数理方法习题解
数理统计习题与解答(赵选民版)2 - 副本

1.设总体 X 服从泊松分布,即 X 的分布律为
P{X = k} = λ k e−λ , k = 0,1, 2 , λ > 0,
k!
X1, X 2 ,…, X n 是来自总体 X 的样本,试求:
(1) ( X1, X 2 ,…, X n )T 的联合分布律;(2) EX,DX,ESn2 , ESn*2. 解:(1) X1, X 2 ,…, X n 是来自总体 X 的样本, X 服从泊松分布
的分布密度。
T = X1 + X2 + + Xn
X2 n+1
+
X2 n+2
+
+
X
2 2n
解:由于 ( X1, X 2 ,…, X 2n )T 是来自正态总体 N (0,σ 2 ) 的一个样本,则
X1 + X2 + nσ
+
Xn
~
N (0,1) ,
X
2 n+1
+
X2 n+2
+
σ2
+
X
2 2n
~
χ 2 (n) ,且相互பைடு நூலகம்立,从而
0,
x≤0
解:(1)Y =
n
m∑ Xi
i =1
=
n+m
∑ n
X
2 i
i = n +1
n
∑ Xi
i =1
nσ
∑m+n ⎛
i = n +1 ⎜⎝
Xi σ
⎞2 ⎟⎠
m
∑ 因为 Xi 服从 N (0,σ 2 ) (i = 1, 2,…, n, n +1,…, n + m) 且相互独立,所以
数理习题解答

数学物理方法习题解答一、复变函数部分习题解答第一章1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1u x ∂=∂,0v y ∂=∂,u v x y∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v v x y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*000lim lim lim()0z z z z z z z zz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i ze zθ-∆=∆与趋向有关,则上式中**1z z z z ∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()332222220,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩,332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数理方法第一章答案

[i(/4+2k)] i
+2n
(n=0, ± 1, ± 2…;k=0,
±1, ±2…) (4)cosh(1-i) = = -
=cosh1cos1-isinh1sin1 1-8 求出下列多值函数的所有支点并构造其 黎曼面 (1)= i i 解:令=e ,z-a=re 2 2 2i i 则 =z-a,即 e = re 2 所以 =r→= 2=+2n 与 r 一一对应,但与不对应
13求下列复数的值复数的标准形式16利用复数求下列和式sinsincos2n1isin2n17求下列函数值1sin15isin1cos5icos1sin5isin1cosh1cos1isinh1sin118求出下列多值函数的所有支点并构造其黎曼面重复所以只有两支2n可见有无穷多支因为不同n对应不同18光信息1001唐丽红输入求出下列多值函数的所有支点并构造其黎曼面2n可见有无穷多支因为不同n对应不同w
当 n=0, 1=/2 当 n=1, 2=/2+ 当 n=2, 3=/2+2,与 n=0 重复 所以只有两支 图略 (2 )解: ,令 . 则
可见有无穷多支,因为不同 n 对应不同
1-8 (光信息 1001 唐丽红输入)求出下列多值函数的所有支点 并构造其黎曼面 (2)解: 则 ,令 .
