椭圆与双曲线离心率专题

合集下载

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注

椭圆、双曲线的离心率问题值得关注江西临川二中 何泉清解几是高考重点考查的内容,故椭圆、双曲线的离心率问题依然是高考数学的热点和重点.一、求离心率的值 求解椭圆、双曲线离心率的值的方法:一是直接利用其定义;二是利用直线与其位置关系,转化到一个关于离心率e 的方程来求解.例1 已知P 是以F 1、F 2为焦点的双曲线2222by a x -=1上的一点,1PF ·2PF =0,且tan ∠P F 1F 2=21,则此双曲线的离心率e = . 解:如图1,∵1PF ·2PF =0,∴△P F 1F 2为直角三角形.∵tan ∠P F 1F 2=21,∴12PF PF =21,即| P F 1|=2| P F 2|. 又| PF 1|-| PF 2|=2a ,| PF 1|2+| PF 2|2=(2c )2, 图1∴| PF 2|=2a ,5| PF 2|2=4c 2,20a 2=4c 2, ∴22ca =5,则e =c a =5.例2 已知椭圆的短轴长为 6,F 1、F 2分别为它的左、右焦点,CD 是过F 1的弦,且与x 轴成α角(0<α<)π,若△F 2CD 的周长为20,则椭圆的离心率e =.解:如图2,∵| CF 1|+| CF 2|=2a ,|DF 1|+|DF 2|=2a ,∴两式相加,得:| CF 1|+| CF 2|+|DF 1|+|DF 2|=20=4a .∴a =5,又b =3,∴c =4, 则e =a c =54. 图2 点评:例1、例2是直接利用双曲线、椭圆的一义来求离心率的.例3 设双曲线2222by a x -=1(0<a <b =的半焦距为c ,直线l 过(a ,0),(b ,0)两点.已知原点到直线l 的距离为43c ,则双曲线的离心率为( ) A .2 B .3 C .2 D .2或332 解:由l : by a x -=1,得bx +a -yab =0 原点到直线l 的距离为22b a ab+-=43c ,又a 2+b 2=c 2, ∴ab =43c 2,∴a 2b 2= 163c 4,即a 2c 2-a 4=163c 4,两边同除以a 4,则e 2-1=163e 4,解得e =2或e =332. 又b >a >0,∴ab >1,即e 2-1>1,e 2>2. ∴e =2.故选A .例4 已知椭圆C 的方程为2222x y a b+=1(a >b >0),若直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F 2,则椭圆的离心率e 的( )A .21B .22C .23D .2-1解:设半焦距为c ,则F 2(c ,0).∵M 在轴上的射影恰好是右焦点F 2,∴M (c , 22c ). ∴22a c +22)22(bc =1,又a 2-c 2=b 2, ∴22ac +)(2222c a c -=1, 整理得,2c 4-52a c 2+2a 4=0,即2e 4-5e 2+2=0.∴e 4=21,故选B . 点评:例3、例4求离心率的方法是有相同的特点:先根据条件得到一个关于a 、c 的齐次等式,然后等式两边同除以a 的方幂,得到一个关于离心率的方程,解出e 并注意条件即得到所求.二、求离心率的取值范围其方法可以利用椭圆、双曲线的变化范围,直线与椭圆、双曲线的三种位置关系建立的一元二次方程存在实根的条件,图形的直观性,实数的非负性或已知变量的取值范围(隐含条件的不等关系)等来确立含离心率e 的不等式,从而获解.例5 已知椭圆2222x y a b+=1(a >b >0)的左、右顶点分别为A 、B ,如果椭圆上存在点P ,使得∠APB =1200,求椭圆的离心率e 的取值范围.解法一:设P (x 0,y 0),由椭圆的对称性,不妨令0≤x 0<a , 0<y 0≤b .