Blowups and gauge fields

合集下载

泰戈尔-飞鸟集中英文版全

泰戈尔-飞鸟集中英文版全

泰戈尔-飞鸟集中英文版全话题:世界生命教育学习,夏天的飞鸟,飞到我的窗前唱歌,又飞去了。

秋天的黄叶,它们没有什么可唱,只叹息一声,飞落在那里。

Straybirds of summer come to my window to sing and fly away.And yellow leaves of autumn, which have no songs, flutter and fallthere with a sign.,世界上的一队小小的漂泊者呀,请留下你们的足印在我的文字里。

O Troupe of little vagrants of the world, leave your footprints in my words.,世界对着它的爱人,把它浩翰的面具揭下了。

它变小了,小如一首歌,小如一回永恒的接吻。

The world puts off its mask of vastness to its lover.It becomes small as one song, as one kiss of the eternal., 是大地的泪点,使她的微笑保持着青春不谢。

It is the tears ofthe earth that keep here smiles in bloom.,无垠的沙漠热烈追求一叶绿草的爱,她摇摇头笑着飞开了。

The mighty desert isburning for the love of a bladeof grass whoshakes her head and laughs and flies away.,如果你因失去了太阳而流泪,那么你也将失去群星了。

If you shed tears when you miss the sun, youalso miss the stars.,跳舞着的流水呀,在你途中的泥沙,要求你的歌声,你的流动呢。

你肯挟瘸足的泥沙而俱下么,Thesands in your way beg for your song and your movement, dancing water.Will you carry the burden of their lameness?,她的热切的脸,如夜雨似的,搅扰着我的梦魂。

状语及状语从句解析之欧阳家百创编

状语及状语从句解析之欧阳家百创编

状语(adverbial)是句子的重要修饰成分。

状语是谓语里的另一个附加成分,它附加在谓语中心语的前面,从情况、时间、处所、方式、条件、对象、肯定、否定、范围和程度等方面对谓语中心进行修饰或限制。

在英语中,状语修饰动词、形容词、副词等的句子成分。

欧阳家百(2021.03.07)状语的功用:状语说明地点、时间、原因、目的、结果、条件、方向、程度、方式和伴随状况等。

状语一般由副词、介词短语、分词和分词短语、不定式或相当于副词的词或短语来担当。

其位置一般放在句末,但也可放在句首或句中。

副词是一种用来修饰动词,形容词,副词或全句的词,说明时间,地点,程度,方式等概念。

1.副词一般在句子中做状语.He speaks English very well. 他英语说得非常好.中的very是程度副词,用来修饰well。

very well是修饰speak的程度状语。

2. 不定式在句子中可以作目的状语。

I come specially to see you.我专门来看你.3.介词短语Ten years ago, She began to live in Dalian.十年前,她开始住在大连。

The boy was praised for his bravery.4.从句作状语When she was 12 years old, she began to live in Dalian.If I am not busy tomorrow, I will play football with you.5.分词作状语Having had a quarrel with his wife, he left home in a bad temper。

Inhibited in one direction, it now seems that the Mississippi is about to take another.状语简介概述状语与定语相同的地方是,都是前者附加成分;不同的地方是,它是谓语里的附加成分,而定语是主语或宾语里的附加成分.从句子的层次上看,状语是在第二个层次和第三个层次里的成分,有时甚至是更低层次的成分.状语的构成状语的构成经常充当状语的有形容词,副词,时间处所名词,能愿动词,指示代词,以及方位短语,介词短语,动宾短语,谓词性联合短语,谓词性偏正短语,谓词性主谓短语等.含有动量词的数量短语以及重叠式的数量短语(不论动量,物量)也可以充当状语.此外,少数名词带上表比况的助词也可以作状语.状语的书面标志——"地"状语的书面标志是结构助词"地".状语后面带或者是不带"地",情况比较复杂.一般讲来,数量短语,主谓短语,动宾短语等作状语时,大都带"地";而介词短语,方位短语,能愿动词,时间处所名词作状语时不能带"地",副词,单音节形容词作状语一般也不带"地".多层状语如果一个中心语前面有好几个状语(多层状语),那就应当注意它们的语序.多层状语的状语个数一般比多层定语的定语个数要少些,其语序也比多层定语的语序要灵活一些.多层状语的一般语序:a.表时间的名词或方位短语,介词短语;b.副词.c.表处所的介词短语或名词,方位短语;d.表情态的形容词或谓词短语;e.表对象的介词短语.其中副词的位置较为灵活,也可放置在第三项之后.一般状语和句首状语状语在句子中有两种位置:一种是在主语之后,谓语中心之前,如上文所举各例,这是状语的一般位置;另一种是放在主语的前面的,这是状语的特殊位置,这种状语可称"句首状语".状语的分类状语按其修饰的功能不同可分为八大类:时间状语,地点状语,条件状语,原因状语,目的状语,结果状语,让步状语和比较状语时间状语从句要点: 时间状语从句,由以下连词引导:when ,while,as,after ,before,as soon as,since ,till /until by the time 在时间状语从句中,要注意时态一致。