所以(1)= (2)=
1-7 求下列函数值 (1)sin(1-5i) =sin1cos5i-cos1sin5i =sin1
i ( 5i ) e i ( 5i ) e z2 )
z1 z1 z2 z2 z2 z1 z1 z2
z1 z 2 ( z1 z2 z1 z2 )
习题解答 - 第六章 数理统计基本概念

么值时, η 服从 χ 分布?并给出自由度。
2
解答:因 ξ1 ,L , ξ 4 是 N (0, 2 ) 的一个样本,所以 a (ξ1 − 2ξ 2 ) 与 b (3ξ3 − 4ξ 4 ) 相互独立,
2
且由例 3.16 可知它们分别服从 N (0, 20a ) 、 N (0,100b) ,要使 η 服从 χ 分布,只要
_ _
σ2
n
, E (S 2 ) = σ 2 。 (1)因
ξ
B(k , p) , 则 E (ξ ) = μ = kp, D (ξ ) =
_
_
_
σ2
n
_
=
kp(1 − p ) , E ( S 2 ) = σ 2 = kp(1 − p ) ; n =
(2)因 ξ
π (λ ) ,则 E (ξ ) = μ = λ , D(ξ ) =
i =1
10
N (0, 0.32 ) ,所以 ξ 0.3
N (0,1) ,即从中抽取的容量为 10 的样本,去
10 10
我们有
∑ (ξ 0.3)2
i =1
10
χ 2 (10) ,所以 0.05 = P{∑ ξ 2 > λ} = P{∑ (ξ / 0.3) 2 >
i =1 i =1
λ
0.09
}
查表可知
_ 1 1 11 [∑ ni ⋅ xi2 − n( x) 2 ] = (8 ⋅ 02 + 5 ⋅12 + 7 ⋅ 32 + 3 ⋅ 42 + 2 ⋅ 62 − 25 ⋅ 22 ) = , 3 24 n −1 _ 1 n − 1 2 24 11 b2 = [∑ ni ⋅ xi2 − n( x) 2 ] = s = ⋅ = 3.52 n n 25 3
研究生课程数理统计习题及答案

研究生课程数理统计习题及答案数理统计习题答案 第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11l i i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差4.32S ==3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑ 所以 x a c y =+ 成立()2211n x i i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==170 170174178*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n ii s x x n n +==-+∑试写出子样的频数分布,再写出经验分布函数并作出其图形。
数理统计第5章部分习题解答

第五章习题5.1.假设X 和Y 为随机变量,且满足E [X ]=-2, E [Y ]=2, Var[X ]=1, Var[Y ]=9, X 与Y 的相关系数,X Y r =-0.50.5.试由切比雪夫不等式确定满足不等式.试由切比雪夫不等式确定满足不等式{6}P X Y +³c £的最小正数c 之值之值. .解:因为{][][]220[][][]2cov(,)[][]2(,)[][]E X Y E X E Y Var X Y Var X Var Y X Y Var X Var Y r X Y Var X Var Y +=+=-+=+=++=++192(0.5)197=++´-´´=.2[](()[]6)6Var X Y P X Y E X Y ++-+³£由切比雪夫不等式:,有277(6)=636P X Y +³£.得736c =.5.2.设12,X X 为随机变量且0,[]1(1,2)i i EX Var X i ===. . 证明:证明:对任意的0,l >有22121{2}P X X l l+³£.证明:不妨设12(,)X X 为二维连续型随机变量,其密度函数为12,X X f . 由于12222212,[]()(,)X X E X X x y fx y dxdy +¥+¥-¥-¥+=+òò,12122222222212,,22(2)(,)(,)2X X X X x y x y x y P X X f x y dxdy f x y dxdylll l+³+³++³=£òòòò1222,22221212221122(,)2111[][][]22211([]([]))([]([]))22X X x y f x y dxdy E X X E X E X Var X E X Var X E X lll ll l+¥+¥-¥-¥+£=+=+=+++òò111(10)(10)22lll=+++=.5.3.在一枚均匀正四面体的四个面上分别画上1,2,3,4个点个点. . . 现将该四面体重复投现将该四面体重复投掷,(1,2,)i X i =为第i 次投掷向下一面的点数,试求当n ¥®时,211ni i X n =å依概率收敛的极限.的极限.