∵A (-a ,0),B (a ,0), ∴PA k =a x y +00,PB k =ax y -00. ∵∠APB =1200,∴tan ∠APB =-3,又tan ∠APB =1PB PA PB PA k k k k -+=2202002a y x ay -+, ∴2202002a y x ay -+=-3,……① 而点P 在椭圆上,∴b 2x 02+a 2y 02=a 2b 2……②由①、②得 y 0=)(32222b a ab -.∵0<y 0≤b ,∴0<)(32222b a ab -≤b .∵a >b >0,∴2ab ≤3(a 2-b 2),即4 a 2b 2≤3 c 4,整理得,3e 4+4e 2-4≥0.考虑0<e <1,可解得36≤e <1. 解法二:以AB 为弦,含0120的角且在x 轴上方的弓形弧与上半椭圆的交点除A 、B外至多有两个,至少有一个,所以上顶点D (0,b )在弓形内,即∠ADB ≥0120, ∴∠ODB ≥600(点O 为坐标原点),∴ba ≥3,即a 2≥3b 2=3(a 2-c 2), 则e 2≥32. ∴33≤e ≤1. 点评:椭圆、双曲线上点的横、纵坐标的取值范围往往可以确立含离心率e 的不等式.解法二是考虑到几何性质运用数形结合的思想方法建立了含e 的不等式,简化了求解过程.下面再看例6对这一方法漂亮的应用.例6 已知椭圆2222by a x +=1(a >b >0)上有点P ,使∠F 1PF 2为直角,求椭圆离心率的取值范围.解:依题意知,以F 1F 2为直径的圆C与椭圆必有公共点P ,则椭圆短轴上端点B 必在圆C的内部或圆上,即|OB |≤r =c (r 为圆C的半径),∴b ≤c ,∴a 2- c 2≤c 2, 即2 c 2≥a 2,则22≤e <1. 点评:本题还有其他多种解法,请同学们试试.例7 过双曲线2222by a x -=1(a >0,b >0)的右焦点F 且倾斜角为045的直线与双曲线的右支交于A 、B 两点.求双曲线离心率的取值范围.解:设F (c ,0),则直线AB 的方程为y =x -c ,且c 2= a 2+ b 2 由⎪⎩⎪⎨⎧-==-c x y b y a x 12222,消去y ,得2222)(b c x a x --=1, 即(a 2- b 2)x 2-2 a 2cx + a 2 (b 2 -c 2)=0.∵直线AB 与双曲线有两个交点,∴a 2- b 2≠0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2222b a c a -,x 1x 2=22222)(ba cb a -+. 又∵A 、B 分别在双曲线的右支上, ∴⎪⎩⎪⎨⎧〉-+=≠-0)(022*******b a c b a x x b a ,即a 2> b 2,a 2>c 2- a 2, ∴e 2<2,则1<e <2.点评:本题是以直线与双曲线的位置关系来确立含e 的不等式,亦可由图形上根据角度的大小关系确立含e 的不等式来求解.例8 已知梯形ABCD 中,|AB |=2|CD |,点E 满足=λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当32≤λ≤43时,求双曲线e 的取值范围. 解:以AB 为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,如图3,由双曲线的对称性知C 、D 关于y 轴对称.设A (-c ,0), C (2c ,h ), E (x 0,y 0),其中c =21|AB |,h 是梯形的高. ∵=λ, 图3∴(x 0+c ,y 0)=λ(2c -x 0,h -y 0), ∴x 0=)1(2)2(+-λλc ,y 0=λλ+1h . 设双曲线方程为2222by a x -=1, ∵C 、E 在双曲线上,并考虑e =a c , ∴222222221,(1)42()() 1.(2)411e h b eh b λλλλ⎧-=⎪⎪⎨-⎪-=⎪++⎩ 由(1)得22bh =42e -1,代入(2),得42e (4-4λ)=1+2λ, ∴λ=1-132+e ,由32≤λ≤43,得32≤1-132+e ≤43, 解得7≤e ≤10. 故双曲线离心率的取值范围为[7,10].点评:本题依据已知变量的范围来确立含e不等式从而获解.―――原载《广东教育》2005年第18期。