poppy Day

poppy Day

In Flanders Fields by John McCrae In Flanders fields the poppies blow Between the crosses, row on row, That mark our place: and in the sky The larks, still the guns below. We are the Dead. Short days ago We lived, felt dawn, saw sunset glow, Loved, and were loved, and now we lie In Flanders fields. Take up our quarrel with the foe: To you from failing hands we throw The torch; be yours to hold it high. If ye break faith with us who die We shall not sleep, Though poppies grow In Flanders field.

比利时的整个西部以及法国北部的一些地区被称 为Flanders,一战时,这里是最集中、最血腥的 战场,建筑、街道、树木被毁坏殆尽,几乎所有 的自然生命都在这片土地上消失了。曾经的家园 变成了一片坟墓。唯一幸存下来的,只有婴粟花。 每年天气转暖时,深红色的花盛开着,带来生命 的气息,带来希望,鼓舞着仍在战斗的人们。 John McCrae是一名加拿大军医,1915年5月, 他在法国北部看到成片的婴粟花时,被深深的感 动了,写下战时最著名的诗:“In Flanders Fields”。
Poppy Day

11月11日,被称为Remembrance Day,也 叫Poppy Day(婴粟花义卖日)。第一个正 式的Poppy Day 是在1921年11月11日,英 国政府募集到大约10万英镑,自此以后, 每年11月,人们开始购买假婴粟花佩戴, 纪念已经逝去的英雄,并借此捐钱给退伍 的老兵

