共焦点椭圆与双曲线离心率的一个完美结论

合集下载

快速求离心率12个二级结论

快速求离心率12个二级结论

快速求离心率12个二级结论在物理学中,离心率是描述椭圆轨道形状的一个重要参数。

它可以通过多种方法进行计算,本文将介绍12个二级结论,帮助读者快速求解离心率。

以下是这些结论:1. 椭圆轨道的离心率定义为焦点之间的距离与长轴长度的比值。

即e = c/a,其中e表示离心率,c表示焦点之间的距离,a表示长轴长度。

2. 椭圆轨道的离心率范围在0到1之间,当离心率为0时,轨道为圆形,当离心率为1时,轨道为抛物线。

3. 焦距可以通过离心率与长轴的乘积得到,即c = ae。

4. 当离心率小于1时,椭圆轨道的焦点在轨道内部。

当离心率等于1时,焦点位于抛物线的顶点上。

5. 椭圆轨道的半长轴长度可以通过长轴长度和离心率计算得出,即b = a√(1-e^2)。

6. 椭圆轨道的半短轴长度可以通过半长轴长度和离心率计算得出,即c = b√(1-e^2)。

7. 离心率可以通过焦点之间的距离和轨道长度的比值求解,即e = 1 - (r_min/r_max),其中r_min表示轨道的最小半径,r_max表示轨道的最大半径。

8. 当离心率小于1时,椭圆轨道的最小半径和最大半径分别为r_min = a(1-e)和r_max = a(1+e)。

9. 当离心率等于1时,抛物线轨道的最小半径为r_min = a,最大半径趋于无穷大。

10. 椭圆轨道的周长可以通过半长轴、半短轴和椭圆的周长公式计算得出,即C = 4aE(e),其中E(e)表示第二类完全椭圆积分。

11. 椭圆轨道的面积可以通过半长轴和半短轴的乘积和π计算得出,即S = πab。

12. 当离心率接近于1时,椭圆轨道的形状趋近于一条直线。

当离心率趋近于0时,椭圆轨道的形状趋近于一条圆。

通过以上12个二级结论,读者可以快速求解椭圆轨道的离心率,并对其形状有一个清晰的了解。

离心率的求解在天体力学、航天工程等领域有着广泛的应用,对于研究天体运动和设计轨道具有重要意义。

圆锥曲线之求解离心率

圆锥曲线之求解离心率

一、快速求离心率的两种技巧 1. 赋值法适用于知道c b a ,,中两者之间的关系,如b a 2=,令12==b a ,,则233==e c , 2. 齐次式(等式两边次数和相同)如ac b 22=,则ac c a 222=-,该式左右两边次数之和都是二次,因此同乘21a 得e e 212=-,解得21+-=e (负值舍去)如22442c a c a =-应同乘41a ,2333ac c a =-应同乘31a注意:齐次式的方法必须消去b ,如222422c ab b a c b a =++⇒=+就无法用此法, 应该222222244442c a ac a c b ac a c b a c -=-+⇒=-+⇒=- 二、利用顶角求离心率的取值范围在椭圆中,顶角∠211F P F 最大. 证明:设∠θ=21PF F ,由余弦定理知()1412422424222222222-≥-=--+=-+=⎪⎭⎫ ⎝⎛+n m b mn b mn mn c n m mn c n m θcos 当且仅当n m =,θcos 取得取最小值.又因为(]πθ,0∈,θcos 单调递减,所以θcos 取得取最小值时,θ最大,此时a n m ==,=θ∠211F P F .例1. 椭圆()0012222>>=+b a by a x ,的两个焦点是21F F ,.若P 为其上一点,且∠321π=PF F ,则椭圆离心率e 的取值范围是 .例2.(2017全国I,12)设B A ,是椭圆1322=+my x C :长轴的两个端点,若C上存在点M 满足∠︒=120AMB ,则m 的取值范围是A . (][)+∞⋃,,910B . (][)+∞⋃,,930C . (][)+∞⋃,,410D . (][)+∞⋃,,430变式1:若B A ,是椭圆()0012222>>=+b a by a x ,长轴的两个端点,Q 为椭圆上的一点,使∠︒=120AQB ,求此椭圆离心率最小值为 .变式2:已知21F F ,是椭圆()0012222>>=+b a b y a x ,的两个焦点,P 是椭圆上一点,且∠9021=PF F ,则椭圆离心率e 的取值范围是 .三、利用焦半径求离心率取值范围在椭圆中,21F F ,是椭圆()0012222>>=+b a by a x ,的两个焦点,P 是椭圆上一点,则c a PF c a +≤≤-2同理,双曲线中,a c PF -≥2. 例1.椭圆()0012222>>=+b a by a x ,的两个焦点是21F F ,.若P 是椭圆上一点,且212PF PF =,则此椭圆离心率的取值范围是 . 例2.已知双曲线()0012222>>=-b a by a x ,的左右焦点分别为21F F ,,点P 在双曲线的右支上,且214PF PF =,则此双曲线离心率e 的最大值为 .变式1.已知双曲线()0012222>>=-b a by a x ,的左右焦点分别为21F F ,,P 是双曲线上异于实轴端点的点,满足1221F PF a F PF c ∠=∠sin sin ,则双曲线离心率e 的取值范围是( )A . ()3121++, B . ()+∞+,21C . ()212+, D . ()211+,四、利用渐近线求离心率取值范围过双曲线内一点①与双曲线只有一个交点的直线有两条(与渐近线平行)②与双曲线右支有两个交点的直线的斜率范围⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,,a b a b③与双曲线左、右两支相交于两点的直线的斜率范围⎪⎭⎫⎝⎛+-a b a b ,.例1. 斜率为2的直线过中心在原点且焦点在x 轴上的双曲线的右焦点,与双曲线的两个焦点分别在左右两支上,则双曲线离心率的取值范围是 例2.设双曲线()01222>=-a y ax C :与直线1=+y x l :相交于两个不同的点B A ,,求双曲线C 的离心率e 的取值范围.变式 1. 已知双曲线()0012222>>=-b a by a x ,的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A . (]21,B . ()21,C . [)+∞,2 D . ()+∞,2五、椭圆与双曲线共焦点问题 例1.已知共焦点21F F ,的的椭圆与双曲线,它们的一个公共点是P ,若021=⋅P F P F ,则椭圆的离心率1e 与双曲线的离心率2e 的关系式为( ) A .2112221=+e e B . 2112221=-e e C . 22221=+e e D . 22122=-e e变式 1. 设椭圆11022=+y x 双曲线1822=-y x 的公共焦点分别为21F F ,, P 是这两个曲线的交点,则21F PF ∆的外接圆半径为( )A . 1B . 2C . 22D . 3变式 2. 已知21F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .334 B . 332 C .3 D . 3 六、圆锥曲线再论共焦点模型设椭圆和双曲线的长半轴分别为21a a ,,由椭圆和双曲线的定义知22112122a PF PF a PF PF =-=+,解得212211a a PF a a PF -=+=例1.椭圆与双曲线有公共焦点21F F ,,它们在第一象限的交点为A ,且21AF AF ⊥,︒=∠3021F AF ,则椭圆与双曲线的离心率之积为( )A . 2B . 3C .21D .23 例2.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为21F F ,,且两条曲线在第一象限的交点为P ,21F PF ∆是以1PF 为底边的等腰三角形.若101=PF ,椭圆与双曲线的离心率分别为21e e ,,则121+⋅e e 的取值范围为( )A . ()+∞,1B . ⎪⎭⎫⎝⎛+∞,34 C .⎪⎭⎫⎝⎛+∞,56 D . ⎪⎭⎫⎝⎛+∞,910变式1.已知21F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且11PF PF >,椭圆的离心率为1e ,双曲线的离心率为2e ,若211F F PF =,则3321e e +的最小值为( )A . 326+B . 226+C . 8D . 6变式2. 已知中心在原点的椭圆与双曲线有公共焦点21F F ,都在x 轴上,记椭圆与双曲线在第一象限的交点为P ,若21F PF ∆是以1PF (1F 为左焦点)为底边的等腰三角形,双曲线的离心率为3,则椭圆的离心率为七、圆锥曲线三站共焦点模型设θ221=∠PF F ,在21F PF ∆中,221211212122cb a a PF PFc F F +==+=由余弦定理知,()()()θθθ212421222212121221212221221cos cos cos +-=+-+=-+=PF PF a PF PF PF PF PF PF PF PF F F可得()θθ212212212121cos cos +=+-=b c a PF PF ,θθθθtan cos sin sin 21212121222121b b PF PF S PF F =+==∆ 同理可得,θtan 2221b S PF F =∆ 所以θθtan tan 2221b b =⇒()()222222212222221a c c a a c c a -=-⇒-=-θθθcos sin tan 两边同时除以2c ,得到1222212=+e e θθcos sin 例1.设21e e ,分别为具有公共焦点1F 与2F 的椭圆和圆锥曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则()2212221e e e e +的值为( ) A .21B . 1C . 2D . 不确定 例2.已知椭圆与双曲线有公共焦点21F F ,,P 是它们的一个交点,且321π=∠PF F ,记椭圆和双曲线的离心率分别为21e e ,,则当211e e 取最大值时,的值分别是( )A .2622, B . 2521, C . 633, D . 342, 变式 1. 已知椭圆与双曲线有公共焦点21F F ,,P 是它们的一个交点,且321π=∠PF F ,记椭圆和双曲线的离心率分别为21e e ,,则2111e e +的最大值为 .变式2.已知椭圆1C 和双曲线2C 焦点相同,且离心率互为倒数,21F F ,是它们的公共21e e ,焦点,P 是椭圆与双曲线在第一象限的交点,若321π=∠PF F ,则椭圆1C 的离心率为A .33 B . 23 C . 22 D . 21八、圆锥曲线线段最值问题空间中定点到圆锥曲线上动点线段长度问题 处理策略:1. 二次函数 2. 参数方程例1. 设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A . 25B .246+ C . 27+ D . 26九、圆锥曲线椭圆的焦半径公式椭圆的第二定义:平面上到定点F 的距离与到定直线的距离之比为常数e .对椭圆12222=+b y a x ,相对于焦点()0,c F 的准线方程是c a x 2=设过左焦点1F 的直线交椭圆于点B A ,,过A 向准线ca x 2=作垂线于点D⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫⎝⎛-==⇒=θcos 1211AF c c a e AD e AF e AD AF 解得θcos c a b AF -=21同理可得,θcos c a b BF +=21设()121>=λλAF AF ,得θθθθθθλcos cos cos cos cos cos e e c a c a c a b c a b -+=-+=+-=1122⇒11-+=λλθcos e 即1111BF AF BF AF e +-==和差θcos例1. 双曲线),(:0012222>>=-b a by a x C 的右焦点为F ,过F 且斜率为3的直线交C 与B A ,两点,若FB AF 4=,则C 的离心率为例2. 已知椭圆),(:0012222>>=+b a by a x C 的离心率为23,过右焦点F 且斜率为)(0>k k 的直线与C 相交于与B A ,两点.若BF AF 3=,则=k变式 1. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为变式 2. 设椭圆),(:0012222>>=+b a by a x C 的右焦点F ,过F 的直线与椭圆C 相交于与B A ,两点,直线l 的倾斜角为︒60,FB AF 2= (1) 求椭圆C 的离心率 (2) 如果215=AB ,求椭圆C 的的方程.十、椭圆的焦半径公式坐标式 设椭圆上一点),(y x A ,则exa AF ex a AF -=+=21例1. 已知ABC ∆是椭圆192522=+y x 的内接三角形,F 是椭圆的右焦点,且ABC ∆的重心在原点0,则C B A ,,三点到F 的距离之和为( )A . 9B . 15C . 12D . 8变式1. 已知椭圆13422=+y x 的左右焦点分别为21F F ,,P 为椭圆上一动点. (1) 求21PF PF 的取值范围; (2) 求21PF PF ⋅的取值范围.九、快速求离心率的两种技巧 十、利用顶角求离心率的取值范围 例1.解:由题意知,有一点P 使∠321π=PF F ,则椭圆的顶角∠3211π≥F P F ,所以∠621π≥F OP ,又因为a c F OP =21sin ,则21621=≥=πsin sin a c F OP 故⎪⎭⎫⎢⎣⎡∈121,e例2.变式1.变式2.十一、利用焦半径求离心率取值范围例1.例2.变式1.十二、利用渐近线求离心率取值范围例1变式1十三、椭圆与双曲线共焦点问题例1变式2十四、圆锥曲线再论共焦点模型例1例2变式1变式2十五、圆锥曲线三站共焦点模型例1例2变式1变式2十六、圆锥曲线线段最值问题例1九、圆锥曲线椭圆的焦半径公式例1例2变式1变式2十、椭圆的焦半径公式坐标式例1变式1。

