2006年湖南高考数学文科卷及答案

合集下载

大鱼文库2006年高考真题——数学文(全国Ⅰ卷)+Word版含答解析

大鱼文库2006年高考真题——数学文(全国Ⅰ卷)+Word版含答解析

2006年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、 准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分, 共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )· P (B )球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径k n k k n n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m =(A )41-(B )-4(C )4 (D )41(5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 (A )58cm 2 (B )106cm 2(C )553cm 2(D )20cm 22006年普通高等学校招生全国统一考试文科数学第Ⅱ卷注意事项: 1.答题前,考生先在答题卡上用黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2006年高考湖南卷文科数学试题及参考答案

2006年高考湖南卷文科数学试题及参考答案

美好的友谊东升小学5.4班王馨叶在我不长的人生经历中有着一段纯洁、美好的友情—那就是和郑璐瑶的友谊。

认识她还是在幼儿园里。

一开始我和她并不认识,还是在游戏的时候,偶然相遇。

我们先做简单的自我介绍,不久便开始玩起来了。

后来,我们才知道我俩是同一个班的,便把对方都列为最好的朋友。

三年后,我们一起上了同一个学校,在同一个班里。

上学后不久,我们因为性格不合常常无端争吵起来。

一次,我一气之下竟提出了“绝交”,但提出后,我马上后悔了。

她听了之后,十分伤心,没有说什么,一个人默默离开了。

那天晚上,我想了好久,终于想通了在第二天要对她说:对不起,那些都是气话不是真的。

因为第二天要向她道歉,所以我早早的来到了学校。

一开始,我一直在等她,后来因为我要收作业就忘了这件事。

当我猛地想起这件事,准备起身去她的座位时,偶然发现她已经站在我的座位前了。

“昨天的事,是我不对,对不起。

”她说道。

“不,昨天提出‘绝交’的是我,所以该我说对不起。

”在几声对不起中,原本已走到尽头的友情又回来了三年级,她奉父母之命转学了。

当我知道这个消息时异常伤心,因为做了这么长时间的朋友居然就这么散了。

当她回学校交作业的时候,我和她聊了好久。

我俩都好伤心,但我和她的友情却更加坚定了,那是用我们的心在慢慢交织着。

转眼又过去两年多了,我们并没有因为不在一起而疏远,因为我们的心是彼此相通的。

和朋友的友谊不需要像彩虹那样绚烂多彩和华丽无比,只要向陈酿的古酒那么醇香便足够了。

更像西伯利亚的蝶那样,经过了一次次寒流的侵袭,依然那么顽强、美丽。

评语:文章详细具体地记叙了自己和好朋友之间由和到不和,再到和的经过,抓住了人物的语言和心理描写,刻画的细腻逼真,真实地反映了同学之间珍贵的友谊,希望你们的友谊地久天长!赠人玫瑰手留余香东升小学5.4班郝佳欣下课了,同学们像一群快乐的小鸟飞奔出教室,只有几人坐在教室看书、做作业。

崔永康正在埋头做一道语文题。

突然,他手中的笔停了下来,原来“拦路虎”出现了,崔永康紧皱着眉,一会儿搔搔头皮,一会儿用手托着下巴,绞劲脑汁地想,可怎么也想不出来,他的脸涨得像一个红透了的苹果。

2006年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)

2006年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)

2006年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)一、选择题: 1。

(2006北京文、理)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( )(A )123x x x >> (B )132x x x >>(C )231x x x >> (D )321x x x >>1. 解:依题意,有x 1=50+x 3-55=x 3-5,∴x 1<x 3,同理,x 2=30+x 1-20=x 1+10∴x 1<x 2,同理,x 3=30+x 2-35=x 2-5∴x 3<x 2故选C 2、(2006广东)对于任意的两个实数对(a ,b )和(c,d),规定(a ,b )=(c,d)当且仅当a =c,b =d;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( ) A. )0,4( B. )0,2( C.)2,0( D.)4,0(-2、解:由)0,5(),()2,1(=⊗q p 得⎩⎨⎧-==⇒⎩⎨⎧=+=-210252q p q p q p , 所以)0,2()2,1()2,1(),()2,1(=-⊕=⊕q p ,故选B.3.(2006江苏)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( )(A )1 (B )2 (C )3 (D )43【思路点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x 、y ,只要求出y x -,设x=10+t, y=10-t, 24x y t -==,选D【解后反思】4. (2006陕西文、理)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,74.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16。

2006高考文科数学试卷及答案全国1

2006高考文科数学试卷及答案全国1

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23(D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43(C )42 (D )32(9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2006年普通高等学校招生全国统一考试文科数学

