高等数学7-4
高等数学第七章 习题答案

习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
高等数学习题详解-第7、8章_

⾼等数学习题详解-第7、8章_⾼等数学第七、⼋章练习题1. 指出下列各点所在的坐标轴、坐标⾯或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平⾯上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标⾯的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy ⾯的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz ⾯的对称点的坐标为:(1, 2,3);M 关于zOx ⾯的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三⾓形是⼀个等腰三⾓形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==5、已知向量→a =(0,3,1),→b =(1,2,-1),则→→?b a =_____5___;6、过点A (1,-2,1)且以a →=(1,2,3)为法向量的平⾯⽅程是230x y z ++= 7、过点(1,-2,3)且与平⾯7360x y z -+-=平⾏的平⾯⽅程是_7(1)3(2)(3)0x y z --++-=_;8.已知两点)1,2,4(1M 与)2,0,3(2M ,求21M M ,⽅向余弦,⽅向⾓.解 }1,2,1{21--=M M ,21)2()1(22221=++-=M M ,⽅向余弦为21,22,21--,⽅向⾓为3,43,32πππ. 9.试确定m 于n 的值,使向量},3,2{n a -=与向量}2,6,{-=m b 平⾏.解 2632nm =-=-,得1,4-==n m . 10、已知平⾯1π:11110A x B y C z D +++=与平⾯2π:22220A x B y C z D +++=,则1π||2π的充要条件是__,⽽1π⊥2π的充要条件是__;11、平⾯3210x y z -++=的法向量为)2,1,3(-__;12、过点(1,-2,2)且以向量a →=(1,-2,3)为⽅程向量的直线⽅程是__; 13、指出下列⽅程在平⾯解析⼏何与空间解析⼏何中分别表⽰什么⼏何图形?(1) x -2y =1; (2) x 2+y 2=1;(3) 2x 2+3y 2=1; (4) y =x 2.解:(1)表⽰直线、平⾯。
高等数学第七章:曲面及其方程

4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2
z2 c2
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 c2
z2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
x
y z
y2
(2)椭圆
a
2
z2 c2
1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21
高等数学-第7章 - (第6次课)

(iii)如果 2 p q 0 且 2 p 0 , 即λ是特征方程的重根。
要使(3)式成立, Q' ' ( x ) 应是m次多项式. 令 Q( x) x 2Qm ( x)
仍是比较(3)式两端的系数来确定Qm ( x ) 的系数。
•10
y" py' qy f x
总之, 当 f ( x) pm ( x)e x
y* x k Qm ( x )e x
(1)
时,方程(1)具有形如
同次(m次)的多项式,
的特解, 其中 Qm ( x ) 是与 Pm ( x )
0 其中
λ不是特征根
k=
1 2Βιβλιοθήκη λ是特征方程的单根 λ是特征方程的重根
注:
上述结论可推广到 n 阶常系数非齐次线性微分方程,
但 k 是特征方程含根λ的重复次数,即 若λ不是特征方程的根,k =0; 若λ是特征方程的 s 重根,k = s.
例 1 求下列方程的通解
(1) y"2 y'3 y 3 x 1; (2) y"5 y'6 y xe2 x .
解 (1)对应齐次方程的特征方程为
r 2 2r 3 0
• 第七章 微分方程
▫ 7.1 微分方程的基本概念
▫ ▫ ▫ ▫ ▫ ▫ ▫
7.2 7.3 7.4 7.5 7.6 7.7 7.8
可分离变量的微分方程 一阶线性微分方程 可降阶的高阶微分方程 二阶线性微分方程 二阶常系数线性齐次微分方程 二阶常系数线性非齐次微分方程 综合例题
7.5二阶线性微分方程
型
其中 为常数,Pm x 是x 的一个m 次多项式:
《高等数学》 详细上册答案(一--七)

2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
同济大学《高等数学》第七版上、下册答案(详解),DOC