共焦点椭圆与双曲线离心率的一个完美结论

共焦点椭圆与双曲线离心率的一个完美结论

共焦点椭圆与双曲线离心率的一个完美结论
椭圆与双曲线的离心率都极其重要,它们都是一类几何曲线。

它们之间的共同点及不
同点更是人们普遍关注的问题,关于这两者之间比较,共同及不同处有很多研究,而其中
离心率尤其值得深入研究,也是我们要重点贴近的问题。

首先,椭圆与双曲线之间离心率的不同在于,椭圆离心率有限制,只能大于0小于1,其余双曲线无此限制,可以大于1或小于0,就像拉伸变形一样,椭圆的大小也不会受到
离心率的影响,双曲线的大小会受到离心率的影响。

进一步讲,椭圆的离心率比较狭小,和双曲线的离心率相比,其轨迹变化程度相对较小,且不会因为离心率而改变大小;反观双曲线,其离心率比较宽松,其轨迹变化范围较大,且其大小会受到离心率的影响。

专题16妙解离心率问题(12大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)

专题16妙解离心率问题(12大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
+ = 2,
在Rt △ 中,由∠ = ,得 = sin =
2sin, = cos = 2cos,

1
所以2sin + 2cos = 2,所以 = sin+cos =

π

4



,
12 3
6
,
2
所以 =
π
,所以 + 4 ∈
= ( > , > )的左、右焦点,为双曲线上的任一点,
≥ �� − .


3、利用角度长度的大小建立不等关系. , 为椭圆 + = 的左、右焦点,为椭圆上的动点,若



∠ = ,则椭圆离心率的取值范围为 ≤ < .
4、利用题目不等关系建立不等关系.
+ = 的离心率分别为 , .若 = ,则
D.
= ( > , > )的离心率为 ,的一条渐近线与圆( − ) + ( − ) =
交于,两点,则|| = ( D )

A.
B.


C.


3.(2022•甲卷)椭圆: + = ( >
2sin(+ 4 )

,∴ sin( + 4 ) ∈
∴∈
3 − 1,
6
3
2+ 6,46 1+ 3, 2
2

.故选:A.
考点题型二:焦点三角形顶角范围与离心率
2
【例2】(2024·辽宁葫芦岛·高三统考期末)已知点1 ,2 分别是椭圆 2

+

双曲线离心率常考题型总结-高二数学(人教A版2019选择性必修第一册)

双曲线离心率常考题型总结-高二数学(人教A版2019选择性必修第一册)