电影《了不起的盖茨比》经典英语台词

电影《了不起的盖茨比》经典英语台词

电影《了不起的盖茨比》经典英语台词1. I'm paralyzed with happiness.我要被幸福冲昏头脑了。

2. Daisy, don't create a scene.黛茜,不要小题大做。

3. I decided to get roaring drunk.我决定痛饮一番。

4. Of course, you don't need to take my word for it, old sport.当然,耳听为虚,老兄。

5. I have my hands full.我手头够忙的了。

6. But he was once again dirt-poor.但他再度一贫如洗。

7. I couldn't care less about the parties.我一点都不关心派对。

8. May I save the next dance?我能预约跳下一支舞吗?9. Have it your own way, Tom.随你便,汤姆。

10. Well, I have a second sight sometimes that tells me what to do. 有时我的预感会告诉我做什么。

11. I'm all run down.我身体都垮了。

12. I wised up to something funny these last two days.我这两天发现了点蹊跷的事。

13. You make it worse by crabbing about it.你唧唧歪歪的只会更热。

14. If you're going to make personal remarks, I won't stay here a minute. 要是你想人身攻击,我就一分钟都不待下去了。

15. Now, once in a while I go off on a spree.我偶尔会出去找找乐子。

高级英语第二册第一课课文翻译

高级英语第二册第一课课文翻译

第一课中东的集市中东的集市仿佛把你带回到了几百年、甚至几千年前的时代。

此时此刻显现在我脑海中的这个中东集市,其入口处是一座古老的砖石结构的哥特式拱门。

你首先要穿过一个赤日耀眼、灼热逼人的大型露天广场,然后走进一个凉爽、幽暗的洞穴。

这市场一直向前延伸,一眼望不到尽头,消失在远处的阴影里。

赶集的人们络绎不绝地进出市场,一些挂着铃铛的小毛驴穿行于这熙熙攘攘的人群中,边走边发出和谐悦耳的叮当叮当的响声。

市场的路面约有十二英尺宽,但每隔几码远就会因为设在路边的小货摊的挤占而变窄;那儿出售的货物各种各样,应有尽有。

你一走进市场,就可以听到摊贩们的叫卖声,赶毛驴的小伙计和脚夫们大着嗓门叫人让道的吆喝声,还有那些想买东西的人们与摊主讨价还价的争吵声。

各种各样的噪声此伏彼起,不绝于耳,简直叫人头晕。

随后,当往市场深处走去时,人口处的喧闹声渐渐消失,眼前便是清静的布市了。

这里的泥土地面,被无数双脚板踩踏得硬邦邦的,人走在上面几乎听不到脚步声了,而拱形的泥砖屋顶和墙壁也难得产生什么回音效果。

布店的店主们一个个都是轻声轻气、慢条斯理的样子;买布的顾客们在这种沉闷压抑的气氛感染下,自然而然地也学着店主们的榜样,变得低声细语起来。

中东集市的特点之一是经销同类商品的店家,为避免相互间的竞争,不是分散在集市各处,而是都集中在一块儿,这样既便于让买主知道上哪儿找他们,同时他们自己也可以紧密地联合起来,结成同盟,以便保护自己不受欺侮和刁难。

例如,在布市上,所有那 1些卖衣料、窗帘布、椅套布等的商贩都把货摊一个接一个地排设在马路两边,每一个店铺门面前都摆有一张陈列商品的搁板桌和一些存放货物的货架。

讨价还价是人们习以为常的事。

头戴面纱的妇女们迈着悠闲的步子从一个店铺逛到另一个店铺,一边挑选一边问价;在她们缩小选择范围并开始正儿八经杀价之前,往往总要先同店主谈论几句,探探价底。

对于顾客来说,至关重要的一点是,不到最后一刻是不能让店主猜到她心里究竟中意哪样东西、想买哪样东西的。

关于《野性的呼唤》书的英语金句

关于《野性的呼唤》书的英语金句

关于《野性的呼唤》书的英语金句积累一些好的句子在写作之中是很重要的,小编今天给大家分享关于《野性的呼唤》英语金句赏析,有需要的朋友可以收藏起来参考一下。

《野性的呼唤》金句赏析《野性的呼唤》,又名《荒野的呼唤》(The Call of the Wild),是美国作家杰克·伦敦创作的中篇小说。

作品讲述巴克原是米勒法官家的一只爱犬,经过了文明的教化,一直生活在美国南部加州一个温暖的山谷里。

后被卖到美国北部寒冷偏远、盛产黄金的阿拉斯加,成了一只拉雪橇的狗。

该作以一只狗的经历表现文明世界的狗在主人的逼迫下回到野蛮,写的是狗,也反映人的世界。

以下是其金句赏析:1.He got two experience in spite of this gathering in crowds and groups: when fighting, trying to protect themselves;他在这成群结队的刁难中明白了两条经验:在打群架的时候,要设法保护自己;2.In the battle with a single dog, to try to use the shortest time to call each other to eat the biggest loss.在跟单个狗战斗的时候,要设法用最短的时间叫对方吃最大的亏。

3.The paradox of life is that there is a state that marks the peak of life and beyond life. When a person is extremely active thoroughly forget yourself, this realm silently appeared.生活的矛盾之处在于有一种境界标志着生命的顶峰甚至超越了生命。

当一个人极度活跃彻底地忘掉自我的时候,这种境界便悄无声息地出现。

英文打油诗

英文打油诗英文打油诗英语打油诗(1):At The Seaside 海边(1)When I was down beside the sea 当我到海边时A wooden spade they gave to me 他们给了我一把木铲To dig the sandy shore。

好去挖掘沙滩。

(2)The holes were empty like a cup 挖成像杯状般的空洞In every hole the sea camp up,让每个洞中的海水涌现Till it could e no more。

直到它不能再涌现。

by R。

L。

Stevenson英语打油诗(2):The Star 星星(1)Twinkle, twinkle, little star! 闪耀,闪耀,小星星! How I wonder what you are,我想明白你身形,Up above the world so high,高高挂在天空中,Like a diamond in the sky。