解: 已知已知 (1,2,3,)i X i =的分布列为的分布列为12341/41/41/41/4i X P4422211115[]() , 1,2,3,.42i i k k E X k P X k k i ===×==×==åå可见,222123,,,X X X 是独立同分布的随机变量序列,且有相同的数学期望152,满足辛钦大数定律,因此对任意0e >,有,有 21115lim 02n i n i P X n e ®+¥=æö-³=ç÷èøå,即211ni i X n =å依概率收敛的极限为152.5.4.设{n X }是独立的随机变量序列,且假设{ln }{ln }0.5, 1,2,n n P X n P X n n ===-==,问{n X }是否服从大数定律?是否服从大数定律?解: []ln 0.5(ln )0.50,i E X i i =´+-´=22222[][]([]) (ln )0.5(ln )0.50ln , 1,2,3,.i i i Var X E X E X i i i i =-=´+-´-==则1111[][]0, n n i i i i E X E X n n ====åå 22111111[][]ln , 1,2,3,.n n n i i i i i Var X Var X i n n n n ======ååå利用切比雪夫不等式:对任意0e >,由,由12111[]11([])ni n n i i i i i Var X n P X E X n n e e===-³£ååå, 得2211222111ln ln 1ln (0)nnni i ii i nn nnP X n n e eee===-³££=ååå,从而有从而有211ln 0lim (0)lim 0nin n i n P X n n e e ®+¥®+¥=£-³£=å,得 11lim (0)0n i n i P X n e ®+¥=-³=å.即随机变量序列{}n X 服从大数定律服从大数定律. .5.5.设{n X }是独立同分布的随机变量序列,且假设[]2, []6n n E X Var X ==,证明:22212345632313,Pn n n X X X X X X X X X a n n --++++++¾¾®®¥,并确定常数a 之值.之值.解:232313 1,2,3,k k k k Y X X X k --=+=令.由于{}k X 是独立同分布的随机变量序列,所以{}k Y 也是独立同分布的随机变量序列也是独立同分布的随机变量序列,,且223231332313[][][][] k k k k k k k E Y E X X X E X E X X ----=+=+232323132 ([]([]))[][] (62)2214, 1,2,.k k k k Var XE XE X E X k ---=++=++´==可见,序列{}k Y 满足辛钦大数定律的条件满足辛钦大数定律的条件. . . 根据辛钦大数定律,得根据辛钦大数定律,得根据辛钦大数定律,得1214, PnY Y Y n n+++¾¾®®+¥ 即2221234563231314, Pn n nX X X X X X X X X n n--++++++¾¾®®+¥ 所以,a =14.5.6.设随机变量X ~B(100,0.8)B(100,0.8),试用棣莫弗—拉普拉斯定理求,试用棣莫弗—拉普拉斯定理求{80100}P X £<的近似值.似值.解:由~(100,0.8)X B 知[]1000.880, []1000.80.216E X Var X =´==´´=. 根据棣莫弗根据棣莫弗--拉普拉斯定理作近似计算,有拉普拉斯定理作近似计算,有99[]80[](80100)(8099)[][]E X E X P X P X Var X Var X æöæö--£<=££»F -F ç÷ç÷ç÷ç÷èøèø()()99808080 4.75010.5=0.51616--æöæö=F -F =F -F =-ç÷ç÷èøèø.5.7.一仪器同时收到50个信号k X ,k =1,2,=1,2,………………,50. ,50. ,50. 设设150,,X X 相互独立,且都服从区间服从区间[0[0[0,,9]9]上的均匀分布,试求上的均匀分布,试求501(250)k k P X =>å的近似值.的近似值.解:由~(0,9) , (0,9) , 1,1,2,,50k X U k =,有,有[]92kE X =,[]()212790124kVar X =-=.根据林德伯格根据林德伯格--莱维定理作近似计算,有莱维定理作近似计算,有5050112501250k k k k P X P X ==æöæö>=-£ç÷ç÷èøèøåå250509/215027/4-´æö»-Fç÷´èø()1 1.3610.9130.087=-F =-=.5.8.一个复杂的系统由n 个相互独立起作用的部件所组成,每个部件损坏的概率为0.100.10,,为了使整个系统正常运行,至少需要80%80%或或80%80%以上的部件正常工作,问以上的部件正常工作,问n 至少为多大才能使整个系统正常工作的概率不小于95%95%..解: : 将将n 个部件编号:个部件编号:1,2,...,n, 1,2,...,n, 1,2,...,n, 记记1, 1,2,,.0,i i X i n ì==íî若第个部件正常工作个部件正常工作,,否则否则,,则 ~(1,0.9)i X B ,且12,,,n X X X 相互独立相互独立. .依题意,要求有依题意,要求有110.80.95nii P X n =æö³³ç÷èøå即要求满足即要求满足 10.80.95n i i P X n =æö³³ç÷èøå.根据棣莫弗根据棣莫弗--拉普拉斯定理作近似计算,有拉普拉斯定理作近似计算,有10.80.90.811330.90.1ni i n n n n P X n n =æöæö-´-æöæö³»-F =-F =F ÷ç÷ç÷ç÷ç´´èøèøèøèøå. 由(1.65)0.95F =,应有 1.653n ³,即()23 1.6524.5025n ³´=,取25n =.。