第18讲 双曲线离心率常考题型总结【知识点梳理】椭圆的离心率()10<<=e ac e ,222222221a b a b a a c e +=+== 【题型目录】题型一:利用双曲线的定义、几何性质求离心率的值 题型二:双曲线的离心率范围范围问题题型三:椭圆和双曲线共焦点离心率之间的关系(利用定义或者焦点三角形面积公式) 题型四:利用中点弦公式(点差法)求离心率 【典型例题】题型一:利用双曲线的定义、几何性质求离心率的值【例1】(2022·安徽省临泉第一中学高二期末)已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1,0F c -,()2,0F c ,M 是双曲线C 上一点,若120MF MF ⋅=,2212OM OF c ⋅=,则双曲线C 的离心率为( ) A 3B 31 C 2D 21【答案】B【分析】根据双曲线的定义及几何性质结合向量的数量积直接可得离心率. 【详解】()()22121221111242OM OF MO F F MF MF MF MF c ⎛⎫⋅=-⋅=-+⋅-= ⎪⎝⎭,则222122MF MF c -=,又因为120MF MF ⋅=,12MF MF ⊥,即222124MF MF c +=, 所以13MF c =,2MF c =, 所以1223a MF MF c c =-=-, 则31e =+, 故选:B.【例2】(云南省三校2023届高三上学期高考备)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为( ) A 21 B .2C 3D 2【答案】A【分析】由题可得112F M F F =,从而可建立方程,即可得出双曲线的离心率.【详解】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b-=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22b c a =,222c a ac ∴-=, 2210e e ∴--=,12e ∴=±,1e >, 21e ∴=+. 故选:A【例3】(2022·陕西省安康中学高三阶段练习(文))设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F O为坐标原点,若双曲线上存在点M 满足1222MF MO MF ==,则双曲线的离心率为( ) A .6 B .3C 6D 3【答案】C【分析】判断M 点位置,过点M 作x 轴的垂线,垂足为A ,可得22cAF =,132c AF =,设2MF m =,利用勾股定理表示出2||MA ,可得2232m c =,结合双曲线定义可得2m a =,即可求得a,c 的关系,进而求得离心率.【详解】因为1222MF MO MF ==,则2MO MF =, M 在双曲线右支上, 过点M 作x 轴的垂线,垂足为A ,则A 为2OF 的中点,所以22cAF =,132c AF =, 设2MF m =,则12MF m =,故在1Rt MAF △中,2229||44MA m c =-.在Rt 2MAF 中,222||4c MA m =-,则22229444c m c m -=-,即2232m c =.因为122MF MF a -=,则2m a =,所以223(2)2a c ⨯=,即226c a =, 所以6ce a==, 故选:C.【例4】(2023·全国·高三专题练习)已知1F ,2F 分别为双曲线2222:1x y C a b -=(0,0a b >>)的左、右焦点,A ,B 是C 右支上的两点,且直线AB 经过点2F .若222AF BF =,以12F F 为直径的圆经过点B ,则C 的离心率为( ) A 17 B 2C 5D 15+ 【答案】A【分析】由以12F F 为直径的圆经过点B 得1290F BF ∠=︒,结合双曲线的定义及勾股定理可得解.【详解】由题意得1290F BF ∠=︒,设2BF m =,则12BF m a =+,22AF m =,122AF m a =+,||3AB m =,在1Rt ABF 中,由勾股定理得()()()2222322m a m m a ++=+,解得23m a =, 则223BF a =,183BF a =, 在12Rt F BF 中,由勾股定理得()22228233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,化简得22179c a =,所以C 的离心率173c e a ==, 故选:A.【例5】(2022·全国·长垣市第一中学高三开学考试(理))设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 3l 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为( ) A 2B 3C 5D .2【答案】A【分析】结合向量运算、双曲线的定义建立等量关系式,利用直线l 的斜率列方程,化简求得双曲线的离心率.【详解】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅=,所以2F D MN ⊥. 因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-. 因为122NF NF a -=,所以12NF t a =+. 所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===. 在Rt 12F F D 中,2224F D c t =-; 在Rt 2MF D 中,2224F D t a =-.所以222244c t t a -=-,解得22222t a c =+. 所以22222122,22F D c a F D t a c =-==+. 因为直线l 的斜率为33, 所以22212221223tan 322F D c a DF F F D a c∠-===+,所以2222221,23c a c a a c -==+, 2c a =,所以离心率为2ca=. 故选:A【点睛】求双曲线离心率的方法有:(1)直接法:利用已知条件将,a c 求出,从而求得离心率e ;(2)方程法:利用已知条件列出关于,a c 或,a b 的方程,化简求得离心率.【例6】(2022·江苏南通·高二期末)已知双曲线2221y x b-=的左、右焦点分别为1F 、2F ,P 、Q 是双曲线上关于原点对称的两点,1OP OF =,四边形12PFQF 的面积为2,则该双曲线的离心率为( ) A 2 B 3 C .2 D 5【答案】A【分析】分析可知四边形12PFQF 为矩形,利用勾股定理结合双曲线的定义可得出2122PF PF b ⋅=,利用三角形的面积公式可求得b 的值,即可求得该双曲线的离心率的值.【详解】由已知12OP OF OF ==,所以,11OPF OFP ∠=∠,22OPF OF P ∠=∠, 所以,1122122OPF OF P OPF OF P F PF π∠+∠+∠+∠=∠=,可得122F PF π∠=,由勾股定理可得222212124PF PF F F c +==, 由双曲线的定义可得122PF PF a -=, 所以,()222212121224PF PF PF PF PF PFb ⋅=+--=,由双曲线的对称性可知,四边形12PFQF 为矩形,所以,12212112F PF S PF PF b =⋅==△, 所以,222c a b =+=,故该双曲线的离心率为2ce a==.故选:A.【例7】(2022·陕西安康·高二期末(理))已知双曲线C :22221x y a b-=(0a >,0b >)的左,右焦点分别为1F ,2F ,A 为C 的左顶点,以12F F 为直径的圆与C 的一条渐近线交于P ,Q 两点,且2π3PAQ ∠=,则双曲线C 的离心率为( ) A 5B 2C 3D 21【答案】D【分析】由圆的对称性,并联立渐近线方程求P 、Q 坐标,结合已知易得2π6PAF ∠=,根据2tan 2b PAF a∠=得到齐次方程求参数关系,即可得离心率.【详解】设以12F F 为直径的圆的方程为222x y c +=,且P 、Q 关于原点对称,由222b y xa x y c ⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,∴(),P a b ,(),Q a b --. ∴(),0A a -,2π3PAQ ∠=, ∴2π6PAF ∠=, ∴23tan 32bPAF a∠==, ∴2234b a =,即()22234c a a -=,∴2273c a =, ∴213c e a ==. 故选:D【例8】(2022·辽宁·高三期中)已知双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若112,.F A AB F B F B ==0,则C 的离心率为( ) A 3B 51 C .3 D .2【答案】D【分析】本题首先可结合题意绘出图像,结合已知条件得出1OA F B ⊥、1OF OBc 以及直线1F B 的方程为()ay x c b=+,然后联立直线1FB 的方程与渐近线方程,求出B 点坐标,再然后根据22OB c =得出223b a =,最后根据222c a b -=以及离心率计算公式即可得出结果. 【详解】如图,结合题意绘出图像:因为1F A AB =,120F B F B ⋅=,O 是12F F 中点, 所以A 是1F B 中点,12F B F B ⊥,1OA F B ⊥,1OF OBc ,因为直线OA 是双曲线22221x y a b-=的渐近线,所以OA b k a=-,1F B a k b =,直线1F B 的方程为()ay x c b =+,联立()ay x c bb y xa⎧=+⎪⎪⎨⎪=⎪⎩,解得22222,a c abc B b a b a ⎛⎫ ⎪--⎝⎭, 则4222222222222()()a c abc OB c b a b a =+=--,整理得223b a =,因为222c a b -=,所以224a c =,2ce a==, 故选:D.【例9】(2022·浙江·温岭中学高二期末多选)设双曲线2222:1x y C a b-=的左右焦点分别为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作圆D 的切线与C 交于M 、N 两点,且124cos 5F NF ∠=,则C 的离心率可以为( )A 5B .53C 34D 13 【答案】BD【分析】当直线与双曲线交于两支时,设过1F 的切线与圆222:D x y a +=相切于点P ,从而可求得1PF ,过点2F 作2F Q MN ⊥于点Q ,由中位线的性质求得12,FQ QF ,在2Rt QNF 中,可求得2,NF NQ ,利用双曲线的定义可得,a b 的关系,再由离心率公式求解即可,当直线与双曲线交于同一支时,同理可求得离心率 【详解】当直线与双曲线交于两支时,设过1F 的切线与圆222:D x y a +=相切于点P ,则1,OP a OP PF =⊥,因为1OF c =,所以222211PF OF OP c a b =-=-=,过点2F 作2F Q MN ⊥于点Q , 所以OP ∴2F Q , 因为O 为12F F 的中点,所以1122FQ PF b ==,222QF OP a ==, 因为124cos 5F NF ∠=,12F NF ∠为锐角, 所以1212231cos sin 5F NF F NF ∠∠=-=,所以22122103sin 35QF a a NF F NF ===∠, 所以2121048cos 353a aNQ NF F NF =∠=⨯=, 所以11823aNF NQ FQ b =+=+, 因为122NF NF a -=, 所以8102233a a b a +-=,化简得34b a =, 所以43b a =, 所以离心率为22451133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,当直线与双曲线交于一支时,记切点为A ,连接OA ,则1,OA a F A b ==, 过2F 作2F B MN ⊥于B ,则22F B a =, 所以2211222BF F F BF b =-=,因为124cos 5F NF ∠=,所以12F NF ∠为锐角, 所以1212231cos sin 5F NF F NF ∠∠=-=,所以22122103sin 35BF a aNF F NF ===∠,2121048cos 353a a NB NF F NF =∠=⨯=, 所以11823aNF NB F B b =-=-, 所以211082233a a NF NF b a ⎛⎫-=--= ⎪⎝⎭,化简得32b a =, 所以23b a =, 所以离心率为222131133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,综上,双曲线的离心率为53或133,故选:BD【例10】(2022·江西南昌·三模(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P是双曲线右支上一点,且212PF F F ⊥,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则双曲线的离心率为( ) A 3B .2C .3D .4【答案】B【分析】由重心坐标求得I 的坐标,再利用圆的切线长定理和双曲线的定义得到G 的坐标,再根据IG 与x 轴平行,由I G y y =求解. 【详解】解:如图所示:由题意得:()()2121,0,,0,,b Fc F c P c a ⎛⎫- ⎪⎝⎭,则2,33c b G a ⎛⎫ ⎪⎝⎭,由圆的切线长定理和双曲线的定义得122AF AF a -=, 所以(),0A a ,则(),I a a , 因为IG 与x 轴平行, 所以I G y y =,即23b a a=,则223b a =,即224c a =, 解得2e =, 故选:B 【题型专练】1.(2022·福建·泉州市城东中学高二期中)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,若以点A 为圆心,以b 为半径的圆与C 的一条渐近线交于M ,N 两点,且2OM ON =,则C 的离心率为( )A .43B 3C 23D 6【答案】C【分析】通过图形,利用圆、双曲线的几何性质,根据题设得到,,a b c 的等量关系,算出双曲线的离心率. 【详解】过点A 作AP MN ⊥于点P ,则点P 为线段MN 的中点,因为点A 为(,0)a ,渐近线方程为by a=±,所以点A 到渐近线b y x a =的距离为20||1⋅-==⎛⎫+ ⎪⎝⎭ba ab aAP c b a ,在Rt OAP △中,22222||||||⎛⎫=-=-= ⎪⎝⎭ab a OP OA AP a c c ,在Rt NPA 中,22222||||||⎛⎫=-=-= ⎪⎝⎭ab b NP AN AP b c c ,因为2OM ON =,所以||||||2||||3||=+=+=OP ON NP NP NP NP , 所以223=⨯a b c c,即223a b ,所以离心率223e 13⎛⎫==+= ⎪⎝⎭c b a a .故A ,B ,D 错误.故选:C .2.(2022·河北保定·高一阶段练习)已知12F F 、是双曲线C 的两个焦点,P 为C 上一点,且1212120,3F PF PF PF ∠=︒=,则双曲线C 的离心率为( )A 7B 13C 7D 13【答案】B【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为12120F PF ∠=︒,由余弦定理可得2224923cos120a c a a a =+-⨯⋅⋅︒, 整理可得22413c a =, 所以222134a c e ==,即132e =. 故选:B3.(2023·全国·高三专题练习)已知双曲线()22:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,一条渐近线为l ,过点2F 且与l 平行的直线交双曲线C 于点M ,若122MF MF =,则双曲线C 的离心率为( ) A 2 B 3C 5D 6【答案】C【分析】由双曲线定义可得21,MF MF ,根据平行关系可知12cos aF F M c∠=,由余弦定理可构造齐次方程求得离心率. 【详解】设:bl y x a=,则点M 位于第四象限, 由双曲线定义知:1222222MF MF MF MF MF a -=-==,14MF a ∴=; 设过点2F 且与l 平行的直线的倾斜角为α,则tan b a α=,22cos a a ca b α∴==+, 12cos aF F M c∴∠=; 在12F F M △中,由余弦定理得:222122112122cos 2F F MF MF F F M F F MF +-∠=⋅,即22244168a c a a c ac +-=,整理可得:225c a =,225c e a ∴==. 故选:C.4.(2023·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为( )A .2B 6C 2D .2【答案】C【分析】根据给定条件,利用直角三角形勾股定理及面积公式列式,再结合双曲线定义即可计算作答. 【详解】依题意,12PF PF ⊥,令1(,0)F c -,2(,0)F c ,则有22221212||||||4PF PF F F c +==,由212||(12||)PF PF S +=得:21211222||2||||6||||||PF PF PF PF PF PF =++,即有212||||PF PF c =,而222221221214(||)||2||2||||||a PF PF PF PF PF c PF =-=+-=,所以2ce a==. 故选:C【点睛】思路点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.5.(2023·全国·高三专题练习)如图,双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F M 为双曲线右支上一点,直线1MF 与圆222x y a +=相切于点Q ,2MQ MF =,则双曲线的离心率为( )A 5B 6C 5D 6【答案】A【分析】由已知结合双曲线定义可得12FQ a =,在1Rt FQO 中利用勾股定理即可求出. 【详解】由题可得11FQ MF MQ =-,因为2MQ MF =,所以1122FQ MF MF a =-=, 则在1Rt FQO 中,222(2)a a c +=,即5c a =,即5ce a==. 故选:A.6.(2022·河南焦作·高二期末(理))已知双曲线2222x y C a b-: = 1 (00)a b >>,的右焦点F ,过点F 作一条渐近线的垂线l ,垂足为M ,若l 与另一条渐近线交于点N ,且满足5MF MN =,则该双曲线C 的离心率为( ) A 210B 10C 26D 6【答案】A【分析】作图,利用图中的直角三角形和双曲线的几何关系求出a 与b 的关系即可.【详解】设坐标原点为O ,M 点在第一象限,则22c a b =+,则OF c =, 渐近线1l 的方程为0bx ay -= ,(),0F c , 运用点到直线的距离公式22bc MF b a b ==+ ,22OM OF MF a ∴=-= ,因为5MF MN =,∴44NF MF b ==,∴4OMFONFS S=,1sin 2OMFSOM OF MOF =∠ ,1sin 2ONFS ON OF NOF =∠ , 因为x 轴平分∴MON , 所以44ON OM a ==,又因为OM MN ⊥,所以222OM MN ON +=,即2222516a b a +=, 得22153255b a ==, 设C 的离心率为e ,则22222815c b e a a ==+=,所以821055e ==; 故选:A.7.