就像天上的钻石。

(2)When the blazing sun is gone,灿烂太阳已西沉,When he nothing shines upon,它已不再照万物,Then you show your little light,你就显露些微光,Twinkle, twinkle all the night。

整个晚上眨眼睛。

(3)The dark blue sky you keep 留恋漆黑的天空And often thro' my curtains peep,穿过窗帘向我望,For you never shut your eye 永不闭上你眼睛Till the sun is in the sky。

直到太阳又现形。

(4)'Tis your bright and tiny spark 你这微亮的火星,Lights the traveler in the dark; 黑夜照耀着游人,Though I know not what you are 虽我不知你身形,Twinkle, twinkle, little star! 闪耀,闪耀,小星星!by Jane Taylor, 1783-1824英语打油诗(3):What Does Little Birdie Say?(1)What does little birdie say,小鸟说些什么呢?In her nest at peep of day? 在这黎明初晓的小巢中?Let me fly, says little birdie,小鸟说,让我飞,Mother, let me fly away,妈妈,让我飞走吧。

安徒生童话故事第14篇:天国花园TheGardenofParadise

安徒生童话故事第:天国花园The Garden of Paradise安徒生童话故事第14篇:天国花园The Garden of Paradise天国花园中文版:从前有一位国王的儿子,谁也没有他那么多美丽的书:世界上所发生的事情,在这些书本里他都读得到,而且也可以在一些美丽的插图中看得见。

他可以知道每个民族和每个国家。

不过天国花园在什么地方,书上却一字也没有提到。

而他最想知道的正是这件事情。

当他还是一个小孩、但已经可以上学的时候,他的祖母曾经告诉他,说:天国花园里每朵花都是最甜的点心,每颗花蕊都是最美的酒;这朵花上写的是历史,那朵花上写的是地理和乘法表。