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。

求椭圆及双曲线的离心率的习题

求椭圆及双曲线的离心率的习题

求椭圆的离心率1、已知F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率. e =53.2、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:333、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF=2FD ,则C 的离心率为________.如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.4、设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.椭圆C 的离心率 ;解:设1122(,),(,)Ax y B x y ,由题意知1y <0,2y>0.直线l 的方程为)y x c =-,其中c =联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AFFB =,所以122y y -=. 即2= 得离心率 23c e a ==.5.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.6、在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B ,M为线段AB 的中点,若∠MOA =30°,则该椭圆的离心率为________. 答案:637.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215,故选B. 8、设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.e =33.9.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )A B 1 C .4(2- D 10、已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上一点,且PF ⊥x 轴,OP ∥AB ,那么该椭圆的离心率为( )A.22B.24C.12D.3211、如图所示,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为________.易知直线B 2A 2的方程为bx +ay -ab =0,直线B 1F 2的方程为bx -cy -bc =0.联立可得P ⎝ ⎛⎭⎪⎫2ac a +c ,b (a -c )a +c .又A 2(a ,0),B 1(0,-b ),所以PB 1→=⎝ ⎛⎭⎪⎫-2ac a +c ,-2ab a +c ,P A 2→=⎝ ⎛⎭⎪⎫a (a -c )a +c ,-b (a -c )a +c . 因为∠B 1P A 2为钝角,所以P A 2→·PB 1→<0, 即-2a 2c (a -c )(a +c )2+2ab 2(a -c )(a +c )2<0.化简得b 2<ac ,即a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0即e 2+e -1>0,. 而0<e <1,所以5-12<e <1求双曲线的离心率1、已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.由三角形相似或平行线分线段成比例定理得26=a c ,∴ca =3,即e =32、已知F 1,F 2分别是双曲线的两个焦点,P 为该双曲线上一点,若△PF 1F 2为等腰直角三角形,则该双曲线的离心率为( )A.3+1B.2+1 C .2 3 D .22 选B 3、设双曲线的焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率e 等于( )A .5 B.5 C.52 D.54选C 2.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A B C D 【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因此222,4,ABBC a b e =∴=∴= C4、设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为( )A. 3 B .2 C. 5 D .2 3 如图,设P 为右支上一点,则|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,最小角∠PF 1F 2=30°, 由余弦定理得:(2a )2=(4a )2+(2c )2-2×4a ×2c ·cos 30°, 解得e =ca= 3.5、过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________. 解析:由题意知,a +c =b 2a,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,。