(2022·河南·高三开学考试(文))设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线l 与双曲线的左、右两支分别交于,M N 两点,且()22220,0F M F N F M F N MN ⋅=+⋅=,则双曲线C 的离心率为___________. 【答案】3【分析】根据已知条件作出图形,设D 为MN 的中点,连接2F D ,再根据向量的线性运算以及两向量垂直数量积为0得出2MF N 为等腰直角三角形,再利用双曲线的定义列出方程组,求出2MF 、2NF 和1MF 的长,进而利用几何关系列出关于离心率的齐次式求得双曲线的离心率. 【详解】如图,设D 为MN 的中点,连接2F D ,易知2222F M F N F D +=,∴()22220F M F N MN F D MN +⋅=⋅=, ∴2F D MN ⊥,又D 为MN 的中点,∴22F M F N =,220F M F N ⋅=,∴22F M F N ⊥,∴2MF N 为等腰直角三角形,设22MF NF m ==,由双曲线的定义知11222m MF am MF m a ⎧-=⎪⎨+-=⎪⎩,解得22m a =,∴()1221MF a =-,又122MD MN a ==, ∴1122F D MF MD a =+=.在12Rt F F D 中,122F F c =,22DF MD a ==, ∴2224(22)(2)c a a =+,化简得223c a=,即23e =,又()1,e ∈+∞,∴3e =. 故答案为:3.8.(2023·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作直线l 垂直于双曲线的一条渐近线,直线l 与双曲线的两条渐近线分别交于A ,B 两点,若225AF F B =,则双曲线C 的离心率e 为______. 【答案】153【分析】联立直线方程可得点A ,B 的坐标,结合225AF F B =,可得22b a,进而可得离心率.【详解】由题意,双曲线C 的渐近线为by x a=±,若过2F 的直线l 与直线b y x a =-垂直,垂足为A ,直线l 与直线by x a=交于B ,()2,0F c , 因为225AF F B =,所以2F 在A ,B 之间,如图所示,直线l 的方程为()ay x c b=-,由()a y x c b b y xa ⎧=-⎪⎪⎨⎪=-⎪⎩,得22222,a c abc A ab a b ⎛⎫- ⎪++⎝⎭,由()ay x c bb y x a⎧=-⎪⎪⎨⎪=⎪⎩,得22222,a c abc B a b a b ⎛⎫ ⎪--⎝⎭,由225AF F B =,可得22225abc abc a b a b -=+-,所以222251a b a b =+-,所以2223b a =,所以双曲线C 的离心率222151133b e a =+=+=.同理,过2F 的直线l 与直线b y x a =垂直时,双曲线C 的离心率153e =.综上所述,双曲线C 的离心率e 为153,故答案为:153. 9.(2023·全国·高三专题练习)如图所示,已知双曲线()22:10,0x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且2BF AF =,则双曲线C 的离心率是________.【答案】3【分析】连接AF ',BF ',结合双曲线定义及余弦定理解三角形,可得离心率.【详解】设双曲线的左焦点为F ',连接AF ',BF ',由条件可得22BF AF AF AF AF AF a '-=-=-=,则2AF a =,4BF a =,60F AF '∠=︒,所以2222cos FF AF AF AF AF F AF ''''=+-⋅⋅∠, 即222214164162c a a a =+-⨯,即22412c a =,3c a = 所以双曲线的离心率为:3==ce a, 故答案为3.10.(2022·江苏·南京师大附中模拟预测)已知点A ,B 是双曲线()22:10,0x y C a b a b-=>>的左、右顶点,过点B 作倾斜角为3π的直线l 交C 于点P ,点M 是线段AP 的中点.若OM OA =,则该双曲线的离心率为( ) A 2 B 3C .2D 31【答案】A【分析】先由中位线结合OM OA =求得2PB a =,进而求出P 点坐标,代入双曲线C 的方程,求得22b a =,即可求出离心率.【详解】易得O 是线段AB 的中点,又点M 是线段AP 的中点,则OM PB ,又OM OA =,则2AB PB a ==,作PQ x ⊥轴于点Q ,又3PBQ π∠=,则,3BQ a PQ a ==,则(2,3)P a a ,代入C 可得2222431a a a b -=,解得22b a =,故离心率为2212c b a a=+=.故选:A.题型二:双曲线的离心率范围范围问题【例1】设双曲线的中心为点,若有且只有一对相较于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是 A . B . C . D . 【答案】A【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba33b a <∴21()33b a <≤,241()43ba<+≤,2231()2b a <+,又双曲线的离心率为21()c b e a a ==+232e <≤. 【例2】(2023·全国·高三专题练习)已知双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,12F PF ∠的平分线与x 轴交于Q ,若214OQ OF =,则双曲线的离心率范围为( ) A .()1,2 B .()1,4C .)2,2D .()2,4【答案】B【分析】根据角平分线的性质得出15PF a =,23PF a =,利用三角形的三边关系以及双曲线的性质即可求解.【详解】设双曲线的半焦距为()0c c >, 离心率为e , 由214OQ OF =,则154QF c =,234QF c =,因为PQ 是12F PF ∠的平分线, 所以12:5:3PF PF =,C O O 06011A B 22A B 1122A B A B =1A 1B 2A 2B C 23(,2]323[,2)33()3+∞3[)3+∞又因为122PF PF a -=, 所以125,3PF a PF a ==,所以53222a a c a c +>⎧⎨<⎩,解得14c a <<,即14e <<,所以双曲线的离心率取值范围为(1,4). 故选:B【例3】(2022四川成都七中高三开学考试(理))已知双曲线22221(0,0)x y a b a b-=>>,1A ,2A 是实轴顶点,F是右焦点,(0,)B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得12(1,2)i P A A i =△构成以12A A 为斜边的直角三角形,则双曲线离心率e 的取值范围是( ).A .612,+⎭B .512,+⎭C .51⎛+ ⎝⎭D .51⎫++∞⎪⎪⎝⎭【答案】B【分析】将题意转化为以1A ,2A 为直径的圆与线段BF 有两个不同的交点,再数形结合列不等式化简求解即可.【详解】以1A ,2A 为直径的圆与线段BF 有两个不同的交点, 所以b a >,2222b c a a =->, 解得2c e a=>;且圆心(0,0)到直线BF :0bx cy bc +-=的距离22bc d a b c =<+,化简得2b ac <,所以22c a ac -<,210e e --<, 又1e >,解得1512e +<<, 所以双曲线离心率的取值范围是1522e +<<. 故选:B【例4】(2022河南高三开学考试(文))已知1F ,2F 分别为双曲线()222210,0x ya b a b-=>>的左、右焦点,P为双曲线左支上的任意一点,若221PF PF 的最小值为8a ,则双曲线离心率e 的取值范围是( )A .()1,+∞B .(]2,3C .(]1,3D .(]1,2【答案】C【分析】由双曲线定义221PF PF ()2112PF a PF +=,变形后由基本不等式得最小值,从而得12PF a =,再利用双曲线中的范围有1PF c a -,由此结合可得离心率的范围.【详解】1F ,2F 是左、右焦点,P 为双曲线左支上的任意一点,所以212PF PF a -=,代入221PF PF 得()2222121111112444248PFa PF a a PF a PF a a PF PF PF PF +==++⨯+=,当且仅当12PF a =时取等号,即12PF a =,又点P 是双曲线左支上任意一点,所以1PF c a -,即23a c a e -⇒,13e <.故选:C .【例5】(2022·湖南·高二期末)已知双曲线()2222:10x y C b a a b-=>>的左、右焦点分别为12,F F ,双曲线上存在点P (点P 不与左、右顶点重合),使得21123PF F PF F ∠∠=,则双曲线C 的离心率的可能取值为 ( ) A 6B 3C 10D .2【答案】BC【分析】由0b a >>可得2e >,记∴PF 1F 2=α ,利用正弦定理结合双曲线及离心率的定义,利用分比定理以及三角恒等变换公式化简离心率.然后利用余弦函数的性质得到离心率的取值范围,进而做出判定.【详解】∴0b a >>,则离心率2212b e a=+>,则排除A ;记()12045PF F αα∠=︒<<︒,1PF m =,2PF n =, 则213,2PF F m n a α∠=-=,由正弦定理结合分比定理可知:22sin 3sin sin 4sin 3sin sin 3sin m n c m n aααααααα-====--, 则()()()sin 42sin 2cos 22cos 2,2sin 3sin sin 2sin 2e αααααααααα===∈-+--, 所以B ,C 是正确的,D 不正确. 故选:BC. 【题型专练】1.2022·江西上饶·高二期末(文))已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为122,,c F F 为其左右两个焦点,直线l 经过点(0,)b 且与渐近线平行,若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线C 离心率的取值范围为( ) A .2) B .(2,3) C .3) D .(2,)+∞【答案】A【分析】根据题意分析满足122PF PF b -=的点P 的轨迹,再根据此轨迹与直线l 有交点,结合渐近线的性质求解即可;【详解】因为满足122PF PF b -=的所有点在以12,F F 为焦点,长轴长为2b ,短轴长为2222c b a -=的双曲线,即22221x y b a -=上.故若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线22221x y b a-=与直线l 有交点即可.又直线:b l y x b a =±+,数形结合可得,当b a <或22221x y b a -=的经过一象限的渐近线的斜率a b b a > 即可,两种情况均有2222a b c a >=-,故222c a<,故离心率(1,2)e ∈故选:A2.(2022·全国·高二专题练习)设双曲线C :22221(00)x y a b a b-=>>,的右焦点为F ,双曲线C 的一条渐近线为l ,以F 为圆心的圆与l 交于点M ,N 两点,MF NF ⊥,O 为坐标原点,()37OM ON λλ=≤≤,则双曲线C 的离心率的取值范围是______. 【答案】5524⎡⎤⎢⎥⎣⎦,【分析】取直线l 的方程为by x a=,过点F 作FE l ⊥于E ,则有EF b =,MNF ∴△为等腰直角三角形,所以||OE a =,||OM a b ,||ON a b ,由OM ON λ=,可得11b a λλ-=+,即可得211()1e λλ-=++,即可得出离心率的取值范围.【详解】解:由题可知,点()0F c ,,如图所示,不妨取直线l 的方程为by x a=,过点F 作FE l ⊥于E ,则F 到直线l 的距离22||1bca EFb b a==+,MF NF ⊥,且||||MF NF =, MNF ∴△为等腰直角三角形,||2||2MN EF b ∴==,||||ME NE b ==,2222||OE OF EF c b a ∴=-=-=,||||||OM OE ME a b =+=+,|||||ON OE NE a b -|-==,OM ON λ=,()a b a b λ∴+=-,即11b a λλ-=+, ∴离心率2211()1()1c b e a a λλ-==+=++, 令()12111f λλλλ-==-++,[]37λ∈,,则()()()37f f f λ⎡⎤∈⎣⎦,,即()13[24f λ∈,], 5524e ⎡⎤∴∈⎢⎥⎣⎦,.故答案为:5524⎡⎤⎢⎥⎣⎦,.3.(2022·全国·模拟预测(文))已知点F 为双曲线()222210,0x y a b a b-=>>的右焦点,过F 作双曲线的一条渐近线的垂线,垂足为A .若∴OAF (点O 为坐标原点)的面积为4,双曲线的离心率3,5e ⎡∈⎣,则2a 的取值范围为( )A .2,22⎡⎤⎣⎦B .4,2⎡⎣C .2⎡⎤⎢⎥⎣⎦ D .2⎡⎤⎢⎥⎣⎦【答案】B【分析】根据∴OAF 的面积得到8ab =,然后利用离心率的取值范围得到关于2a 的不等式,求解即可. 【详解】取双曲线的一条渐近线为by x a=,即0bx ay -=. 则F 到渐近线的距离即22bc FA b a b ==+,2222OA OF FA c b a =-=-=,142OAF S ab ∆∴==,即8ab =. 又3,5e ⎡⎤∈⎣⎦,[]2222222213,5c a b b e a a a +∴===+∈,易得22224a b a ≤≤,即22282()4a a a≤≤,解得24,42a ⎡⎤∈⎣⎦. 故选:B.4.(2022·山西·模拟预测(理))双曲线2222:1(0,0)x y C a b a b -=>>的右顶点为(),3,0A Q a 在x 轴上,若C 上存在一点P (异于点A )使得AP PQ ⊥,则C 的离心率的取值范围是( ) A .)2,+∞B .()2,+∞C .(2D .(2【答案】D【分析】设(),P x y ,则由已知可得P 点的轨迹方程为222(2)x a y a -+=(),3x a x a ≠≠,与双曲线方程联立可求出P 点横坐标32223a ab x a b -=+,由题意知点P 在双曲线的右支上,32223a ab a a b->+,化简可得22a b >,从而可求出离心率的取值范围 【详解】设(),P x y ,(,0)A a ∴AP PQ ⊥,P ∴点的轨迹方程为222(2)x a y a -+=(),3x a x a ≠≠.联立()222222221x a y a x y a b ⎧-+=⎪⎨-=⎪⎩得()2223422430a b x a x a a b +-+-=,解得x a =(舍去),32223a abx a b-=+, 由题意知点P 在双曲线的右支上,即x a >, 故32223a ab a a b->+,化简得22a b >, 因为221b e a =+,所以12e <<,故选:D.5.(2022·广西·昭平中学高二阶段练习(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作x 轴的垂线与双曲线交于M ,N 两点,且110NF MF ⋅<,则双曲线C 的离心率的取值范围是__________. 【答案】()21,++∞【分析】表达出M ,N 两点坐标,进而利用向量数量积列出不等式,求出离心率的取值范围. 【详解】当x c =时,22221c y a b-=,解得:2b y a =±,不妨设22,,,b b M c N c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则22421122,2,40b b b NF MF c c c a a a ⎛⎫⎛⎫⋅=-⋅--=-< ⎪ ⎪⎝⎭⎝⎭,即2222ac b c a <=-,不等式两边同除以2a 得:2e 2e 10-->, 解得:e 21>+ 故答案为:()21,++∞6.(2022·全国·高二课时练习)设椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y a b a b -=>>的离心率分别为1e ,2e 25,则1e 的取值范围为______,2e 的取值范围为______. 【答案】 5,15⎛⎫⎪ ⎪⎝⎭351,5⎛⎫⎪ ⎪⎝⎭【分析】由双曲线的渐近线的斜率小于255,即可得出0<2245b a <,由此即可求出1e 、2e 的取值范围. 【详解】设椭圆和双曲线的焦距分別为12c ,22c ,由题意,得双曲线的渐近线方程为by x a=±,所以2505b a <<,则0<2245b a <, 所以211251,15c b e a a ⎛⎫==-∈ ⎪ ⎪⎝⎭,22223511,5c b e a a ⎛⎫==+∈ ⎪ ⎪⎝⎭. 故答案为:5,15⎛⎫ ⎪ ⎪⎝⎭;351,5⎛⎫ ⎪ ⎪⎝⎭题型三:椭圆和双曲线共焦点离心率之间的关系(利用定义或者焦点三角形面积公式)【例1】(2022·天津市西青区杨柳青第一中学高二期末)已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则椭圆和双曲线离心率倒数之和的最大值为( )A .43B 43C .4D 46【答案】B【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【详解】设椭圆的长半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c , 由椭圆和双曲线的定义可知,设1PF m =,2PF n =,122F F c =, 椭圆和双曲线的离心率分别为1c e a=,21c e a =,因P 是它们的一个公共点,且123F PF π∠=,则由余弦定理可得:22242cos3c m n mn π=+-……∴在椭圆中,由定义知2m n a +=,∴式化简为:22443c a mn =-……∴在双曲线中,由定义知12m n a -=,∴式化简为:22144c a mn =+……∴由∴∴两式消去mn 得:222116412c a a =+,等式两边同除2c 得2212234a a c c =+, 即2212134e e =+, 由柯西不等式得2221212*********e e e e ⎛⎫⎛⎫⎛⎫++≥+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1211433e e ∴+≤.故选:B【例2】(2022·全国·高二课时练习)(多选)已知椭圆1C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且120MF MF ⋅=,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π3F PF ∠=,则( ) A .212e e = B .123e e =C .221252e e += D .22211e e -= 【答案】BD【分析】先由条件120MF MF ⋅=得出12MF F △为等腰直角三角形,即可得出椭圆长半轴长a ,短半轴b ,长半焦距c 的关系,从而得出椭圆的离心率1e ;然后在焦点三角形12PF F △中,利用余弦定理得出双曲线实半轴长为2a ,半焦距为c 的关系,从而得出双曲线的离心率2e ,依次对选项验证即可。

