高中数学综合总结大纲(全新版)
高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是中学数学的延伸和深化,内容较为广泛且复杂。
在这篇文章中,我们将全面总结归纳高中数学的各个知识点,帮助读者理清数学学科的脉络,更好地掌握数学知识。
本文将按照数学的不同分支来进行内容的整理,包括数学分析、几何与图形、概率与统计、数论以及代数与函数等。
一、数学分析1. 函数与极限函数是数学研究中的基本概念,而极限则为函数的重要性质之一。
我们需要了解函数的定义、性质,以及极限的概念、运算法则和重要性质。
2. 微积分微积分是数学分析的重要组成部分,主要包括导数、积分以及微分方程等知识点。
我们需要掌握导数的计算、应用,积分的概念和运算法则,以及微分方程的基本求解方法。
3. 级数级数是由数列部分和的序列构成,主要有等差级数、等比级数等。
我们需要了解级数的定义、性质以及常见级数的求和方法。
二、几何与图形1. 平面几何平面几何是研究平面点、线、面之间位置关系的数学分支。
我们需要了解平面几何的基本概念、性质,以及平面图形的判定和计算方法。
2. 立体几何立体几何是研究空间中点、线、面之间位置关系的数学分支。
我们需要掌握立体几何的基本概念、性质,以及常见立体图形的计算方法。
三、概率与统计1. 概率概率是研究随机事件发生可能性的数学分支,主要包括基本概率、条件概率、概率分布以及统计推断等。
我们需要了解概率的基本概念、性质,以及概率计算和统计推断的方法。
2. 统计统计是研究收集、整理、分析和解释数据的数学分支,主要包括数据的收集整理、描述性统计、参数估计和假设检验等。
我们需要掌握统计学的基本概念、性质,以及统计分析和统计推断的方法。
四、数论数论是研究整数性质和整数运算规律的数学分支,主要包括整数的性质、最大公因数、模运算以及数论中的应用等。
我们需要了解整数的基本性质、运算规律,以及数论在密码学等领域的应用。
五、代数与函数1. 代数运算代数是数学的基础,包括代数运算、方程和不等式、数列和数学归纳法等内容。
新版本高中数学教材大纲内容

新版本高中数学教材大纲内容第一章:集合与常用逻辑用语本章主要介绍集合的概念、基本关系和运算,以及充分条件和必要条件的概念,全称量词和存在量词的用法等内容。
在阅读和思考中,可以探讨集合中元素的个数,以及几何命题与充分条件、必要条件之间的关系。
第二章:一元二次函数、方程和不等式本章介绍了基本不等式、二次函数与一元二次方程、不等式等内容。
第三章:函数概念与性质本章介绍了函数的概念及其表示,以及幂函数和函数的应用等内容。
在阅读和思考中,可以探究函数概念的发展历程,以及探究函数y=x+1的性质。
第四章:指数函数与对数函数本章介绍了指数、指数函数、对数和对数函数等内容。
在阅读和思考中,可以探究放射性物质的衰减,以及探究指数函数的性质。
同时,也可以了解对数的发明和对数概念的形成和发展。
第五章:三角函数本章介绍了任意角和弧度制、三角函数的概念、诱导公式、三角函数的图象与性质、三角恒等变换、函数y=Asin(ωx+φ)等内容。
在阅读和思考中,可以探究三角学天文学,利用单位圆的性质研究正弦函数、余弦函数的性质,以及振幅、周期、频率、相位等概念。
第六章:平面向量及其应用本章介绍了平面向量的概念、运算、基本定理及坐标表示,以及平面向量的应用等内容。
在阅读和思考中,可以了解向量及向量符号的由来,以及XXX和XXX等人在向量应用方面的贡献。
第七章:复数本章介绍了复数的概念、四则运算和三角表示等内容。
在阅读和思考中,可以了解代数基本定理等知识点。
第八章:立体几何初步本章介绍了基本立体图形、立方图形的直观图、简单几何体的表面积与体积,以及空间点、直线、平面之间的位置关系、空间直线、平面的平行和垂直等内容。
在阅读和思考中,可以了解代数几何蒙日、欧几里得《原本》与公理化方法等知识点。
第九章:统计本章介绍了统计学中的基本概念和方法,包括数据的收集、整理和分析等内容。
第九章:统计学基础(12)9.1 随机抽样在统计学中,随机抽样是一种常用的方法,用于从总体中选择一部分样本进行研究和分析。
高中数学知识点总结完整版(最新最全)

高中数学知识点总结完整版(最新最全)本文档旨在为高中学生提供一份最新最全的高中数学知识点总结。
下面将对各个数学知识点进行简要概述。