共顶点的椭圆和双曲线离心率关系

共顶点的椭圆和双曲线离心率关系

共顶点的椭圆和双曲线离心率关系【导言】在数学中,椭圆和双曲线是两种常见的几何曲线,它们在各个领域都起到重要的作用。

在本文中,我们将探讨共顶点的椭圆和双曲线之间的离心率关系。

通过深入剖析这一关系,我们可以更好地理解这两种曲线的性质和特点。

【第一部分:椭圆】1. 了解椭圆的基本定义椭圆是平面上一点到两个固定点(焦点)的距离之和为常数的轨迹。

这个常数称为椭圆的离心率,通常用符号e表示。

对于一个椭圆来说,离心率e的取值范围是0<e<1。

2. 探究离心率为0的椭圆当离心率e为0时,两个焦点重合于一点,此时的椭圆就变成了一个圆。

在圆中,任意一点到圆心的距离都相等,这与椭圆的定义相符。

3. 研究离心率为1的椭圆当离心率e为1时,椭圆的性质发生了变化。

此时的椭圆被称为狭义椭圆,它的特点是两个焦点离圆心相等。

离心率为1的椭圆是一个特殊的情况,它与双曲线之间存在着一种联系。

【第二部分:双曲线】1. 了解双曲线的基本定义双曲线是平面上一点到两个固定点(焦点)的距离之差为常数的轨迹。

与椭圆不同的是,双曲线的离心率e大于1。

具体地说,离心率e越大,双曲线的形状越扁平。

2. 探究离心率大于1的双曲线当离心率e大于1时,双曲线的性质变得更加有趣。

与椭圆不同,双曲线的拟焦点是在曲线的两边,离圆心同等距离。

双曲线可以分为左右两支,两支之间存在着一定的对称性。

3. 研究离心率等于1的双曲线当离心率e等于1时,我们可以得到一种特殊的双曲线,称为狭义双曲线。

与离心率为1的椭圆类似,狭义双曲线也具有对称性。

由于其特殊的形态,狭义双曲线在物理学和工程学领域有着广泛的应用。

【第三部分:共顶点的椭圆和双曲线离心率关系】1. 比较椭圆和双曲线的离心率通过以上对椭圆和双曲线的研究,我们可以得出一个重要的结论:共顶点的椭圆和双曲线的离心率之和恒为2。

也就是说,对于任意一个椭圆和双曲线,它们的离心率之和总是等于2。

2. 离心率关系的几何意义这一结论有着深远的几何意义。

椭圆的离心率问题

椭圆的离心率问题

椭圆和双曲线中的离心率问题1. 已知12F F 、是椭圆222210)x y a b a b+=>>(的左右焦点,过1F 的直线与椭圆相交于A B 、两点,若220,,AB AF AB AF ⋅==则椭圆的离心率为( )A.B. -C. 1D. 12.若一个椭圆长轴的长度,短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) 4.5A3.5B 2.5C 1.5D3.设P 是以12F F 、为焦点的椭圆222210)x y a b a b +=>>(上的一点,且120PF PF ⋅=,121tan 2PF F ∠=,则该椭圆的离心率是( )A B 1.3C 1.2D4. 已知椭圆E 的左、右焦点分别为12F F 、,过2F 且斜率为2的直线交椭圆E 于P Q 、两点,若12PF F ∆为直角三角形,则椭圆E 的离心率为( )3A 2.3B 3C 1.3D5. 已知直线y x =与椭圆222210)x y a b a b+=>>(的两个交点在x 轴上的射影恰好是椭圆的两个焦点,则椭圆的离心率为( )A B C 1.2D6. 椭圆222210)x y a b a b +=>>(的左焦点为F ,(,0),(0,)A a B b -是两个顶点,如果F 到直线AB ,那么椭圆的离心率为( )A B 1.2C 4.5D7. 过椭圆222210)x y a b a b +=>>(的左焦点1F 做x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=︒,则椭圆的离心率为( )2A .3B 1.2C 1.3D8. 已知椭圆222210)x y a b a b+=>>(的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥ 轴,直线AB 交y 轴于点P ,若2AP PB =,则椭圆的离心率是( )A B 1.3C 1.2D9.