解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
高等数学(数三)知识重点及复习计划
高等数学(数三)复习知识点及作业按照同济大学高等数学第六版制定10.2 重点二重积分的计算法(会利用直角坐标计算二重积分,会利用极坐标计算二重积分),习题10-2:1,2, 4,6,7,8,11,12,13,14,152.掌握二重积分的计算方法(直角坐标.极坐标).3.了解无界区域上较简单的反常二重积分并会计算.10.3 注:本节数学三不考10.4 注:本节数学三不考总复习题十: 2.3.4.5.6.第十一章曲线积分与曲面积分注:本章数学三不考第十二章无穷级数(时间1周,每天2-3小时)12.1 常数项级数的概念和性质(常数项级数的概念,收敛级数的基本性质)习题12-1:1-4注:P254 柯西审敛原理不考1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.12.2 常数项级数的审敛法(正项级数及其审敛法,交错级数及其审敛法,绝对收敛与条件收敛)习题12-2:1-5注:P265 绝对收敛级数的性质不考12.3 重点幂级数(幂级数及其收敛性,幂级数的运算)习题12-3:1.2.12.4 函数展开成幂级数习题12-4:1.2.3.4.5.6.7总习题十二:1-10。
高职高等数学7-导数定义及公式
条 件
研究导数的意义
1 即时速度 v(t0 )
经过 ∆ t 时间
∆s s (t0 + ∆t ) − s (t0 ) v= = ∆t ∆t
t0 + ∆t时刻
t0时刻
走了 ∆ s 路程
∆t → 0
t0时刻
s (t0 + ∆t ) − s (t0 ) v(t0 ) = lim ∆t →0 ∆t t0 + ∆t时刻
△x
2 x + ∆x = lim = 2x ∆x →0 1 f ′(1) = f ′( x) | x =1 = 2 ×1 = 2
′ = [12 ]′ = 0 PS : [ f (1)]
基本初等函数的求导公式
c′ = 0 ( x a )′ = n ⋅ x a −1 ( a为任意实数 ) ( a x )′ = a x ln a ( (e x )′ = e x ) 1 1 (log a x )′ = ( (ln x )' = ) x ln a x (sin x )' = cos x ; (cos x )' = − sin x (tan x )' = sec 2 x ; (cot x )' = − csc 2 x (sec x )′ = sec x ⋅ tan x ; (csc x )' = − csc x ⋅ cot x
s (t )
s′(t0 )
2 函数f ( x)在x0处切线的斜率
B A C
l
l
∆x → 0
x0
klAB = tan(∠BAC ) =
x0 + ∆x
x0
x0 +∆x
BC f ( x0 + ∆x ) − f ( x0 ) = AC ∆x f ( x0 + ∆x) − f ( x0 ) kl = lim = f ′( x0 ) ∆x →0 ∆x
《高等数学》第7章空间向量与空间解析几何
d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z
Ⅲ
Ⅱ
Ⅳ
Ⅰ
O
Ⅶx
Ⅴ
Ⅷ
Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第
高等数学第七章4节一阶微分线性方程
一阶齐次线性微分方程 一阶非齐次线性微分方程
2
设
dy P x y Qx dx
(1)
dy 为一阶非齐次线性微分方程, 则方程 Px y 0 dx
称为对应于(1)的齐次线性微分方程.
2. 一阶齐次线
dy P x y 0, dx dy 得 P x dx , y dy P x dx , y
u x Q x e P x dx dx C .
求得() 的通解为:
y [ Q x e P x dx dx C ]e P x dx .
7
或
y Ce P x dx e P x dx Q x e P x dx dx
第四节
一阶线性微分方程
dy P x y Qx dx
一、一阶线性微分方程 二、伯努利方程
dy P x y Q x y n dx
n 0 ,1
1
一、一阶线性微分方程
1.定义 形如
dy 称为一阶线性微分 P x y Q x 的方程, dx
将 y u x e
P x dx
代入() , 得
u x e
即 积分得
P x dx
u x e
P x dx
P x
P x u x e
P x dx
Q x
P x dx u x Q x e
齐次线性微分方程的通解
非齐次线性微分方程的特解
即 非齐次线性微分方程的通解等于对应的齐次线性方程的通解 与非齐次线性方程的一个特解之和.
8
5 dy 2y x 1 2 的通解 . 例1 求方程 dx x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