2006年普通高等学校招生全国统一考试文科数学

2006年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A.6π B.4π C.3π D.2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A.M N =∅ B.M N M = C.MN M = D.MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A.()22()x f x e x R =∈ B.()2ln 2ln (0)f x x x => C.()22()x f x e x R =∈ D.()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A.14-B.4-C.4D.14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = A.8 B.7 C.6 D.5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A.,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B.()(),1,k k k Z ππ+∈C.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A.12B.35C.2D.0 ⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比数列,且2c a =,则cos B =A.14B.34 ⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 A.16π B.20πC.24πD.32π 抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A.120-B.120C.15-D.15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A.2B.2C.2D.220cm2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

2006年高考试题文科数学试题(全国II卷)

2006年高考试题文科数学试题(全国II卷)

2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a ∥b ,则x=(A )9 (B )6 (C )5 (D )3 (2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N = (A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π(4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3(C ) y=-2x+3 (D )y=-2x-3(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400 (7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。

过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B = (A )4 (B )6 (C )8 (D )9(8)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(9)已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若(sin )3cos2,f x x =-则(cos )f x =A'B'A B βα(A )3cos 2x - (B )3sin 2x - (C )3cos 2x + (D )3sin 2x +(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0 (C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种 二.填空题:(13)在4101()x x+的展开式中常数项是_____。

2006年高考文科数学(全国)卷Ⅰ

2006年高考文科数学(全国)卷Ⅰ

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一.选择题(共12小题,每小题5分, 共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b=2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m=(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32(9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为(A )58cm 2(B )106cm 2 (C )553cm 2(D )20cm 2二.填空题:本大题共4小题,每小题4分,共16分. 把答案填在横线上. (13)已知函数.121)(+-=xa x f 若)(x f 为奇函数,则a= . (14)已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成的二面角等于 .(15)设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日. 不同的安排方法共有 种.(用数字作答) 三.解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知}{n a 为等比数列,320,2423=+=a a a . 求}{n a 的通项公式.(18)(本小题满分12分)△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值.(19)(本小题满分12) A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效. 若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组. 设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.(20)(本小题满分12分)如图,1l 、2l 是相互垂直的异面直线,MN 是它们的公垂线段. 点A 、B 在1l 上,C 在2l 上,AM = MB = MN.(Ⅰ)证明NB AC ⊥;(Ⅱ)若60=∠ACB ,求NB 与平面ABC 所成角的余弦值. (21)(本小题满分14分)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ|的最大值.(22)(本小题满分12分)设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.参考答案一.选择题 (1)C (2)B (3)D (4)A (5)D (6)C (7)B (8)B(9)C(10)C(11)A(12)B二.填空题 (13)21 (14)3π (15)11 (16)2400三.解答题 (17)解:设等比数列||n a 的公比为q ,则q ≠0, ,2,23432q q a a qq a a ====所以 ,32022=+q q解得 .3,3121==q q 当 ,18,311==a q 时所以 .32318)31(18111nn n n a ---⨯==⨯= 当 ,92,31==a q 时所以 .3239231--⨯=⨯=n n n a (18)解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π (19)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i= 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i= 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2)= 942194419441⨯+⨯+⨯ .94=(Ⅱ)所求的概率为.729604)941(13=--=P (20)解法: (Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN.由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影,∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB ,∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。

2006年高考文科数学(全国)卷Ⅰ

2006年高考文科数学(全国)卷Ⅰ

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一.选择题(共12小题,每小题5分, 共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b=2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m=(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32(9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为(A )58cm 2(B )106cm 2 (C )553cm 2(D )20cm 2二.填空题:本大题共4小题,每小题4分,共16分. 把答案填在横线上. (13)已知函数.121)(+-=xa x f 若)(x f 为奇函数,则a= . (14)已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成的二面角等于 .(15)设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日. 不同的安排方法共有 种.(用数字作答) 三.解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知}{n a 为等比数列,320,2423=+=a a a . 求}{n a 的通项公式.(18)(本小题满分12分)△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值.(19)(本小题满分12) A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效. 若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组. 设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.(20)(本小题满分12分)如图,1l 、2l 是相互垂直的异面直线,MN 是它们的公垂线段. 点A 、B 在1l 上,C 在2l 上,AM = MB = MN.(Ⅰ)证明NB AC ⊥;(Ⅱ)若60=∠ACB ,求NB 与平面ABC 所成角的余弦值. (21)(本小题满分14分)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ|的最大值.(22)(本小题满分12分)设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.参考答案一.选择题 (1)C (2)B (3)D (4)A (5)D (6)C (7)B (8)B(9)C(10)C(11)A(12)B二.填空题 (13)21 (14)3π (15)11 (16)2400三.解答题 (17)解:设等比数列||n a 的公比为q ,则q ≠0, ,2,23432q q a a qq a a ====所以 ,32022=+q q解得 .3,3121==q q 当 ,18,311==a q 时所以 .32318)31(18111nn n n a ---⨯==⨯= 当 ,92,31==a q 时所以 .3239231--⨯=⨯=n n n a (18)解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π (19)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i= 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i= 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2)= 942194419441⨯+⨯+⨯ .94=(Ⅱ)所求的概率为.729604)941(13=--=P (20)解法: (Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN.由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影,∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB ,∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年湖南高考试卷科目:数学(文史类)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名、准考证号和科目。