椭圆222210)x y a b a b +=>>(的左顶点为A ,左、右焦点为12F F 、,D 是它短轴的一个端点,若122DF DA DF =+,则该椭圆的离心率为( )1.2A 1.3B 1.4C 1.5D10. 已知12F F 、是椭圆C 222210)x y a b a b +=>>(的左右焦点,P 为直线32a x =上一点,12F PF ∆是底角为30︒的等腰三角形,则椭圆C 的离心率为( )1.2A2.3B3.4C4.5D22. 已知F 1,F 2是椭圆C 的左右焦点,点P 在椭圆上,且满足122PF PF =,1230PF F ∠=︒,则椭圆的离心率为____ 23.在平面直角坐标系xoy 中,设椭圆222210)x y a b a b+=>>(的焦距为2c,以点O 为圆心,a 为半径作圆M ,若过点2(,0)a P c作圆M 的两条切线互相垂直,则该椭圆的离心率为________. 24.过椭圆222210)x y a b a b+=>>(的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若AM MB =,则该椭圆的离心率为_____________.25.已知12F F 、为椭圆22121x y k k +=++的左、右焦点,过焦点1F 的直线交椭圆于A B 、两点,若2ABF ∆的周长为8,则椭圆的离心率为____________.二.求离心率取值范围问题.33.已知两定点2A(-,0) 和 2B (,0),动点P x y (,)在直线 :3l y x =+ 上移动,椭圆C 以A B 、为焦点且经过点P ,求椭圆C 的离心率的最大值.为( )A B C D 34.已知12F F 、是椭圆C 222210)x y a b a b+=>>(的左右焦点,过1F 且垂直于x 轴的直线交椭圆C 于A B 、两点,若2ABF ∆为钝角三角形,则椭圆C 的离心率e 的取值范围是( ).0A() .01)B ( .1,1)C 1,1)D35.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的范围是223,4b b ⎡⎤⎣⎦,则这个椭圆的离心率的取值范围是( ).A ⎣⎦ .B ⎣⎦ .C ⎣⎦ .D ⎣⎦40.已知椭圆222210)x y a b a b+=>>(的左右焦点分别为12(,0)F c F c (-,0)、,若椭圆上存在点P (异于长轴端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆的离心率e 的取值范围是__________.41.已知12F F 、是椭圆的两个焦点,P 为椭圆上一点,12=120F PF ∠︒,则该椭圆的离心率e 的取值范围是_______42.已知12(,0)F c F c (-,0)、为椭圆22221x y a b+=的两个焦点,P 为椭圆上一点且212PF PF c ⋅=,则此椭圆离心率的取值范围是__________.43.已知12F F 、是椭圆222210)x y a b a b +=>>(的左右焦点,若在直线2a x c=上存在点P ,使得线段1PF 的中垂线过2F ,则椭圆的离心率e 的取值范围是__________.44.已知12F F 、是椭圆222210)x y a b a b+=>>(的左右焦点,M 是椭圆上一点,且满足 120F M F M ∙=,则离心率e 的取值范围是__________.40.( -1,1) 41. )1⎣ .42. ⎣⎦. 43. )1⎣. 44)1⎣+1). 46. )5⎣答案: 1-5 ABAAB 6-10 CBDBC 11-15 DDAAB 16-20 DADBB 21 A22. .23. 2.24. .25. 12.26.29. 5.30.2. 31. 2 32. 5 33-37 BAACB.38.39 B B.40.( -1,1)41. )1⎣.42. 2⎣⎦,.43. )1⎣.44)12⎣+1).46. )5⎣。