s2
4
Y
s
3
s
10
1 s 2
4
将其分成部分分式,得
X
s
1 3
s
1 1
2s s2
4
2 s2
4
Y
s
1 3
s
2 1
s
2s 2
4
s2
2
4
取拉氏逆变换,得原方程的解
x
t
s2X
(s)
2sX
(s)
2X
(s)
2(s 1) (s 1)2 1
X
(s)
2(s 1)
(s
1)2
2
1
x(t
)
L1
2(s (s 1)2
1) 1
2
etL1
s
2s 2 1
2
etL1
y y 0 的解。
t 0
t 0
解 设 L yt Y s,对方程两端取拉氏变换,
并代入初始条件,得
s 2Y
s
3sY
s
2Y
s
s
2
3
从而求出象函数
Y
s
s
3
2 s2
3s
2
将其分解成部分分式,有 Y s 1 2 1
s 1 s 2 s 3
解 设坐标轴X的方向与
x
单位脉冲力δ(t)作 t 用的方向相同,小车
m
k
在X方向上的受力情
况如图示。
x
设小车的振动方程为 t
m
kx
x xt,由牛顿第二运动定律
F ma 得运动微分方程
mx kx t
由小车的初始情况可知方程有初始条件
x x 0
sX
(s)
1
2
X
(s)
2Y
(s)
10 s2
2
X
(s)
sY
(s)
3
3Y
(s)
13 s2 Nhomakorabea
X
(s)
Y (s)
1 s2 3 s2
x(t) e2t
y(t
)
3e2t
例6 如图系统小车的质量为m,弹簧的弹性系数为k, 假定车轮与地面的接触是光滑的,当一单位脉冲力作用 到小车上以后,小车由静止开始振动,求小车的振动方 程。
一、微分方程的拉氏变换解法
首先取拉氏变换将微分方程化为象函数的代数方 程, 解代数方程求出象函数, 再取逆变换得最后的 解. 如下图所示.
微分方程
取拉氏变换
象函数的 代数方程
微分方 程的解
解代数 方程
象原函数
取拉氏逆变换
象函数
例1 求方程 y 3y 2 y 2e满3t 足初始条件
t
E
并有初始条件 uc0 0
设 L uct F s,对方程两边取拉氏变换,得
RCsF s F s E
s
解得
F
s
E
s RCs
1
E
1 s
对其取拉氏逆变换,得原微分方程的解
y t et 2e2t e3t
例2
解微分方程
y
y
u
t
b
y t0 y0
解 设 L yt Y s 对方程两端取拉氏变换,
并代入初始条件,得
解得
sY
s
y0
Y
s
1 s
ebs
Y
s
1
s s 1
例3
求解微分方程
x(t) x(0)
2x(t) 2 x(0) 0
x(t
)
2et
cos
t
解 令L xt X s方程两边取laplace变换,得
s2
X
(s)
sx(0)
x(0)
2 sX
(s)
x(0)
2
X
(s)
2(s 1) (s 1)2 1
s
7
X
s
s 2Y
s
sY
s
5Y
s
2s
3
即
2s 2 2s 2
s s
9 7
X X
s s
s2 s2
s s
3Y 5Y
s s
2s 2s
1 3
解这个方程组,得
X
s
3
s
3s 2
1
t 0
t 0
设 L xt X s
对方程两端取拉氏变换,并代入初始条件,有
ms2X s kX s 1 ,解之,得
X s 1 1
ms2 k
m
s2
k m
对象函数取拉氏逆变换,得小车的振动方程
xt 1 sin k t
mk m
例7 在图示电路中,在t=0时接通电路,求输出信
ebs
y0 s 1
ebs
1 s
s
1 1
y0 s 1
对象函数y(s)取拉氏逆变换,得
y t u t b u t b etb y0u t et
0
y
et
1
0
et
b
y 0e t
t0 0tb tb
号 uct.
解 根据基尔霍夫定律可知
RK
任一闭合电路上的电压降之
C
E
和等于电动势。则有
uRt uct E
其中
uc
t
1 C
t
I
t
dt
可知 I t C duc t
dt
u
R
t
RI
t
RC
d
uC
dt
t
从而得微分方程
RC
d
uc
dt
t
u
c
y0
0
解 设 L xt X s, L y t Y s
对方程组两边取拉氏变换,并代入初始条件,得
2s2X s sX s 9X s s2Y s sY s 3Y s 2s 1
2s
2
X
s
sX
s
1 2
1
tetL1
s
1 2
1
tet
sin t
例4
解微分方程组
2x 2x
x x
9x 7x
y y
y y
3y 5y
0 0
初始条件为
x 0 x0 1
y 0
1 3
et
2
cos
2t
sin
2t
y
t
1 3
2et
2
cos
2t
sin
2t
x(t) 2x(t) 2 y(t) 10e2t
例5
求解微分方程组
2x(t)
y(t)
3y(t)
13e2t
x(0)
1,
y(0)
3
解 令 X (s) Lx(t),Y (s) L y(t),