代数与函数- 一次函数:y = kx + b- 二次函数:y = ax^2 + bx + c- 指数函数:y = a^x- 对数函数:y = loga(x)- 指数与对数性质:乘方、开方、对数的运算性质- 复数:实数、虚数、复数的性质与运算几何- 三角函数:正弦、余弦、正切、余切函数及其性质- 三角函数与三角恒等式:和差化积、倍角公式、半角公式等- 平面直角坐标系:点、直线、圆的性质与关系- 空间坐标系:点、直线、平面的性质与关系- 向量及其运算:向量的加减、数量积、向量积与混合积- 曲线的方程与性质:抛物线、椭圆、双曲线、双曲线等统计与概率- 统计基础:样本、总体、频数、频率等概念- 离散型随机变量:概率分布、期望、方差等- 连续型随机变量:概率密度函数、期望、方差等- 概率基础:随机事件、概率公理、条件概率等概念- 概率计算:排列、组合、基本概率公式等- 二项分布与正态分布:概念、性质与应用微积分- 极限与连续:函数的极限与连续性概念与判定- 导数与微分:导数的定义、基本求导法则与应用- 积分与定积分:不定积分与定积分的定义与性质- 微分方程:一阶微分方程、高阶微分方程的解法与应用- 传统函数的导数与积分:常见函数的导数与积分法则本文档包含了高中数学各个知识领域的要点总结,帮助学生加深对重点知识的理解和掌握。
同时,本文档以简洁的语言描述,方便学生快速查阅和复习。
希望这份文档能对学生们的高中数学学习有所帮助。
2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结2024年高考数学考试的大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。
下面将对每个部分的知识点进行总结,以方便复习。
一、数与式1.实数实数的概念、实数的四则运算、有理数与无理数的关系、开方运算2.立方根立方根的概念、立方根的计算、立方根的性质3.代数式与多项式代数式的概念、等价代数式的判定、多项式的概念、多项式的加减乘除、单项式与多项式的乘法、多项式的因式分解、特殊的多项式4.分式分式的概念、分式的四则运算、分式的化简、分式方程二、函数1.一次函数一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用2.二次函数二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用、二次函数的最值3.绝对值函数绝对值函数的概念、绝对值函数的图像、绝对值函数的性质、绝对值函数的应用4.反比例函数反比例函数的概念、反比例函数的图像、反比例函数的性质、反比例函数的应用5.复合函数复合函数的概念、复合函数的性质、复合函数的应用三、几何与变换1.空间坐标系空间直角坐标系、点的坐标、点到平面的距离、点到直线的距离2.向量向量的概念、向量的线性运算、向量的模、向量的夹角、向量的共线与垂直、向量的投影、向量的应用3.三角函数弧度与角度的关系、三角函数的概念、三角函数的性质、三角函数的图像、三角函数的应用4.几何相似相似三角形的判定、相似三角形的性质、相似三角形的应用、相似三角形的面积比5.平面向量与平面几何平面向量的几何意义、平面向量的坐标表示、平面向量的线性运算、向量共线的判定、平行四边形的面积、三角形的面积、平面图形的位置关系四、统计与概率1.统计图与统计量频数分布表与频率分布表、频率直方图、频率多边形、统计图的应用、统计量的计算与性质2.概率的概念随机事件与样本空间、事件的概率、几何概型与排列、分子概型与组合、概率的加法定理、概率的乘法定理、条件概率、独立事件、概率的应用以上是2024年高考数学大纲的知识点总结。
新课标高中数学教学大纲(最新)

新课标高中数学教学大纲(最新)新课标高中数学教学大纲高中数学课程根据《普通高中数学课程标准(实验)》设计,内容包括5个模块,分别是必修课程4个模块和选修课程6个模块。
其中必修课程为3个模块,选修课程为3个模块。
1.必修课程必修课程是在学习高中数学课程之前必须学习的内容,是从初中数学到高中数学学习的过渡和衔接,是学习高中数学的基础。
必修课程的内容包括:(1)集合与函数,包括集合的含义、表示法及其运算,函数的概念和性质,以及简单的函数模型等。
(2)空间几何,包括空间几何的基本概念、性质和简单性质等。
(3)算法初步,包括算法的含义、基本逻辑结构和基本控制结构等。
2.选修课程选修课程是在完成必修课程的基础上学习的内容,是必修课程的延伸和拓展,是进一步学习其他数学课程的基础。
选修课程的内容包括:(1)坐标系与参数方程,包括直角坐标方程、极坐标方程、参数方程等。
(2)不等式选讲,包括不等式的性质、基本不等式、绝对值不等式等。
(3)数列与数学归纳法,包括数列的基本概念、数列的递推关系、等差数列与等比数列等。
以上是部分新课标高中数学教学大纲的内容,详细内容请参考官方文件。
山东高中数学高一教学大纲很抱歉,我无法提供关于山东高中数学高一教学大纲的详细信息。
建议您查询当地的教材或教育部门,以获取最准确和最新的教学大纲信息。
高中数学教学大纲高中数学课程是义务教育的重要组成部分,是培养学生基本数学素养和为高等教育输送人才的重要阶段。