圆锥曲线系统班11、 椭圆、双曲线焦点三角形下的离心率公式

圆锥曲线系统班11、 椭圆、双曲线焦点三角形下的离心率公式

第11讲椭圆、双曲线焦点三角形下的离心率公式知识与方法1.如图1所示,在焦点三角形背景下求椭圆的离心率,一般结合椭圆的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212121221sin 22sin sin F F F PF c ce a a PF PF PF F PF F ∠====+∠+∠2.如图2所示,在焦点三角形背景下求双曲线的离心率,一般结合双曲线的定义,关键是运用已知条件研究出12PF F 的三边长之比或内角正弦值之比.公式:1212122112sin 22sin sin F F F PF c ce a a PF F PF F PF PF ∠====∠-∠-.典型例题【例1】(2018·新课标Ⅱ卷)已知1F 、2F 是椭圆C 的两个焦点,P 是椭圆C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A.1B.21【解析】解法1:如图,12PF PF ⊥,2160PF F ∠=︒,故可设122F F =,则1PF =,21PF =,所以C的离心率12121F F e PF PF ==+.解法2:如图,2112126030PF F PF F PF PF ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 901sin sin sin 30sin 60F PF e PF F PF F ∠︒⇒===∠+∠︒+︒.【答案】D 变式1设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 在C 上且1PF x ⊥轴,若1230F PF ∠=︒,则椭圆C 的离心率为_______.【解析】如图,1230F PF ∠=︒且1PF x ⊥,故可设22PF =,则13PF =,121F F =,所以椭圆C 的离心率121212323F F e PF PF ===-++.解法2:如图,12211123060F PF PF F PF F F ∠=︒⎧⇒∠=︒⎨⊥⎩121221sin sin 3023sin sin sin 90sin 60F PF e PF F PF F ∠︒⇒===-∠+∠︒+︒【答案】23变式2在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的椭圆的离心率为_______.【解析】如图,不妨设3AB =,1AC =,则10BC =104BC e AB AC ==+.解法2:如图,110310tan sin sin 31010ABC ABC ACB ∠=⇒∠=∠=sin 10sin sin 4BAC e ABC ACB ∠⇒==∠+∠.【答案】变式3过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若2ABF 是等腰直角三角形,则椭圆的离心率为_______.【解析】解法1:如图,2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =所以椭圆的离心率12121F F e AF AF ==+.解法2:如图,由题意,121245F AF F F A ∠=∠=︒,所以椭圆的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-变式4过椭圆()222210x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于A 、B 两点,椭圆的右焦点为2F ,若21cos 8AF B ∠=,则椭圆的离心率为_______.【解析】解法1:如图,122212121211cos cos 212sin sin 88AF AF B AF F AF F AF F AF ∠=∠=⇒-∠=⇒∠∠==不妨设1AF =24AF =,则123F F =,所以1212F F e AF AF ==+.解法2:如图,2211cos cos 28AF B AF F ∠=∠=221211712sin sin 84AF F AF F ⇒-∠=⇒∠=12213sin cos 4F AF AF F ⇒∠=∠=1212213sin 474sin sin 3F AF e AF F AF F ∠∠==∠+∠.变式5在ABC 中,2AB =,1BC =,且6090ABC ︒≤∠≤︒,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率的取值范围为_______.【解析】解析:如图,设()6090ABC θθ∠=︒≤≤︒则2222cos 54cos AC AB BC AB BC ABC θ=+-⋅⋅∠=-,160900cos 2AC θθ︒≤≤︒⇒≤≤⇒≤而12BC e AB AC AC==++22e ≤≤-.【答案】2,2-【反思】从上面几道题可以看出,焦点三角形下求椭圆的离心率,要么研究焦点三角形的三边长之比,要么研究焦点三角形的内角正弦值之比.【例2】已知1F 、2F 是双曲线2222:1x y C a b -=的左、右焦点,点P 在C 上,12PF PF ⊥,且1230PF F ∠=︒,则双曲线C 的离心率为_______.【解析】解法1:如图,由题意,不妨设21PF =,则1PF =,122F F =,所以12121F FePF PF==-.解法2:如图,由题意,2160PF F∠=︒,1290F PF∠=︒,所以121221sin1sin sinF PFePF F PF F∠==∠-∠.【答案】1+变式1(2016·新课标Ⅱ卷)已知1F、2F是双曲线2222:1x yEa b-=的左、右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()B.32D.2【解析】解法1:如图,不妨设11MF=,23MF=,则12F F=,所以1212222F FePF PF===-.解法2:21121sin sin33MF F F MF∠=⇒∠=12122122sin31sin sin13F MFeMF F MF F∠⇒===∠-∠-.【答案】A变式2已知1F、2F是双曲线2222:1x yCa b-=的左、右焦点,过1F且与x轴垂直的直线与双曲线C交于A、B两点,若2ABF是等腰直角三角形,则双曲线C的离心率为_______.【解析】解法1:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,不妨设1121AF F F ==,则2AF =双曲线C的离心率12211F F e AF AF ==-.解法2:2ABF 是等腰直角三角形12AF F ⇒ 也是等腰直角三角形,所以121221sin sin 451sin sin sin 90sin 45F AF e AF F AF F ∠︒===∠-∠︒-︒.【答案】1+变式3在ABC 中,AB AC ⊥,1tan 3ABC ∠=,则以B 、C 为焦点,且经过点A 的双曲线的离心率为_______.