圆锥曲线离心率归类(学生版)

圆锥曲线离心率归类(学生版)

圆锥曲线离心率归类目录题型01 离心率基础题型02 第一定义求离心率题型03 中点型求离心率题型04 点差法型求离心率(第三定义型)题型05 渐近线型离心率题型06 渐近线中点型求离心率题型07 构造a、b、c齐次式型题型08 焦半径型离心率题型09 焦点三角形求离心率题型10 双焦点三角形余弦定理型题型11 焦点三角形双角度型题型12 共焦点型椭圆双曲线离心率题型13 借助均值不等式求共焦点型题型14 焦点三角形内心型求离心率题型15 焦点三角形重心型求离心率题型16 小题大做型求离心率高考练场题型01离心率基础【解题攻略】求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.1P是椭圆x2a2+y2b2=1(a>b>0)上的一点,F为椭圆的右焦点,PF⊥x轴,过点P作斜率为13的直线恰好经过左顶点,则椭圆的离心率为()A.16B.13C.23D.562(2021秋·山西晋城·高三晋城市第一中学校校考阶段练习)双曲线y =kx(k >0)的离心率用e =f (k )来表示,则f (k )()A.在(0,+∞)上是增函数B.在(0,+∞)上是减函数C.在(0,1)上是增函数,在(1,+∞)上是减函数D.是常数3(2023秋·高三课时练习)实轴长和虚轴长相等的双曲线称为等轴双曲线,则等轴双曲线的离心率为()A.2B.2C.3D.34已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P 为C 上一点,若PF 2⊥F 1F 2,且∠PF 1F 2=30°,则椭圆C 的离心率为()A.16B.36C.13D.335已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,P 为椭圆C 上一点,若△PF 1F 2的周长为18,长半轴长为5,则椭圆C 的离心率为( ).A.34B.45C.23D.225题型02 第一定义求离心率【解题攻略】解题时要把所给的几何特征转化为a ,b ,c 的关系式.求离心率的常用方法有:(1)根据条件求得a ,b ,c ,利用e =ca或e =1+b 2a2求解;(2)根据条件得到关于a ,b ,c 的方程或不等式,利用e =ca将其化为关于e 的方程或不等式,然后解方程或不等式即可得到离心率或其范围.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.2设椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点F (2,0)点A (-2,1)为椭圆E 内一点,若椭圆E 上存在一点P ,使得PA +PF =8,则椭圆E 的离心率的取值范围是()A.49,47B.49,47C.29,27D.29,273椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2,直线l :y =kx 与C 交于A 、B 两点,若F 2O =12AB ,∠BAF 2=θ,当θ∈π12,π6时,C 的离心率的最小值为()A.2-1B.22C.63D.3-14已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.5设椭圆x 2a 2+y 2b2=1的左右焦点分别为F 1,F 2,焦距为2c ,点Q c ,a2 在椭圆的内部,点P 是椭圆上的动点,且PF 1 +PQ <5F 1F 2 恒成立,则椭圆的离心率的取值范围为()A.14,22B.13,32C.13,22D.14,1题型03 中点型求离心率【解题攻略】直线与曲线相交,涉及到交线中点的题型,多数用点差法。