高中数学课程有助于学生认识数学在促进人的全面素质发展中的作用,形成对数学学科的正确态度,养成良好的学习习惯,掌握必要的基础知识和基本技能,发展基本的数学能力。
高中数学课程的设计与实践,应注重基础,贴近实际,强调对知识的理解与运用,避免繁杂的运算与推理。
主要内容包括:集合与函数、数列、三角函数、向量、不等式、解析几何、立体几何、概率和统计、极限、导数及其应用、行列式、矩阵、几何、组合、运筹和最优化等。
高中数学知识点总结完整版

高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
最新最全高中数学知识总结(精心整理)

最新最全高中数学知识总结(精心整理)
本文档旨在为高中学生提供一份最新最全的高中数学知识总结,帮助他们加深对数学知识的理解和应用。
以下是主要内容的简要概述:
1. 数学基础知识
- 数的性质和运算规则
- 代数表达式和方程式的简化与求解
- 几何图形的性质和运算
2. 函数与方程
- 函数的概念和性质
- 一次函数、二次函数、指数函数、对数函数等常见函数及其
性质
- 方程的解的求解方法与应用
3. 三角函数与解析几何
- 三角函数的基本概念和性质
- 三角函数的图像与性质
- 解析几何中的直线、圆和抛物线等图形的性质和运算
4. 概率与统计
- 概率与统计的基本概念和应用
- 随机事件与概率计算
- 统计的方法与应用
5. 数学思维与问题解决
- 数学思维的培养与发展
- 问题解决的基本思路和策略
- 数学推理与证明方法的应用
该文档是经过精心整理,收集了高中数学课程中的核心知识点,并结合了大量实例和练题来帮助学生巩固理解。
无论是备考中的突
击复,还是日常知识的回顾与提高,这份总结都能帮助学生轻松掌
握高中数学的重点知识,从而取得更好的成绩。
希望本文档对广大高中学生有所帮助!。
(完整版)高中数学知识大纲

1.集(hexie)合(set)1.1集(hexie)合的阶,集(hexie)合之间的关系。
1.2集(hexie)合的分划1.3子集,子集族1.4容斥原理2.函数(function)2.1函数的定义域、值域2.2函数的性质2.2.1单调性2.2.2奇偶性2.2.3周期性2.2.4凹凸性2.2.5连续性2.2.6可导性2.2.7有界性2.2.8收敛性2.3初等函数2.3.1一次、二次、三次函数2.3.2幂函数2.3.3双勾函数2.3.4指数、对数函数2.4函数的迭代2.5函数方程3.三角函数(trigonometric function)3.1三角函数图像与性质3.2三角函数运算3.3三角恒等式、不等式、最值3.4正弦、余弦定理3.5反三角函数3.6三角方程4.向量(vector)4.1向量的运算4.2向量的坐标表示,数量积5.数列(sequence)5.1数列通项公式求解5.1.1换元法5.1.2特征根法5.1.3不动点法,迭代法5.1.4数学归纳法,递归法6.不等式(inequality)6.1解不等式6.2重要不等式6.2.1均值不等式6.2.2柯西不等式6.2.3排序不等式6.2.4契比雪夫不等式6.2.5赫尔德不等式6.2.6权方和不等式6.2.7幂平均不等式6.2.8琴生不等式6.2.9 Schur不等式6.2.10嵌入不等式6.2.11卡尔松不等式6.3证明不等式的常用方法6.3.1利用重要不等式6.3.2调整法6.3.3归纳法6.3.4切线法6.3.5展开法6.3.6局部法6.3.7反证法6.3.8其他7.解析几何(analytic geometry)7.1直线与二次曲线方程7.2直线与二次曲线性质7.3参数方程7.4极坐标系8.立体几何(solid geometry)8.1空间中元素位置关系8.2空间中距离和角的计算8.3棱柱,棱锥,四面体性质8.4体积,表面积8.5球,球面8.6三面角8.7空间向量9.排列,组合,概率(permutations, combinatorics, probability)9.1排列组合的基本公式9.1.1加法、乘法原理9.1.2无重复的排列组合9.1.3可重复的排列组合9.1.4圆排列、项链排列9.1.5一类不定方程非负整数解的个数9.1.6错位排列数9.1.7 Fibonacci数9.1.8 Catalan数9.2计数方法9.2.1映射法9.2.2容斥原理9.2.3递推法9.2.4折线法9.2.5算两次法9.2.6母函数法9.3证明组合恒等式的方法9.3.1 Abel法9.3.2算子方法9.3.3组合模型法9.3.4归纳与递推方法9.3.5母函数法9.3.6组合互逆公式9.4二项式定理9.5概率9.5.1独立事件概率9.5.2互逆事件概率9.5.3条件概率9.5.4全概率公式,贝叶斯公式9.5.5现代概率,几何概率9.6数学期望10.