【解析】如图,不妨设1AC =,则3AB =,BC =所以双曲线的离心率1010312BC e AB AC ===--.【答案】变式4已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1230PF F ∠=︒,212PF F F =,则双曲线C 的离心率为_______.【解析】如图,由题意,121230PF F F PF ∠=∠=︒,12120F PF ∠=︒,所以121221sin sin sin F PF e PF F PF F ∠==∠-∠.【答案】12+强化训练1.(★★★)在PAB 中,PA AB ⊥,12tan PBA ∠=,则以A 、B 为焦点,且经过点P 的椭圆的离心率为_______.【解析】如图,由题意,不妨设1PA =,则2AB =,PB =512AB e PA PB-===+.2.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在C 上,且1245PF F ∠=︒,214cos 5PF F ∠=,则椭圆C 的离心率为_______.【解析】如图,212143cos sin 55PF F PF F ∠=⇒∠=,12122121180135F PF PF F PF F PF F ∠=︒-∠-∠=︒-∠,所以()1221212172sin sin 135sin135cos cos135sin 10F PF PF F PF F PF F ∠=︒-∠=︒∠-︒∠=,故121221sin 5sin sin F PF e PF F PF F ∠==-∠+∠【答案】5-3.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,点P 在C 上,1PF x ⊥轴,且211tan 2PF F ∠=,则双曲线C 的离心率为_______.【解析】如图,不妨设11PF =,122F F =,则2PF =双曲线C的离心率122112F F e PF PF +==-.4.(★★★)在ABC 中,30ABC ∠=︒,AB =,1BC =,若以B 、C 为焦点的椭圆经过点A ,则该椭圆的离心率为_______.【解析】2222cos 1AC AB BC AB BC ABC =+-⋅⋅∠=1AC ⇒=⇒椭圆的离心率12BC e AB AC ==+.【答案】312-5.(★★★)过椭圆()2222:10x y C a b a b+=>>的左焦点F 作x 轴的垂线交椭圆C 于A 、B 两点,若ABO 是等腰直角三角形,则椭圆C 的离心率为_______.【解析】如图,设椭圆C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF OF ==,则12FF =,1AF =,所以椭圆C的离心率121F F e AF AF ==+.解法2:ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,⇒22b AF OF c b ac a=⇒=⇒=2222210102a c ac c ac a e e e ⇒-=⇒+-=⇒+-=⇒=.6.(★★★)已知1F 、2F 是双曲线2222:1x y C a b-=的左、右焦点,过1F 且与x 轴垂直的直线与双曲线C 交于A 、B 两点,若2ABF 是正三角形,则双曲线C 的离心率为_______.【解析】解法1:如图,2ABF 是正三角形,不妨设11AF =,则22AF =,12F F =离心率1221F F e AF AF ==-.解法2:如图,2ABF 是正三角形1260F AF ⇒∠=︒,2130AF F ∠=︒,1290AF F ∠=︒,所以双曲线C的离心率121221sin sin sin F AF e AF F AF F ∠==∠-∠.7.(★★★)过双曲线2222:1x y C a b-=的左焦点1F 作x 轴的垂线交C 于A 、B 两点,C 的右焦点为2F ,若21cos 8AF B ∠=,则双曲线C 的离心率为_______.【解析】如图,2221211cos cos 22cos 18AF B AF F AF F ∠=∠=∠-=1221233cos 44F F AF F AF ⇒∠=⇒=,不妨设123F F =,24AF =,则1AF ==所以离心率1221F F e AF AF ==-.8.(★★★)过双曲线2222:1x y C a b-=的左焦点F 作x 轴的垂线交C 于A 、B 两点,若ABO是等腰直角三角形,则双曲线C 的离心率为_______.【解析】如图,设双曲线C 的右焦点为1F ,ABO 是等腰直角三角形AFO ⇒ 也是等腰直角三角形,不妨设1AF FO ==,则12FF =,1AF =,所以C的离心率1112FF e AF AF+==-.【答案】5129.(★★★)设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,过1F且斜率为的直线l 与椭圆C 交于A 、B 两点,212AF F F ⊥,则椭圆C 的离心率为_______.【解析】解法l :如图,直线AB的斜率为1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,不妨设121F F =,则12AF =,2AF =,所以椭圆C的离心率12122F F e AF AF ==-+解法2:如图,直线AB1260AF F ⇒∠=︒,又212AF F F ⊥,所以2190AF F ∠=︒,1230F AF ∠=︒,故椭圆C的离心率121221sin 2sin sin F AF e AF F AF F ∠==-∠+∠【答案】210.(★★★)设1F 、2F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆的4个交点和1F 、2F 恰好构成一个正六边形,则椭圆E 的离心率为_______.【解析】如图,由题意,21ABF CDF 是正六边形,所以1260AF F ∠=︒,2130AF F ∠=︒,1290F AF ∠=︒,故椭圆E的离心率121221sin 1sin sin F AF e AF F AF F ∠==∠+∠.【答案】1-11.(★★★★)已知P 、Q 为椭圆()2222:10x y C a b a b+=>>上关于原点对称的两点,点P 在第一象限,1F 、2F 是椭圆C 的左、右焦点,2OP OF =,若1133QF PF ≥,则椭圆C 的离心率的取值范围为_______.【解析】如图,2121212OP OF OP F F PF PF =⇒=⇒⊥显然四边形12PF QF 是矩形,所以12QF PF =,由题意,1133QF PF ≥,所以2133PF PF ≥,设12PF F α∠=,则21tan PF PF α=≥30α≥︒,又点P 在第一象限,所以21PF PF <,故tan 1α<,即45α<︒,所以3045α︒≤<︒,椭圆C 的离心率()121221sin 11sin sin sin sin 90sin cos F PF e PF F PF F αααα∠====∠+∠+︒-+,由3045α︒≤<︒可得754590α︒≤+︒<︒,所以()62sin 4514α≤+︒<,故212e <≤-.【答案】212⎤-⎥⎝⎦。