数理方法习题解答(方程部分)0809

作业参考答案3、在(,ππ-)这个周期上,2()f x x x =+,试将它展开为傅立叶级数,又在本题所得展开式中置x π=,由此验证222211112346π++++=解:因为2()f x x x =+在(,ππ-)上满足狄氏定理,可以展开为傅立叶级数 又 l π=所以()0101()cos sincos sin k k k k k k k k f x a a x b x l l a a kx b kx ππ∞=∞=⎛⎫=++ ⎪⎝⎭=++∑∑23201111()d 2233a x x x x πππππππ--=+==⎰ 21()cos d k a x x kx xπππ-=+⎰()()22312sin cos sin 2cos sin xkx kx kx kx kx kx kx k k k πππππππππ---=+++-()241k k =- 21()sin d k b x x kx xπππ-=+⎰()()22312sin cos 2sin cos cos xkx kx kx kx kx kx kx k k k πππππππππ---=-+--()121k k +=- 所以 ()()1221142()1cos 1sin 3k k k f x kx kx kk π∞+=⎛⎫=+-+- ⎪⎝⎭∑222,,,x x x x x ππππππ⎧+-<<⎪==-⎨⎪=⎩令x π=代入上式得:()()()()122222211142141cos 1sin 1133k k k k k k kx kx k k kπππ∞∞+==⎛⎫⎛⎫+-+-=+-⨯-= ⎪ ⎪⎝⎭⎝⎭∑∑ 所以有222211112346π++++=得证5.(1)()cos ,(0,),(0)0,()0f x x x f f αππ=∈==作奇延拓,展为奇函数(sin 函数)1()sin k k f x b kx ∞==∑2cos sin d k b x kx x παπ=⎰2sin()sin()d 2k x k xx πααπ-++=⎰0111cos()cos()k x k x k k ππααπαα--⎡⎤=-++⎢⎥-+⎣⎦()()111cos cos 1cos cos 1k k k k παππαππαα--⎡⎤=-+-⎢⎥-+⎣⎦12221(1)cos ()k k k αππα+⎡⎤=+-⎣⎦- 12212()1(1)cos sin ,0()k k kf x kx x k απππα∞+=⎡⎤∴=+-<<⎣⎦-∑6. (1)2cos(/),(0,/2)(),(0)0,()00,(,)lx l x l f x f f l x l π∈⎧''===⎨ ∈⎩ 作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑/2/200002111cos d cos d sin 2l l l x x x a x x l l l l l πππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰所以要讨论k =1的情况/221021cos d 2l x a x l l π⎛⎫== ⎪⎝⎭⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰/202111cos cos d 2l k k x x x l l l ππ⎡+-⎤⎛⎫⎛⎫= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ /211111sin sin 11l k k x x k l k l πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦11111sin sin 1212k k k k πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦120,212(1),2(41)m k m k m m π+ =+⎧⎪=-⎨ =⎪-⎩121112(1)2()cos cos ,02(41)m m x mf x x x l l m l ππππ+∞=-∴=++<<-∑ (2)()(1/),(0,),(0)0,()0f x a x l x l f f l ''=-∈==作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑002(1/)d 22l aa a x l x l =-=⎰ 02(1)cos d l k x k x a a x l l l π⎛⎫=- ⎪⎝⎭⎰ 202221sin cos l a l k k k x x x l l k l l l ππππ-⎛⎫=+ ⎪⎝⎭()222202211421(21)k k n a a k n k n ππ=⎧⎪⎡⎤=--=⎨⎣⎦=+⎪+⎩220421()cos ,02(21)n a a n f x x x l n lππ∞=+∴=+<<+∑8.