极限,导数(limits, derivatives)10.1极限定义,求法10.2导数定义,求法10.3导数的应用10.3.1判断单调性10.3.2求最值10.3.3判断凹凸性10.4洛比达法则10.5偏导数11.复数(complex numbers)11.1复数概念及基本运算11.2复数的几个形式11.2.1复数的代数形式11.2.2复数的三角形式11.2.3复数的指数形式11.2.4复数的几何形式11.3复数的几何意义,复平面11.4复数与三角,复数与方程11.5单位根及应用12.平面几何(plane geometry)12.1几个重要的平面几何定理12.1.1梅勒劳斯定理12.1.2塞瓦定理12.1.3托勒密定理12.1.4西姆松定理12.1.5斯特瓦尔特定理12.1.6张角定理12.1.7欧拉定理12.1.8九点圆定理12.2圆幂,根轴12.3三角形的巧合点12.3.1内心12.3.2外心12.3.3重心12.3.4垂心12.3.5旁心12.3.6费马点12.4调和点列12.5圆内接调和四边形12.6几何变换12.6.1平移变换12.6.2旋转变换12.6.3位似变换12.6.4对称变换(反射变换)12.6.5反演变换12.6.6配极变换12.7几何不等式12.8平面几何常用方法12.8.1纯几何方法12.8.2三角法12.8.3解析法12.8.4复数法12.8.5向量法12.8.6面积法13.多项式(polynomials)13.1多项式恒等定理13.2多项式的根及应用13.2.1韦达定理13.2.2虚根成对原理13.3多项式的整除,互质13.4拉格朗日插值多项式13.5差分多项式13.6牛顿公式13.7单位根13.8不可约多项式,最简多项式14.数学归纳法(mathematical induction)14.1第一数学归纳法14.2第二数学归纳法14.3螺旋归纳法14.4跳跃归纳法14.5反向归纳法14.6最小数原理15.初等数论(elementary number theory)15.1整数,整除15.2同余15.3素数,合数15.4算术基本定理15.5费马小定理,欧拉定理15.6拉格朗日定理,威尔逊定理15.7裴蜀定理15.8平方数15.9中国剩余定理15.10高斯函数15.11指数,阶,原根15.12二次剩余理论15.12.1二次剩余定理及性质15.12.2 Legendre符号15.12.3 Gauss二次互反律15.13不定方程15.13.1不定方程解法15.13.1.1同余法15.13.1.2构造法15.13.1.3无穷递降法15.13.1.4反证法15.13.1.5不等式估计法15.13.1.6配方法,因式分解法15.13.2重要不定方程15.13.2.1一次不定方程(组)15.13.2.2勾股方程15.13.2.3 Pell方程15.14 p进制进位制,p进制表示16.组合问题(combinatorics)16.1组合计数问题(参见9.1,9.2)16.2组合恒等式,不等式(参见9.3)16.3存在性问题16.4组合极值问题16.5操作变换,对策问题16.6组合几何16.6.1凸包16.6.2覆盖16.6.3分割16.6.4整点16.7图论16.7.1图的定义,性质16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图16.7.5托兰定理16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题16.7.8有向图,竞赛图16.8组合方法16.8.1映射法,对应法,枚举法16.8.2算两次法16.8.3递推法16.8.4抽屉原理16.8.5极端原理16.8.6容斥原理16.8.7平均值原理16.8.8介值原理16.8.9母函数法16.8.10染色方法16.8.11赋值法16.8.12不变量法16.8.13反证法16.8.14构造法16.8.15数学归纳法16.8.16调整法16.8.17最小数原理16.8.18组合计数法17.其他(others)(了解即可,不作要求)17.1微积分,泰勒展开17.2矩阵,行列式17.3空间解析几何17.4连分数17.5级数,p级数,调和级数,幂级数17.6其他《奥赛经典》(几何,代数,组合,数论问题)沈文选等编湖南师范大学出版社《高中竞赛数学教程》刘诗雄,熊斌编武汉大学出版社《数学奥林匹克小丛书》(共计16本)华东师范大学出版社《初等数论》潘承洞,潘承彪编北京大学出版社《数学奥林匹克命题人讲座》单壿主编上海科技教育出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高级中学数学教学大纲安徽亳州市米立海数学是研究空间形式和数量关系的科学。
数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。
