。
F F
梁AC、CB及整体
物块C、D F
W
第五章 刚体动力学的基本概念
班级
学号
姓名
5-1 如图所示,等边直角三角锥,边 0A OB OC a ,在边 BC 中点 D 受沿 AD 方向、大小为 F 的力作用,求力 F 在 x,y,z 轴上的投影。
5-2 如图所示,在边长为 a 的正方形顶角 A 和 B 处,分别作用力 F1 和 F2 ,求此 两力在 x,y,z 轴上的投影和对 x,y,z 三轴、OA 轴之矩。
梁AB及杆CB
右拱及整体
F
W W
左、右拱及整体 梁AB(连同滑轮)、 梁AB(不带滑轮)、整体
W
W W
球A、B
题5-10图
横梁AB、立柱AC及整体
折杆AC及整体
3
5-6 画出下列各复杂物系中指定物体的受力图. 未画重力的构件的重量不计,所有接触处均 为光滑接触
4
1
5-3 如图所示,水平圆盘的半径为 r ,外缘 C 处作用有已知力 F,且力 F 与 C 处 圆盘切线同位于铅直平面内,它们之间的夹角为 60 ,其他尺寸如图所示。求力 F 对 x、y、z 轴之矩。
5-4 画出下列各图中构件 AB 或 ACB 的受力图。未画重力的构件的重量不计,所
有接触处均为光滑接触,系统处于平W衡。