矩形波()f x 在(/2,/2)T T -这个周期上可以表示为0,/2/2(),/2/20,/2/2T x f x H x x T ττττ-<<-⎧⎪=<<-⎨⎪<<⎩试将它展为复数形式的傅立叶级数解:因为()f x 在(/2,/2)T T -上满足狄氏定理,可以展开为复数形式的傅立叶级数 又 2l T =2()k k ix ix lTkkk k f x c ec eππ∞∞=-∞=-∞==∑∑22/2/2/2/211()d d k k T i x i x T Tk T c f x e x He x T T ππττ--==⎰⎰ 2/2/22k ixTH T e T i k πττπ-⎛⎫=⎪-⎝⎭sin 2k k i i TT H e e H k k i k T πτπτπτππ-⎛⎫- ⎪== ⎪ ⎪⎝⎭当k =0时,/2/2/2/211()d d T k T H c f x x H x T T Tτττ--===⎰⎰ 2211()sin sin k k i x i x T Tk k H H k H k f x e e T k T k T ππτπτπτππ-∞=-∞=∴=++∑∑*****************************************************************3.把下列脉冲()f t 展开为傅立叶积分0,(),0,00,t T f t h T t h t T t T⎧⎪<-⎪⎪=--<<⎨⎪<<⎪>⎪⎩解:在(,)t ∈-∞∞,()f t 满足狄氏条件,且绝对可积,所以()f t 可以展开为付氏积分。
数学物理方法姚端正CH7作业解答

uΙ =
1 x+t sin αdα = sin x sin t 2 ∫x − t 1 t 2 ∫0
t 0
由无界纯强迫振动解的公式,得
u ΙΙ =
∫
x + ( t −τ )
x − ( t −τ )
τ sin αdαdτ =
1 t {cos[ x − (t − τ )] − cos[ x + (t − τ )]}τdτ 2 ∫0
t 0
= ∫ sin x sin( t − τ )τdτ = sin x ∫ sin( t − τ )τdτ = t sin x − sin x sin t
(上式最后一步用了分部积分法) 则 u = u + u = t sin x
Ι ΙΙ
3
utt − a 2u xx = x (3) u ( x,0) = 0 u ( x,0) = 3 t
① ② ③
① 即 f1 ( x) − f 2 ( x) = −ϕ ( x) ②
解:方程 utt = u xx 的通解为: u ( x, t ) = f1 ( x + t ) + f 2 ( x − t ) 将④式代入定解条件②得: f1 (0) + f 2 (2 x) = ϕ ( x )
④
⑤
1
将④式代入定解条件③得:
2
u xx − u yy = 8 (2) u ( x,0) = 0 u ( x,0) = 0 y 解:由冲量原理,原定解问题可转化为以下定解问题: v yy − vxx = 0 v( x,τ ) = 0 v ( x,τ ) = −8 y 由 D ' Alembert 公式,该问题的解为: v( x, y;τ ) = 1 x + a ( y −τ ) − 8dα =8τ − 8 y 2 ∫x − a ( y −τ )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方法作业解答:习题1.1P6 .1下列式子在复平面上具有这样的意义 (2) | z-a |= | z-b | 解:| z-a | 表示z 到a 点的距离,| z-b |表示b 点的距离 即a 与b 的连线的垂直平分线。
(3) Re(z) > 12解:Re z = x 有 x >1 2Re z > 12表示坐标x 大于12的一切点即x=12的右边平面(8) Re (1z) = 2解:因为z = x+iy所以Re(1z)=Re(1x+iy)=Re(x-iyx2+y2)=xx2+y2=2 得x2+y2- x2=0 即(x-14)2+y2=116=(14)2所以Re(1z)为以(14,0)为圆心,以14为半径的圆P6. 2把下列复数代数式,三角式和指数式几种形式表示出来(1)i解:i = cos(π2)+isin(π2)=eiπ2(2)-1解:-1= cos(π)+isin(π)=e iπ(3) 1+i 23解:1+i 23 =2(cosπ3+isinπ3)=2eiπ3(4)1-cosα+isinα解:1-cosα+isinα=ρ(cosφ+isinφ)= ρe iφ其中ρ=2(1-cosα)2+sinα= 2sin(α2)Φ =arctgsinα1-cosα= arctg(ctgα2)原式=2sin α2[cos arctg(ctgα2)+isin arctg(ctgα2)]=2sin α2eiarctg(ctgα2)(5)z3解:z3 =(x+iy)3 =(x3-3xy2) +i(3x2y-y3) ρ3e i3φ=ρ3(cos3φ+isin3φ)其中ρ=2x2+y2φ =arctgyx(7) 1-i1+i=(1-i)2(1-i)(1+i)=- i =cos3π2+isin3π2=e(i3π2)3.计算下列数值P6.3(1). 