高考数学二轮复习专题11 离心率问题速解(精讲精练)(解析版)

高考数学二轮复习专题11 离心率问题速解(精讲精练)(解析版)

专题11离心率问题速解【命题规律】求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.【核心考点目录】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题核心考点二:焦点三角形顶角范围与离心率核心考点三:共焦点的椭圆与双曲线问题核心考点四:椭圆与双曲线的4a 通径体核心考点五:椭圆与双曲线的4a 直角体核心考点六:椭圆与双曲线的等腰三角形问题核心考点七:双曲线的4a 底边等腰三角形核心考点八:焦点到渐近线距离为b核心考点九:焦点到渐近线垂线构造的直角三角形核心考点十:以两焦点为直径的圆与渐近线相交问题核心考点十一:渐近线平行线与面积问题【真题回归】1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A2B.2C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a -=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率c e a = A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQk k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C 的离心率c e a = A.2.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为()A BC .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.3.(2021·全国·统考高考真题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .4.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2e ==,故选:AC.5.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率直线DE 的方程:x c -,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613cDE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为22221121222413DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.6.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.7.(2022·全国·统考高考真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==c e a 又因为1e >,所以1e <≤故答案为:2(满足1e <≤皆可)【方法技巧与总结】求离心率范围的方法一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系.【核心考点】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是()A .12,23⎛⎫ ⎪⎝⎭B .2⎝⎭C .,23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭【答案】B【解析】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α,所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B .例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A .12BC.2D【答案】C【解析】由题意知,椭圆的最大张角为090,所以b c =,所以a =,所以c e a ===,故应选C .例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅= ,125tan 12PF F ∠=,则此椭圆的离心率为()AB .1517C .1315D .1317【答案】D【解析】因为120PF PF ⋅=,所以12PF PF ⊥,在12Rt PF F 中,设25PF m =(0m >),则112PF m =,1213F F m ==,所以213c m =,12217a PF PF m =+=,所以213217c e a ==.故选:D.核心考点二:焦点三角形顶角范围与离心率【典型例题】例4.(2022春·福建漳州·高二校联考期中)已知椭圆2222:1x y C a b+=(0a b >>),椭圆的左、右焦点分别为1F ,2F ,P 是椭圆C 上的任意一点,且满足120PF PF ⋅>,则椭圆C 的离心率e 的取值范围是()A .10,2⎛⎫ ⎪⎝⎭B .2⎛⎫ ⎪ ⎪⎝⎭C .122⎛⎫⎪ ⎪⎝⎭D .,12⎛⎫⎪ ⎪⎝⎭【答案】B【解析】由已知得1(,0)F c -,2(,0)F c ,设()00,P x y ,则()100,PF c x y =--- ,()200,PF c x y =--,因为120PF PF ⋅> ,所以()()0000,,0c x y c x y ---⋅-->,即222000c x y -++>,即22200x y c +>,因为点P 是椭圆上的任意一点,所以2200x y +表示椭圆上的点到原点的距离的平方,因为()22200minx y b +=,所以22b c >,所以222a c c ->,即2212c a <,所以2c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,故选:B .例5.(2022春·北京·高二人大附中校考期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是()A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .311212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭【答案】C【解析】设12||2=F F c ,12F PF △内切圆的半径为r .因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又12r a >故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则c a ≥11212e ≤<.故选:C例6.(2022春·新疆乌鲁木齐·高二乌市八中校考阶段练习)已知1F ,2F 是椭圆()222210x y a b a b+=>>的两个焦点,若存在点P 为椭圆上一点,使得1260F PF ∠=︒,则椭圆离心率e 的取值范围是().A .,12⎫⎪⎪⎣⎭B .2⎛⎫⎪ ⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .122⎡⎫⎢⎣⎭【答案】C 【解析】如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:存在点P 为椭圆上一点,使得1260F PF ∠=︒,012P F F ∴△中,10260F P F ∠≥︒,可得02Rt P OF △中,0230OP F ∠≥︒,所以02P O ,即b ≤,其中c =2223a c c ∴-≤,可得224a c ≤,即2214c a ≥椭圆离心率ce a=,且0a c >>112e ∴≤<故选:C例7.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且ππ[,]64α∈,则该椭圆离心率e 的最大值为___________.1-【解析】已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B 、F 为其右焦点,设椭圆的左焦点为N ,连接,,,AF AN BF BN ,所以四边形AFBN为长方形,根据椭圆的定义2AF AN a +=,且ABF α∠=,则ANF α∠=,所以22cos 2sin a c c αα=+,又由离心率的公式得211π2sin cos )4c e a ααα==++,由ππ[,]64α∈,则5πππ1242α≤+≤,所以112)π4α≤≤+1-.1例8.(2022春·黑龙江佳木斯·高二建三江分局第一中学校考期中)已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,63ππα⎡⎤∈⎢⎣⎦,则该椭圆的离心率e 的取值范围是___________.【答案】2,312⎡⎤-⎢⎥⎣⎦【解析】椭圆上点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为1F ,连接11AF AF BF BF ,,,,则四边形1AFF B 为矩形.根据椭圆的定义:12AF AF a ABF α+=∠=,,则1BAF α∠=.∴1||2c sin ||2cos 22cos 2AF AF c a c c sin αααα=⋅=⋅=⋅+⋅,,椭圆的离心率2112sin cos 2sin 4c e a πααα===+⎛⎫+ ⎪⎝⎭,64ππα⎡⎤∈⎢⎥⎣⎦,∴51242πππα≤+≤,则2(31)sin 144πα+⎛⎫≤+≤ ⎪⎝⎭,∴213122sin()4πα≤≤-+,∴椭圆离心率e 的取值范围2312⎡⎤-⎢⎥⎣⎦,.故答案为:2312⎡⎤-⎢⎥⎣⎦,例9.(2022·高二单元测试)椭圆2222:1(0)x y C a b a b +=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF θ∠=,且5,412ππθ⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为________.【答案】2623⎢⎣⎦【解析】记椭圆C 的左焦点为F ',连AF ',BF ',由椭圆的对称性和性质知BF AF '=,2AF B AFB π∠∠==',由2AF BF a +=,可得2cos 2sin 2c c a θθ+=,得11sin cos 4c e a πθθθ===+⎛⎫+ ⎪⎝⎭,由5,412ππθ⎡⎤∈⎢⎥⎣⎦,可得2,423πππθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦sin 14πθ⎛⎫≤+≤ ⎪⎝⎭,所以23e ≤≤.故答案为:2⎢⎣⎦.核心考点三:共焦点的椭圆与双曲线问题【典型例题】例10.(2022春·江苏苏州·高二江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P ∠=,记椭圆和双曲线的离心率分别为12,e e ,则221231e e +等于_______.【答案】4【解析】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,()1,0F c -,()2,0F c ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点.由椭圆和双曲线定义知:1212+=PF PF a ,1222-=PF PF a ,112PF a a ∴=+,212=-PF a a ,由椭圆和双曲线对称性可知:四边形12PF QF 为平行四边形,260QF P ∠= ,12120F PF ∴∠= ,222121212122cos F F PF PF PF PF F PF ∴=+-∠,即()()()()22222121212121243c a a a a a a a a a a =++-++-=+,22122222123314a a e e c c∴+=+=.故答案为:4.例11.(2022春·山东青岛·高二统考期末)已知椭圆1C 和双曲线2C 有共同的焦点1F ,2F ,P 是它们的一个交点,且1223F PF π∠=,记椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则2212484w e e =+的最小值为()A .24B .37C .49D .52【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长2a ,焦距2c ,则1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a,如图在△F1PF2中,根据余弦定理可得:()()()22212121222cos3F F PF PF PF PF π=+-⋅,整理得2221243c a a =+,即2212314e e +=,所以()2222222112122222121231213148448437494e e w e e e e e e e e ⎛⎫=+=⨯+⨯+=++≥ ⎪⎝⎭,当且仅当1242e e ==时,取等号.故选:C.例12.(2022春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为()A2B .34CD .3【答案】A【解析】如图,设椭圆的长半轴为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1211222,2PF PF a PF PF a +=-=,所以112212,PF a a PF a a =+=-,设122F F c =,因为12π3F PF ∠=,则在12PF F △中,由余弦定理得:22212121212π4()()2()()cos3c a a a a a a a a =++--+-,化简得:2221234a a c +=,即2212134e e +=,从而有2212134e e =+≥整理得12e e ⋅≥=(当且仅当122e e =时等号成立)故选:A.例13.(2022春·辽宁沈阳·高二沈阳市第三十一中学校考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是()A2,2B .12C.3D.4【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c =2222111x y a b -=,c =设1PF m =,2PF n =.m n >.则2m n a +=,12m n a -=,∴1m a a =+,1n a a =-.因为123F PF π∠=,所以()22221cos322m n c mnπ+-==,即()()()()22211114a a a a c a a a a ++--=+-.∴2221340a a c +-=,∴2221314e e +=,∴4≥,则121e e ≤12e =2e =时取等号.故选:A .例14.(2022·河南洛阳·校联考模拟预测)已知椭圆1C :()222210x y a b a b +=>>和双曲线2C :()222210,0x y m n m n-=>>有共同的焦点1F ,2F ,P 是它们在第一象限的交点,当1260F PF ∠=︒时,1C 与2C 的离心率互为倒数,则双曲线2C 的离心率是()ABC .2D【答案】B【解析】设1C ,2C 的离心率分别为1e ,2e ,焦距为2c ,因为122PF PF a +=,122PF PF m -=,所以1PF a m =+,2PF a m =-,由余弦定理,得222121212122cos F F PF PF PF PF F PF =+-⋅∠,即()()()()22242cos 60c a m a m a m a m =++--+-︒,化简,得22243c a m =+,两边同除以2c ,得2212134e e =+.又121e e =,所以222234=+e e .又21e >,所以2e =.故选:B核心考点四:椭圆与双曲线的4a 通径体【典型例题】例15.(2022·广西南宁·南宁市第八中学校考一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若222=AF F C ,则椭圆的离心率为()ABCD【答案】A【解析】过点C 作CD x ⊥轴于D ,则122~ AF F CDF ,由222=AF F C ,则122||2||=F F F D ,12AF CD =,所以点22,2⎛⎫⎪⎝⎭b C c a ,由点C 在椭圆上,所以有222222(2)1b ac a b ⎛⎫⎪⎝⎭+=,即225c a =,所以e ==c a 故选:A.例16.(2022·全国·高三专题练习)已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF,则椭圆C 的离心率为()A .13BC .12D【答案】B【解析】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴,设2MF m =,则12MF m =,1232MF MF m a +==,23a m =,在12MF F △中,由勾股定理得22242(((2)33m m c +=,变形可得3c e a ==.故选:B .例17.(2022春·云南·高三校联考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为()A 1+B .2CD【答案】A【解析】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b -=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22bc a=,222c a ac ∴-=,2210e e ∴--=,1e ∴=1e > ,1e ∴.故选:A例18.(2022春·江苏宿迁·高三校考阶段练习)如图,已知A ,B ,C 是双曲线22221(0,0)x y a b a b -=>>上的三个点,AB 经过原点O ,AC 经过右焦距F ,若BF AC ⊥且2CF FA =,则该双曲线的离心率等于_____.【答案】3【解析】若E 是左焦点,连接,,AE BE EC ,设||BF m =,||AF n =,∴由双曲线的对称性且BF AC ⊥知:AEBF 是矩形,则||AE m =,||BE n =,又2CF FA =,即||2FC n =,则||2||22EC a FC a n =+=+,∴在Rt EAC △中,222||||||AE AC EC +=,即22294()m n a n +=+,而2m n a -=,∴23an =,83a m =,∵在Rt EAF V 中,2224m n c +=,即226849a c =,可得3e =..核心考点五:椭圆与双曲线的4a 直角体【典型例题】例19.(2022春·福建福州·高二福建省福州格致中学校考阶段练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F l ,l 分别交y 轴和双曲线右支于点M ,P ,且212F F PM F M -=uuu u r uuu r uuuu r,则E 的离心率为______.【答案】2【解析】因为212F F PM F M -=uuu u r uuu r uuuu r ,所以1MF PM =uuu r uuu r,即M 为1PF 的中点.又O 为1F 2F 的中点,所以OM 为中位线.所以2//OM PF ,即2PF x ⊥轴.因为直线l 过1F 122F F c =,所以212PF F ==,11224PF F F c ==.