随着社会的发展,数学的应用越来越广泛。
它是人们参加社会生活、从事生产劳动和学习、研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
高中数学是义务教育后普通高级中学的一门主要课程。
它是学习物理、化学、计算机等学科以及参加社会生产、日常生活和进一步学习的必要基础,对形成良好的思想品质和辩证唯物主义世界观有积极作用。
因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。
一、教学目的高中数学的教学目的是:使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何的基础知识和概率统计、微积分的初步知识,并形成基本技能;进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辩证唯物主义观点基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。
基本技能是指:按照一定的程序与步骤进行运算、处理数据(包括使用计算器)、简单的推理、画图以及绘制图表等技能。
思维能力主要是指:会观察、比较、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
运算能力是指:会根据法则、公式正确地进行运算、处理数据,并理解算理;能够根据问题的情景,寻求与设计合理、简捷的运算途径。
空间想象能力主要是指:能够由实物形状想象出几何图形,由几何图形想象出实物形状、位置和大小;能够想象几何图形的运动和变化;能够从复杂的图形中区分出基本图形,并能分析其中的基本元素及其关系;能够根据条件作出或画出图形;会运用图形与图表等手段形象地揭示问题本质。
解决实际问题的能力是指:会提出、分析和解决带有实际意义的或在相关学科、生产和生活中的数学问题;会使用数学语言表达问题、进行交流,形成用数学的意识。
创新意识主要是指:对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探索和研究。
良好的个性品质主要是指:正确的学习目的,学习数学的兴趣、信心和毅力,实事求是的科学态度,勇于探索创新的精神,欣赏数学的美学价值。
高中数学中所培养的辩证唯物主义观点主要是指:数学来源于实践又反过来作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
二教学内容的确定和安排高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。
在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。
高中数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。
必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。
学校根据教学实际自行安排必修课、选修课的开设。
每学期至少安排一个研究性课题。
三教学内容和教学目标必修课1.集合、简易逻辑(14课时)集合。
子集。
补集。
交集。
并集。
逻辑联结词。
四种命题。
充要条件。
教学目标(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
本大纲阐述教学目标分为了解、理解、掌握、灵活运用等四个层次,其含义参照《九年义务教育全日制初级中学数学教学大纲(试用)》(1995年第2版)的提法:(1)了解:对知识的含义有感性的、初步的认识,能够说出这一知识是什么,能够(或会)在有关的问题中识别它。
(2)理解:对概念和规律(定律、定理、公式、法则等)达到了理性认识,不仅能够说出概念和规律是什么,而且能够知道它是怎样得出来的,它与其他概念和规律之间的联系,有什么用途。
(3)掌握:一般地说,是在理解的基础上,通过练习,形成技能,能够(或会)用它去解决一些问题。
(4)灵活运用:是指能够综合运用知识并达到了灵活的程度,从而形成了能力。
(2)理解逻辑联结词"或"、"且"、"非"的含义;理解四种命题及其相互关系;掌握充要条件的意义。
2.函数(30课时)映射。
函数。
函数的单调性。
函数的奇偶性。
反函数。
互为反函数的函数图象间的关系。
指数概念的扩充。
有理指数幂的运算性质。
指数函数。
对数。
对数的运算性质。
对数函数。
函数的应用举例。
实习作业。
教学目标(1)了解映射的概念,在此基础上加深对函数概念的理解。
(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程。