2a+ib解:x+iy=2a+ib →(x+iy)2=a+ibX2-y2+i2xy=a+ib得到:{ X2-y2=a →4 X44a X2-b2=0 →x2=a+2a2+b222xy=b } →4y4+4ay2-b2=0→ y2=-a+2a2+b22所以x=+2222a+2a2+b2=+Ay =+2222-a+2a2+b2=+B2a+ib = A+iB →-A-iB →A-iB →-A+iB(2) 3 i解:3i =3e i(π2+2nπ)=e i(π6+2nπ3)=→ e i π6(n=0)→ e i 5π6(n=1)→ e i 3π2(n=2)(3) i i解:i i =[ e i(3π2+2nπ)]i = e-(π2+znπ)(4) ii =ie i(π2+znπ)=π2+znπ(5) cos 5φ解:cos 5φ =Re(cos 5φ+i sin 5φ)=Re(cos 5φ+i sin 5φ)5=Re(cos 5φ+5 cos 4φ(i sin φ)+10 cos 3φ(i sin φ)2+10 cos 2φ(i sin φ)3+10 cos φ(i sin φ)4+(i sin φ)5)= cos 5φ-10cos3φsin2φ+5cosφsin4φ(7) cos φ + cos2φ +cos3φ +.....cosnφ解:原式=Re(e iφ+ e i2φ+ e i3φ+ e i4φ...... e inφ)=Re 1- e inφ1- e iφe iφ→括号中为等比数列,其前n项和为:e iφ1- e inφ1- e iφ=e-iφ2(1- einφ)e-iφ2(1- eiφ)e iφ=e-iφ2- ei(nφ-φ2)e-iφ2- eiφ2e iφφ2=e-iφ2- ei(nφ-φ2)2i12i(e-iφ2- eiφ2e iφ=e-iφ2+ei(nφ-φ2)2i sinφ2e iφ= -e iφ2+ei(nφ+φ22i sinφ2=e i(nφ+φ2) -e iφ22i sinφ2e i(nφ+ φ2)=cos(nφ+φ2)+isin(nφ+φ2)e i φ2=cosφ2+isinφ2故上式=[cos(nφ+φ2)- cosφ2]+i[sin(nφ+φ2)- sinφ2]2i sinφ2=[sin(nφ+φ2)- sinφ2]-i[cos(nφ+φ2)- cosφ2]2 sinφ2→Re 1- e in φ 1- ei φ e i φ=sin(n φ+φ 2 )- sin φ2 2 sin φ 2(8) sin φ + sin2φ +sin3φ +.....+sinn φ 解:原式=Im(e i φ+ ei2φ+ ei3φ+ …..ein φ)=cos φ 2 - cos(n φ+φ 2 )2 sin φ 2习题1.2P8: 验证1.2.11-1.2.14式(1)si (2)c()()(3)|sin |111sin ()()222iz izi x iy i x iy y ix y ixz z e ee e e e e e ii i-+-+--=⎡⎤=-=-=-⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------+-=-+-(e ① )()y yixix y ix y ix yixyixe e ee e e e e e e e-------+=+--(e②①+②得 )())()2()y y ix ixyyixixyix y ixe e ee e eee e e------+-+-+=-(e(e1111sin 2())())()2222yix y ixy y ix ix y y ix ix z e e e ee e e e e e i i ------⎡⎤∴=⋅⋅-=⋅+-+-+⎣⎦(e (e 1111)())())sin )cos 2222y y ix ix y y ix ix y y y y e e e e e e e x i e x i i ------⎡⎤⎡⎤=+-+-+=+--⎣⎦⎢⎥⎣⎦(e (e (e (e|sin |z ∴==方法二()()111sin ()()()22211(cos sin )(cos sin )(cos (221((2izizi x iy i x iy yix y ixy y y y y yy y y y z e eeeee e ei iix i x e x i x e e e x i e e x i i e e x i e e x -+-+-------=-=-=-⎡⎤⎡⎤=+--=-++⎣⎦⎣⎦⎡⎤=+--⎣⎦ ))sin )sin )cos|sin |z ∴==()()(4)|cos |111cos ()()222izizi x iy i x iy y ix y ix z z e ee e e e e e -+-+--=⎡⎤=+=+=+⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------++=+++(e ① )()y yixix yixyix yixyixe e ee e e e e e e e--------=--+(e②①+②得 )())()2()yyixixyyixixyix y ixe e ee e eee e e------+++--=+(e(e1111cos 2())())()22221111)())())cos )sin 2222y ix y ix y y ix ix y y ix ixy y ix ix y y ix ix y y y y z e e e e e e e