由双曲线的定义可得:122PF PF a -=,即42c a -=,解得:2c a ==心率为2e =故答案为:2例20.(2022·全国·高三专题练习)如图所示,双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,A 是1F B 的中点,且12F B F B ⊥,则双曲线C 的离心率e =()AB .2CD1【答案】B【解析】 A 是1F B 的中点,AO ∴为△12F F B 的中位线,12F B F B ⊥,所以1OA F B ⊥,所以1OB F O c ==.设1(B x ,1)y ,2(A x ,2)y ,点B 在渐近线by x a=上,∴2221111x y c b y x a ⎧+=⎪⎪⎨⎪=⎪⎩,得11x a y b =⎧⎨=⎩.又A 为1F B 的中点,∴2222c a x b y -+⎧=⎪⎪⎨⎪=⎪⎩,A 在渐近线by x a=-上,∴22b b a c a -=-⋅,得2c a =,则双曲线的离心率2c e a==.故选:B例21.(2022·天津·统考一模)设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,OE =()A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=【答案】D【解析】∵E 为圆222x y a +=上的点,OE a ∴==()112OE OP OF =+,∴E 是1PF 的中点,又O 是12F F 的中点,222PF OE a ∴===,且2//PF OE ,又12124PF PF a PF a -==∴==1PF 是圆的切线,121,OE PF PF PF ∴⊥∴⊥,又222222212122460,15,12F F c c PF PF c b c a =∴=+=∴=∴=-=,,∴双曲线方程为221312x y -=.故选:D例22.(2022·四川广元·统考三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅= ,222AF F B =,则椭圆E 的离心率为()A .23B .34C D 【答案】C【解析】因为222AF F B =,不妨令()22220B AF F m m ==>,过2F 的直线交椭圆于A ,B 两点,由椭圆的定义可得,122AF AF a +=,122BF BF a +=,则12BF a m =-,122AF a m =-,又120AF AF ⋅=,所以12AF AF ⊥,则12AF F △和1AF B △都是直角三角形,则22211AF AB BF +=,即()()2222292a m m a m -+=-,解得3a m =,所以143AF a =,223AF a =,又122F F c =,2221212AF AF F F +=,所以222164499a a c +=,因此2259c a =,所以椭圆E 的离心率为c a =故选:C.例23.(2022春·江西抚州·高二江西省临川第二中学校考阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .2【答案】D【解析】设11DF AF x ==,则22DF x a =-,由双曲线的对称性和平行四边形的对称性可知:21CF AF x ==,连接1CF ,则有1222CF CF x a =+=+,2222DC DF CF x a=+=-由于1F 在以AD 为直径的圆周上,11DF AF ∴⊥,∵ABCD 为平行四边形,//AB CD ,1DF DC ∴⊥,在直角三角形1CDF 中,22211CF DF CD =+,()()222222x a x x a +=+-,解得:3x a =,123,DF a DF a ==;在直角三角形12F F D 中,2221212DF DF F F +=,()()22232a a c +=,得2252a c =,c e a =,故选:D.核心考点六:椭圆与双曲线的等腰三角形问题【典型例题】例24.(2022春·陕西西安·高二期末)设1F ,2F 是椭圆E :()222210x y a b a b+=>>的左、右焦点,过点()2,0F c 且倾斜角为60°的直线l 与直线2a x c=相交于点P ,若12PF F △为等腰三角形,则椭圆E 的离心率e 的值是()A2B .13C.3D.2【答案】A【解析】直线l的方程为)y x c =-,由)2y x c a x c ⎧=-⎪⎨=⎪⎩解得2y c =,则2a P c ⎛ ⎝⎭,由于12PF F △为等腰三角形,所以21cos 6022a c c c -︒==,222212,,22c c a c a a ===.故选:A例25.(2022·全国·高三专题练习)已知双曲线22221x y a b-=的左焦点为1F ,过1F 作一倾斜角为15 的直线交双曲线右支于P 点,且满足1POF △(O 为原点)为等腰三角形,则该双曲线离心率e 为()A.e =B .2e =C.e =D.12e =【答案】C【解析】记右焦点为2F ,由题意知,1215PF F ∠=,且1POF △为等腰三角形,则只能是1OF OP =,所以212230POF PF F ∠∠==,OP c =,所以直线OP的方程为y x =,由2222331y x x y a b ⎧=⎪⎪⎨⎪-=⎪⎩,得2222222222333P Pa b x b a a b y b a ⎧=⎪⎪-⎨⎪=⎪-⎩所以222222222333a b a b c b a b a+=--,整理,得42243840c a c a -+=,即423840e e -+=,解得22e =或23(舍去),所以2e =.故选:C .例26.(2022·河南鹤壁·鹤壁高中校考模拟预测)已知12F F 、是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 为抛物线28(0)y ax a =->准线上一点,若12F PF △是底角为15︒的等腰三角形,则椭圆的离心率为()A .31-B .21-C .312-D .212-【答案】A【解析】如图,抛物线的准线与x 轴的交点为M因为12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,所以12(,0),(,0)F c F c -抛物线28(0)y ax a =->准线为:直线2x a =,所以(2,0)M a 因为12F PF △是底角为15︒的等腰三角形,则1212==15PF F F PF ∠∠︒则22122=30,==2PF M F F PF c ∠︒则222223cos ===22F M a c PF M PF c -∠,整理得:2=(3+1)a c 所以离心率23131c e a==+.故答案为:A.例27.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是()A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a +-+=,解得22a ac x c --=(舍去)或22a acx c -+=,由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a --+=,解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意.综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c ==当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,综上所述,椭圆的离心率取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:A.核心考点七:双曲线的4a 底边等腰三角形【典型例题】例28.(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F作斜率为2的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为()ABC .2D【答案】B【解析】取MN 中点A ,连AF 2,由已知令22||||MF NF m ==,则2AF MN ⊥,如图:因点M ,N 为双曲线左右两支上的点,由双曲线定义得12||||22MF MF a m a =-=-,12||||22NF NF a m a =+=+,则11||||||4,||2MN NF MF a MA a =-==,令双曲线半焦距为c ,12Rt AF F △中,12||,||AF m AF =2Rt AMF中,2||AF=22222m a c =+,因直线l的斜率为2,即12tan 2AF F ∠=,而2121||tan ||AF AF F AF ∠=,即21||||AF AF =,2221||1||2AF AF =,于是有2222221222c a c a -=+,c =,==c e a ,所以双曲线C故选:B例29.(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过点1Fl 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为()ABCD .2【答案】A【解析】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅= ,所以2F D MN ⊥.因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-.因为122NF NF a -=,所以12NF t a =+.所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===.在Rt 12F F D中,2F D =;在Rt 2MF D中,2F D ==22222t a c =+.所以21F D F D t ===因为直线l所以2121tan F D DF F F D ∠===,所以2222221,23c a c a a c -==+,c =,所以离心率为ca=故选:A核心考点八:焦点到渐近线距离为b 【典型例题】例30.(2022·全国·模拟预测)设1F ,2F 分别是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,O 为坐标原点,过右焦点2F 作双曲线的一条渐近线的垂线,垂足为A .若12212AF F S OF =△,则双曲线C 的离心率为()AB .2C D 【答案】D【解析】根据对称性,不妨取双曲线C 的一条渐近线的方程为by x a=,即0bx ay -=,点()2,0F c b =.因为2OF c =,所以AO a =,所以122124422AF F AOF S S ab ab ==⨯=△△.由题意知2222ab c a b ==+,所以a b =,离心率e ==,故选:D.例31.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||||PF OP ,则C 的离心率为()AB .2CD【答案】B【解析】不妨设双曲线的一条渐近线方程为b y x a=,则2b c a PF b ⨯==,2OF c =,PO a ∴=,1|||PF OP ==在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F 中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即224c a =,e=2,故选:B .例32.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x y C a b u b -=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P,若1PF ,则C 的离心率为()A.B .2CD【答案】C【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,焦点()2,0F c 到直线b y x a=的距离d b ==,所以2PF b =,由勾股定理得OP a =,所以2cos a POF c ∠=,在1POF △中,()122cos cos cos aPOF POF POF cπ∠=-∠=-∠=-,因为1PF 由余弦定理可得22211112cos PF OP OF OP OF POF =+-⋅∠,即)2222a a c ac c ⎛⎫=+-- ⎪⎝⎭,即222a c =,所以离心率c e a ==故选:C例33.(多选题)(2022秋·广东·高二校联考阶段练习)过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点F 引C 的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若FB AF λ=,23λ≤≤,则C 的离心率可以是()A B C .2D .2【答案】BC【解析】右焦点(c,0)F ,设一渐近线OA 的方程为b y x a=,则另一渐近线OB 的方程为b y x a=-,由FA 与OA 垂直可得FA 的方程为()a y x c b=--,联立方程2222()b y x a c a ax a a b c y x c b ⎧=⎪⎪⇒==⎨+⎪=--⎪⎩,可得A 的横坐标为2a c,联立方程()2222222b y x a c ca ax a a b a c y x c b ⎧=-⎪⎪⇒==⎨--⎪=--⎪⎩可得B 的横坐标为2222ca a c-.因为FB AF λ= ,所以()2222222222()22c c a ca a c a c c a c c a c cλλ---=-⇒=⨯--,可得2222222c e a c e λ==--,因为23λ≤≤,所以22322e e ≤-≤,即22222340432*******2e e e e e e ⎧-≥⎪⎪-⇒≤≤⇒≤⎨-⎪≤⎪-⎩,BC 满足题意,AD 不合题意,故选:BC.核心考点九:焦点到渐近线垂线构造的直角三角形【典型例题】例34.(2022·陕西西安·西安中学校考模拟预测)已知双曲线:C 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点,且H 恰为线段2EF 的中点,则双曲线C 的离心率为()ABC .2D【答案】D【解析】连结1EF ,因为点,O H 分别为12F F 和2EF 的中点,所以1//OH EF ,且12EF EF ⊥设点()2,0F c 到一条渐近线by x a=的距离d b ==,所以22EF b =,又212EF EF a -=,所以122EF b a =-,12Rt EF F 中,满足()2222244b a b c -+=,整理为:2b a =,双曲线的离心率ce a===故选:D例35.(2022秋·安徽·高二校联考期中)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段1MF 交双曲线于点P ,且2//MF OP 则该双曲线的离心率为()ABCD【答案】A【解析】不妨设渐近线的方程为by x a=-,因为2//MF OP ,O 为12F F 的中点,所以P 为1MF 的中点,将直线OM ,1MF 的方程联立()b y x aa y x cb ⎧=-⎪⎪⎨⎪=+⎪⎩,可得2,a ab M c c ⎛⎫- ⎪⎝⎭,又()1,0F c -,所以2,22a c cab P c ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭即22,22a c ab P c c ⎛⎫+- ⎪⎝⎭,又P 点在双曲线上,所以()2222222144c ac a a c+-=,解得c a =故选:A.例36.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y E a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M N 、两点(点1F 位于点M 与点N 之间),且112MF F N =,又过点1F 作1F P OM ⊥于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =()ABCD .62【答案】C【解析】不妨设M 在第二象限,N在第三象限,如下图所示:因为ON OP =,11F OP F ON ∠=∠,所以11F OP F ON ≅ ,所以1190F PO F NO ∠=∠=︒,11F P F N =,又()1:,,0OM bl y x F c a=--,所以11F F N b ==,所以ON OP a ==,所以1122MF F N b ==,因为113tan ,tan tan 2b b F OP MON F OP a a∠=∠=∠=,所以22231bba b a a =-,所以222222113b c a e a a -==-=,所以e =故选:C.例37.(2022·全国·统考模拟预测)设F 是双曲线22221(0)x y b a a b-=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =,则双曲线的离心率为()A BC .2D .5【答案】C【解析】不妨设(,0)F c -,过F 作双曲线一条渐近线的垂线方程为()ay x c b=+,与b y x a =-联立可得2a x c =-;与b y x a =联立可得222a cx b a=-,∵2FP FQ = ,∴22222a ca c cb ac ⎛⎫+=-+ ⎪-⎝⎭,整理得,22222c b a =-,即224c a =,∵1e >,∴2e =.故选:C .核心考点十:以两焦点为直径的圆与渐近线相交问题【典型例题】例38.(2022春·四川宜宾·高二四川省宜宾市第四中学校校考阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅= ,||MN b =,则C 的离心率为________.【答案】2【解析】因为0OM MF ⋅= ,所以OM MF ⊥,即⊥OM MF所以MF 为点(),0F c 到渐近线0bx ay -=的距离,bcMF b c===,所以MF MN b ==,可得点M 为NF 的中点,又因为⊥OM MF ,所以ON OF c ==,所以222OM c b a =-=,设双曲线的左焦点为1F ,1F ON θ∠=,(),N x y 则()tan tan tan b FON FON aθπ=-∠=-∠=,因为222c a b =+,所以cos a c θ=,sin b cθ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=,所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭,222222c a b OMa -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-=即222240c ac a --=,所以220e e --=,可得()()210e e -+=,解得:2e =或1e =-(舍),故答案为:2例39.(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.【解析】双曲线E :()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,如图所示,设11,b M x x a ⎛⎫- ⎪⎝⎭,22,b N x x a ⎛⎫⎪⎝⎭,()1,0F c -,。