(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
(6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
(7)实习作业以函数应用为内容,培养学生应用函数知识解决实际问题的能力。
3.不等式(22课时)不等式。
不等式的基本性质。
不等式的证明。
不等式的解法。
含绝对值的不等式。
教学目标(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
(3)掌握分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
4.平面向量(12课时)向量。
向量的加法与减法。
实数与向量的积。
平面向量的坐标表示。
线段的定比分点。
平面向量的数量积。
平面两点间的距离。
平移。
教学目标(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
(2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
5.三角函数(46课时)角的概念的推广。
弧度制。
任意角的三角函数。
单位圆中的三角函数线。
同角三角函数的基本关系式。
正弦、余弦的诱导公式。
两角和与差的正弦、余弦、正切。
二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图象和性质。
周期函数。
函数y=Asin(ωx+φ)的图象。
正切函数的图象和性质。
已知三角函数值求角。
正弦定理。
余弦定理。
斜三角形解法举例。
实习作业。
教学目标(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
(2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式:掌握正弦、余弦的诱导公式。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
(6)会由已知三角函数值求角,并会用符号 arcsin x、arccosx、arctan x表示。
(7)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(8)通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
(9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。
6.数列(12课时)数列。
等差数列及其通项公式。
等差数列前 n 项和公式。
等比数列及其通项公式。
等比数列前 n 项和公式。
教学目标(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前 n 项和公式,并能运用公式解决简单的问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前 n 项和公式,并能运用公式解决简单的问题。
7.直线和圆的方程(22课时)直线的倾斜角和斜率。
直线方程的点斜式和两点式。
直线方程的一般式。
两条直线平行与垂直的条件。
两条直线的交角。
点到直线的距离。
用二元一次不等式表示平面区域。
简单的线性规划问题。
实习作业。
曲线与方程的概念。
由已知条件列出曲线方程。
圆的标准方程和一般方程。
圆的参数方程。
教学目标(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
(2)掌握两条直线平行与垂直的条件,掌握两条直线所成的角和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系。
(3)会用二元一次不等式表示平面区域。
(4)了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
(5)了解解析几何的基本思想,了解用坐标法研究几何问题的方法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
(7)结合教学内容进行对立统一观点的教育。
(8)实习作业以线性规划为内容,培养解决实际问题的能力。
8.圆锥曲线方程(18课时)椭圆及其标准方程。
椭圆的简单几何性质。
椭圆的参数方程。
双曲线及其标准方程。
双曲线的简单几何性质。
抛物线及其标准方程。
抛物线的简单几何性质。
教学目标(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)能够利用工具画圆锥曲线的图形,了解圆锥曲线的简单应用。