2.考生作答时,选择题和非选择题均须作在答题卡上,在草稿纸和本试卷上答题无效。

考生在答题卡上按如下要求答题:(1)选择题部分请用2B铅笔把应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹。

(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效。

(3)保持字体工整、笔迹清晰、卡面清洁、不折叠。

3.考试结束后,将本试题卷和答题卡一并交回。

4. 本试卷共5页。

如缺页,考生须声明,否则后果自负。

姓名准考证号绝密★启用前数 学(文史类)本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分. 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么)()()(B P A P AB P ⋅=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn n P k C P P -=-球的体积公式 343V R π=,球的表面积公式24S R π=,其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数x y 2log =的定义域是A .(0,1]B . (0,+∞) C. (1,+∞) D . [1,+∞)2.已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b;2t t =时,b a ⊥,则A .1,421-=-=t tB . 1,421=-=t t C. 1,421-==t t D . 1,421==t t 3. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是A .-2B . 22 C. 34 D . 24.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .πB . 2π C. 3π D . π32 5.“a =1”是“函数a x x f -=)(在区间[1,+∞)上为增函数”的A .充分不必要条件B . 必要不充分条件C. 充要条件 D . 既不充分也不必要条件6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24 7.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 25 8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是 A .2π B . π C. 2π D . 4π 9.过双曲线M :1222=-hy x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BC AB =,则双曲线M 的离心率是A .25 B . 310C. 5 D . 10 10. 如图1:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,则实数对(x ,y )可以是A .)43,41(B . )32,32(-C. )43,41(- D . )57,51(-二.填空题:本大题共5小题,每小题4分,共20分,把答案填在答题上部 对应题号的横上.11. 若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 . 12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是 .14. 过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条.15. 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .A图1三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.17.(本小题满分12分) 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)某煤矿不被关闭的概率; (Ⅲ)至少关闭一家煤矿的概率.18.(本小题满分14分) 如图2,已知两个正四棱锥P -ABCD 与Q -ABCD 的高都是2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.Q BCPAD图219.(本小题满分14分) 已知函数ax ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性;(Ⅱ)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.20.(本小题满分14分) 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (Ⅰ)求a 4、a 5,并写出a n 的表达式;(Ⅱ)令n n n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….21.(本小题满分14分)已知椭圆C 1:13422=+y x ,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当x AB ⊥轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若34=p 且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.参考答案:1-10:DCDAABCBCDC11.12-n , 12. 85, 13. 5 ,14. 6 ,15. -3 .1.函数x y 2log =的定义域是2log x ≥0,解得x ≥1,选D.2.向量),2,1(),,2(==b t a 若1t t =时,a ∥b,∴ 14t =;2t t =时,b a ⊥,21t =-,选C.3.5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 4.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则截面圆的半径是21R=1,该截面的面积是π,选A. 5.若“1=a ”,则函数||)(a x x f -==|1|x -在区间),1[+∞上为增函数;而若||)(a x x f -=在区间),1[+∞上为增函数,则0≤a ≤1,所以“1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的充分不必要条件,选A.6.在数字1,2,3与符号“+”,“-”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到到直线014=-+y x 的距=2,圆上的点到直线的最大距离与最小距离的差是2R =62,选C.8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,∴ 最小正周期为π,选B. 9.过双曲线1:222=-b y x M 的左顶点A (1,0)作斜率为1的直线l :y=x -1, 若l 与双曲线M的两条渐近线2220y x b-=分别相交于点1122(,),(,)B x y C x y , 联立方程组代入消元得22(1)210b x x -+-=,∴ 1221222111x x b x x b ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,x 1+x 2=2x 1x 2,又||||BC AB =,则B 为AC 中点,2x 1=1+x 2,代入解得121412x x ⎧=⎪⎪⎨⎪=-⎪⎩,∴ b 2=9,双曲线M 的离心率e=10c a =,选D.10.如图,OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,由图知,x<0,当x=-41时,即OC =-41OA ,P 点在线段DE 上,CD =41OB ,CE =45OB ,而41<43<45,∴ 选C.二.填空题:11.12-n ; 12. 85; 13. 5 ; 14. 6 ; 15. -3 .11.数列{}n a 满足:111,2, 1n n a a a n +===,2,3…,该数列为公比为2的等比数列,∴=+++n a a a 21212121n n -=--. 12.某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是409050818590⨯+⨯=分.13.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,如图画出可行域,得交点A(1,2),B(3,4),则22y x +的最小值是5.14.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有6条。

15.2222()sin()3sin()(sin cos )3(sin cos )442222f x a x x a x x x x ππ=++-=++-是偶函数,取a =-3,可得()32cos f x x =-为偶函数。

相关文档
最新文档