一个人只须吃一块点心就可以学一课书;他越吃得多,就越能学到更多的历史、地理和乘法表。

那时他相信这话。

不过他年纪越大,学到的东西越多,就变得越聪明。

他知道,天国花园的美景一定是很特殊的。

“啊,为什么夏娃①要摘下知识之树的果子呢?为什么亚当要吃掉禁果呢?如果我是他的话,这件事就决不会发生,世界上也就永远不会有罪孽存在了。

”这是他那时说的一句话。

等他到了17岁,他仍然说着这句话。

“天国花园”占据了他整个的思想。

有一天他在森林里散步。

他是单独地在散步,因为这是他生活中最愉快的事情。

黄昏到来了,云块在密集着,雨在倾盆地下着,好像天空就是一个专门泻水的水闸似的。

天很黑,黑得像在深井中的黑夜一样。

他一会儿在潮湿的草上滑一脚,一会儿在崎岖的地上冒出的光石头上绊一跤。

一切都浸在水里。

这位可怜的王子身上没有一丝是干的。

他不得不爬到一大堆石头上去,因为这儿的水都从厚青苔里沁出来了。

他几乎要倒下来了。

这时他听到一个奇怪的嘘嘘声。

于是他看到面前有一个发光的大地洞。

洞里烧着一堆火;这堆火几乎可以烤熟一只牡鹿。

事实上也是这样。

有一只长着高大的犄角的美丽的牡鹿,被穿在一根叉子上,在两根杉树干之间慢慢地转动。

火边坐着一个身材高大的老女人,样子很像一位伪装的男人。

她不断地添些木块到火里去。

比喻修辞在英语谚语中的运用

比喻修辞在英语谚语中的运用比喻修辞是英语中非常常用的一种修辞手法,它在英语谚语中也得到了广泛的运用。

比喻修辞能够通过比较、联想、隐喻等方式,将不同的事物联系起来,强调某些特定的含义和语义。

下面将为大家介绍在英语谚语中比喻修辞的运用。

1. A bird in the hand is worth two in the bush.这是一句非常经典的英语谚语,意思是“手中的一只鸟比丛中的两只鸟更有价值”。

这句谚语使用了比喻修辞,将手中的鸟和丛中的鸟进行了对比,强调了稳定和可靠的价值。

2. An apple a day keeps the doctor away.这句谚语是一种常用的俗语,意思是“每天吃一个苹果就能保持健康”。

这句话使用了比喻修辞,将吃苹果和医生远离联系在一起,表示吃苹果能够预防疾病,保持健康。

这句谚语意思是“早起的鸟儿有虫吃”。

这句话使用了比喻修辞,将早起的鸟儿和获取更多的机会联系在一起,表示只有早起的人才能抓住更多的机会,获得更多的收获。

这句话的意思是“不能以貌取人。

”这句谚语使用了比喻修辞,将书籍和人联系在一起,表示不能单纯的通过表面的外部形象来评价一个人或物品。

这句话的意思是“行动胜于言论”。

这句谚语使用了比喻修辞,将言语和行动进行了对比,强调了行动的重要性。

这句话意思是“不要过早地高兴,因为成功是不确定的。

”这句谚语使用了比喻修辞,将未孵化的鸡蛋和不确定的成功联系在一起,表示事情没有真正发生之前,不要过早地确定结局。

7. Every cloud has a silver lining.这句话意思是“乌云后面总有阳光。

”这句谚语使用了比喻修辞,将乌云和不幸联系在一起,但同时也强调了即使在不幸的时候也有一线希望存在。

通过以上的例子可以看到,在英语谚语中,比喻修辞的运用已经变得非常普遍,能够通过形象生动的比喻,将复杂的语义变得更加简单明了。

比喻修辞的运用不仅使语言更加生动有趣,而且也方便了我们的理解和记忆。

七年级物理现象与自然现象英语阅读理解30题

七年级物理现象与自然现象英语阅读理解30题1<背景文章>In nature, there are many wonderful physical phenomena. One of the most fascinating is the rainbow. A rainbow is a beautiful arc of colors that appears in the sky after rain. It is actually a wonderful example of the refraction of light. When sunlight passes through raindrops, the light is bent or refracted, and this causes the different colors that make up white light to separate. This is because different colors of light have different wavelengths and refract at different angles.Another interesting physical phenomenon in nature is the echo. An echo is a sound that is heard again after it bounces off a surface. This is related to the propagation of sound. Sound travels in waves, and when these waves hit a large obstacle like a mountain or a building, they are reflected back. This is why we can sometimes hear our own voices repeated in certain places.Lightning is also related to physical phenomena. Lightning is a large electrical discharge that occurs during a thunderstorm. It is a very powerful release of energy. The bright flash of lightning that we see is due to the rapid movement of electrons in the air. And the thunder that follows is the result of the rapid expansion of the air heated by the lightning.<问题1>What causes a rainbow to appear?A. Reflection of light on the clouds.B. Refraction of light through raindrops.C. Absorption of light by the earth.D. Scattering of light in the air.答案:B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Blowups and gauge fields N. P. Buchdahl * Department of Pure Mathematics University of Adelaide Adelaide, Australia 5005 e-mail: nbuchdah@.au
2 given. Of course, the metric on X with respect to which stability is considered must be specified, and the fore-mentioned conditions are as much on the metric as on the bundles themselves. From a real analytical view-point, it turns out the correct metrics are those formed from the original metric on X together with the Fubini-Study metric on P 2 combined so as to “stretch-out” the neck of the connected sum X ≃dif f eo X #P 2 , and the main result of this section shows that once the neck is sufficiently long, the moduli spaces effectively become independent of the metric. The analysis in the third section encounters pathological sheaves which are semi-stable but not stable. Using the cut-and-paste method, a mechanism for “stabilising” such sheaves is given in §4. A similar method also provides a simple way to desingularise singular points in moduli spaces. For a bundle in one of the “stable” moduli spaces of §3, the behaviour of the corresponding sequence of Hermitian-Einstein connections as the metrics degenerate is investigated in §5. In the last section, the issue of compactness for moduli spaces of stable bundles is considered. In [B4] it is shown that after sufficiently many blowups and pull-backs, sequences of stable bundles of bounded topology and degree have strongly convergent subsequences, where stable bundles are identified with irreducible Hermitian-Einstein connections. A natural candidate for a compactification of a moduli space of stable bundles as presented in [B4] is shown, under generic conditions in the arbitrary rank case, and in general for the rank 2 case, to be a compact space; some other simple properties of this space are also considered. Acknowledgments: Parts of this paper were written in 1988 when I was a visiting member of the Institute for Advanced Study, Princeton, N. J. supported by the National Science Foundation. Other parts were written while a member of the Department of Mathematics at Tulane University, New Orleans with the support of NSF Grant #DMS 8900878. The work was completed while visiting the Department of Mathematics at the University of Nantes, to which institution I am very grateful for its hospitality. I am ´ also grateful to the Ecole Polytechnique, Paris for its hospitality during the same period, where further additions to the paper were made.