e e e e e e e e e e x i e x ------------⎡⎤∴=⋅⋅+=⋅+++--⎣⎦⎡⎤⎡⎤=+++--=++-⎣⎦⎢⎥⎣⎦(e (e (e (e (e (e|cos |z ∴==方法二()()111cos ()()222izizi x iy i x iy y ix y ix z e ee e e e e e -+-+--⎡⎤=+=+=+⎣⎦11(cos sin )(cos sin )(cos (22y y y y y yx i x e x i x e e e x i e e x ---⎡⎤⎡⎤=++-=++-⎣⎦⎣⎦))sin|cos |z ∴==2(5)z izeeπ+=22(cos 2sin 2)z iziz zee ee i eππππ+==+=证明:(6)(2)sh z i sh π+=z2(2)2211(2)()()22z iz i z iz ish z i eee ee eπππππ+-+--+=-=-证明:1()2z ze e-=-=sh z(7)(2)ch z i π+=ch z2(2)2211(2)()()22z iz i z iz iz i eee ee eπππππ+-+--+=+=+证明:ch 1()2z ze e-=+=ch zP82.计算下列数值。
(a 和b 为实常数,x 为实变数)(1).()11sin a ib sin cos()cos sin()()sin ()cos 22i ibi ibi ibi iba ib a ib eea eeai⋅-⋅⋅-⋅+=+=++-111()sin ()cos ()sin ()cos 22221()sin ()cos 22bbbbb bbbb bbbi e e a ee a e ea ee ai i e ea e e a------=++-=+--=++-(2).()11cos a ib cos cos()sin sin()()cos ()sin 22i ibi ibi ibi iba ib a ib eea eeai⋅-⋅⋅-⋅+=-=+--111()cos ()sin ()cos ()sin 22221()cos ()sin 22b bbbb bbbbbbbi e e a ee a e ea ee ai i e ea e e a------=+--=++-=+--(3).ln(1)ln |1|(1)ln 1(21)(21)iArg i n i n ππ-=-+-=++=+11(5).cos ()()22i ixi ixxxix eeee chx ⋅-⋅-=+=+=11(6).sin ()()()222i ixi ixxxxxi ix eeee e e ishxi i⋅-⋅--=-=-=-=1(7).()cos 2ixixchix e e x -=+=1(8).()()sin 22ixixixixi shix e ee ei xi--=-=-=))sin ()sin()(sin cos sin )(sin cos )sin cos cos 11(cos (cos 22(9).||||||||||y y y y iaz ib zia x iy ib x iy iaxayib xcosiy x iy ayib xchy i xshy ayib xchyb xshyayb xshyay b e e xay b e e xe ee eee ee eee eee---+-+--+--+----+----=======3.第九页习题求解方程 sinz=2.解:111sin ()()(cos sin )(cos sin )2221()sin ()cos 222iz izix yixyy y yyyyz e ee eee x i x e x i x e iii i e ex e e x ------⎡⎤=-=-=+--⎣⎦=++-=由得()s i ny ye ex -+= ① ()cos 0yye e x --= ②由②式得 cos x o =,则2x n ππ=+ ③把③代入①得 ()4yyee-±+= 既 ()4yye e-+=± 则有241yye e o ±+= ④241yyeeo -±+= ⑤由④得2ye=±±因为ye o 〉,所以 2ye =±,则有(2y ln =-±,22x n ππ=+由⑤得2ye -=±±因为yeo-〉,所以2ye-=±(2y ln =±,22x n ππ=+综上可得 12l n (3)2z x i y n i ππ=+=+±± 习题1.3 P12试推导极坐标系下的柯西--黎曼方程 解: ()(,)(,)f z u x y iv x y =+其中cos x ρϕ=,sin y ρϕ= 由 cos u u x u x x ϕρρ∂∂∂∂==∂∂∂∂ 得1cos u u xρϕ∂∂=∂∂sin cos y y yyνννϕνρρϕϕϕϕ∂∂∂∂∂∂===∂∂∂∂∂∂ 得11cos yννρϕϕ∂∂=∂∂因为 u x yν∂∂=∂∂ 所以 1u νρρϕ∂∂=∂∂由sin cos u u y u u y yy ϕρϕϕϕϕ∂∂∂∂∂∂===∂∂∂∂∂∂ 得1cos u u y ϕρϕ∂∂=∂∂cos cos x x x xνννρϕνϕρρρ∂∂∂∂∂∂===∂∂∂∂∂∂ 得1cos xννρϕ∂∂=∂∂因为v u xy∂∂=-∂∂ 所以1 u νρϕρ∂∂=∂∂于是得极坐标系下的柯西--黎曼方程1u νρρϕ∂∂=∂∂1 u νρϕρ∂∂=∂∂。