(完整版)椭圆双曲线的经典结论

(完整版)椭圆双曲线的经典结论

椭圆双曲线的经典结论一、椭 圆点 P 处的切线PT 平分△ PF 1F 2在点 P 处的外角 .PT 平分△ PF 1F 2在点 P 处的外角, 则焦点在直线 PT 上的射影 H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点以焦点弦 PQ 为直径的圆必与对应准线 相离 . 以焦点半径 PF 1 为直径的圆必与以长轴为直径的圆 内切 . 若 P 0(x 0,y 0) 在椭圆 21 a b 22 2x y 22 1 2 2a b 2x 0x y 0y 2 2a b 2若 P 0(x 0,y 0) 在椭圆弦 P 1P 2 的直线方程是 1. 2 y2 x ,则过 P 0 的椭圆的切线方程是 x 02x a 外 ,则过 Po 作椭圆的两条切线切点为 y0 y1. b 2 1. P 1、P 2,则切点 2 椭圆 x2 a 2 F 1PF 22 椭圆 x2 a 2 |MF 1 | a 2 y b 2 1 (a > b > 0) 的左右焦点分别为 F 1,F 2,点 P 为椭圆上任意一点 则椭圆的焦点角形的面积为 S F 1PF 2 b 2tan . 2 2 yb 2 ex 0, |MF 2| a ex 0( F 1( c,0) , F 2(c,0) 设过椭圆焦点 F 作直线与椭圆相交 P 、Q 两点, A 为椭圆长轴上一个顶点,连结 AP 和 1(a >b >0)的焦半径公式: M (x 0,y 0)). AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,则 MF ⊥NF. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 1、 A 2为椭圆长轴上的顶点, A 1P 和 A 2Q 交于点 M ,A 2P 和 A 1Q 交于点 N ,则 MF ⊥NF. 22AB 是 椭 圆 x 2 y 2a 2b 2b 2 ,a 2b 2x 02。

a y 0 1的不平行于对称轴的弦,M (x 0,y 0) 为 AB 的中点, k OM kAB 即K AB 若 P 0(x 0,y 0) 在 椭 x 0x y 0y 2 ab 22 x0 2 a 2 x 2a2 yb 2 1 内 , 则 被 Po 所 平 分 的中 点弦 的 方程 2y 0 b 2若 P 0(x 0,y 0) 在 椭 圆2x2 ay 2 b 21 内 , 则 过 Po 的 弦 中 点 的 轨 迹 方 程1. 2. 3. 4. 5. 6. 7.8.9.10. 11. 12. 13.2 x 2 a2 yb2x0x y0y2a b2二、双曲线点P处的切线PT平分△ PF1F2在点P处的内角.PT平分△ PF1F2在点P 处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点以焦点弦PQ为直径的圆必与对应准线相交.以焦点半径PF1 为直径的圆必与以实轴为直径的圆P在左支)若P0(x0,y0)在双曲线是x a02x y b02yab1.若P0(x0,y0)在双曲线线切点为P1、P2,双曲线22xy22ab一点F1PF2相切. (内切:P在右支;外切:22ab222x y22a b21(a>0,b >0)x2则切点弦2y1(a> 0,b > 0)上,则过P0 的双曲线的切线方程外,则过Po 作双曲线的两条切P1P2 的直线方程是x02x y0ya2a> 0,b > o)的左右焦点分别为则双曲线的焦点角形的面积为Sb21.F1,F1PF2F2,点P 为双曲线上任意b2cot .222xy22 ab 当M ( x0 , y0 )在右支上时,|MF1| ex0 a, |MF2| ex0 a.当M ( x0 , y0 )在左支上时,|MF1| ex0 a, |MF2 | ex0双曲线a> 0,b > o)的焦半径公式:(F1( c,0)F2(c,0)设过双曲线焦点 F 作直线与双曲线相交P 、Q两点, A 为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点 F 的双曲线准线于M、N两点,则MF⊥NF.过双曲线一个焦点A1P 和A2Q交于点2xAB 是双曲线2a2的中点,则K OMF 的直线与双曲线交于两点P、Q, A1、A2 为双曲线实轴上的顶点,M,A2P和A1Q交于点N,则MF⊥NF.b2K AB1(a>0,b >0)的不平行于对称轴的弦,M(x0,y0)为AB若P0(x0,y0) 在双曲线 2 a2 x02 a方程是x02xa2y0yb2b2x2 022x y21(a>0,b >0)内,则被Po 所平分的中点弦的b2y02.b2 .,即K ABb2x02。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档