arXiv:alg-geom/9505006v1 5 May 1995
0.
Introduction.
The purpose of this paper is to investigate the relationship between between stable holomorphic vector bundles on a compact complex surface and the same such objects on a modification (blowup) of the surface. In large part, the paper is a continuation of the work in [B2] where it was shown that a holomorphic bundle on a compact complex surface admits an irreducible Hermitian-Einstein connection if and only if the bundle ¯ -closed positive is stable, the notions of stability and Hermitian-Einstein both being with respect the same ∂∂ (1, 1)-form: this is a generalization of Donaldson’s result [D2] where it is assumed that the form is d-closed and defines an integral cohomology class (i.e., the algebraic case). Much of the underlying motivation for this work comes from its potential applications to topology (though no such applications are considered here). Donaldson has proved fundamental results on the topology of smooth 4-manifolds by defining topological invariants of moduli spaces of solutions of the anti-self-dual Yang-Mills equations on a Riemannian 4-manifold, and showing that these are differential invariants of the manifold itself. In the case of an algebraic surface with Hodge metric, the result of [D2] mentioned above identifies the Yang-Mills moduli spaces with moduli spaces of stable vector bundles, and these spaces and/or invariants can be computed using techniques standard in complex analysis. In this way Donaldson has been able to prove some of his most remarkable results [D4], [D5], and others have built upon his work ([FM1], [FM2], [K1], [OV], to cite just a few. See also [FM3] for a comprehensive account of developments, and [FS] for a calculation of the Donaldson invariants of a blownup 4-manifold in terms of those of the manifold). This interaction between real analysis, complex analysis and topology provides a rich area for investigation, and parts of this paper are directly concerned particularly with the interplay between the real and the complex analysis. The proof of the main result of [B2] is a modification of that given by Donaldson [D1] to prove the same theorem in the case of Riemann surfaces. The differences in the proofs arise from the appearance of certain singularities in the two-dimensional case, and a successful way around these singularities is to blow up the surface and pull back. In so doing, various relationships between bundles and sheaves on the surface and its blowups are uncovered, and these relationships turn out to be directly related to other aspects of gauge theory and/or complex analysis which are themselves of independent interest. A study of degenerating sequences of stable bundles on the projective plane leads naturally to conjecture whether blowups can be used to compactify moduli spaces of stable bundles in general. In [B4], it is shown that sequences of stable bundles, identified with sequences of Hermitian-Einstein connections have convergent subsequences after pulling back to blowups, at least when weak limits are stable. This leads to a the definition of a natural topoቤተ መጻሕፍቲ ባይዱogy on moduli spaces stable bundles over a surface and its blowups, and the proof of the compactness of the generic such space is presented here. The paper is organized as follows: §1 introduces notation, definitions and central background material, and gives some useful lemmas concerning “invariants” of stable holomorphic bundles. In §2 a local description and characterization of bundles on the blowup of the ball in C2 at the origin is given. A holomorphic version of Taubes’ “cut-and-paste” construction for gauge fields [T] is given, enabling a global description of bundles on the blowup of an arbitrary complex surface in terms of bundles on the original surface. Also included in this section is a short discussion of the relationship to—and between—associated constructions of Serre and Schwarzenberger. Questions of stability are considered in the third section from a purely complex-analytic viewpoint, π and a detailed description of the conditions required for bundles on a blowup X → X to be stable is * Research partially supported by NSF Grant #8900878 A.M.S. (1980) subject classification 32L10,14F05, 53B35
相关文档
最新文档