双曲线离心率专题

双曲线离心率专题

双曲线离心率专题一.选择题(共40小题)1.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F1与双曲线的一条渐近线平行的直线交双曲线的另一条渐近线于点P,若点P在以线段F1F2为直径的圆,则双曲线离心率的取值围是()A.(1,2)B.(1,)C.(,2)D.(2,+∞)2.已知双曲线C:=1(a>0,b>0)的两个顶点分别为A,B,点P是C上异于A,B的一点,直线PA,PB的倾斜角分别为α,β.若=﹣,则C的离心率为()A.B.C.D.3.已知双曲线=1(a>0,b>0),过原点的一条直线与双曲线交于A,B两点,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=,则该双曲线离心率e的值为()A.2B.C.2D.4.已知F1(﹣c,0),F2(c,0)为双曲线的两个焦点,若双曲线上存在点P使得,则双曲线离心率的取值围为()A.(1,+∞)B.[2,+∞)C.D.5.双曲线C1:(a>0,b>0)的焦点为F1(0,﹣c)、F2(0,c),抛物线C2:的准线与C1交于M、N两点,且以MN为直径的圆过F2,则椭圆的离心率的平方为()A.B.C.D.6.设F1,F2分别是双曲线的左、右焦点.圆x2+y2=a2+b2与双曲线C的右支交于点A,且2|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.7.已知双曲线C:﹣=1(a>0,b>)的左焦点为F,右顶点为E,过点F且垂直于x轴的直线与双曲线C相交于不同的两点A,B,若△ABE为锐角三角形,则双曲线C的离心率的取值围为()A.(1,2)B.(1,2]C.(2,3]D.[2,3)8.已知双曲线的一条渐近线过点(2,﹣1),则双曲线的离心率为()A.B.C.D.9.已知双曲线E:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,点M,N 在E上,MN∥F1F2,|MN|=|F1F2|,线段F2M交E于点Q.且=,则E的离心率为()A.B.C.2D.10.已知双曲线C1:﹣=1(a>0,b>0)和C2:﹣=1(a>0,b>0)的渐近线将第一象限三等分,则C1的离心率为()A.或B.2或C.2或D.或11.已知F为双曲线C:x2﹣m2y2=3(m>0)的一个焦点,若点F到C的一条渐近线的距离为3,则该对曲线的离心率为()A.B.2C.D.312.设F1,F2分别为椭圆与双曲线C2公共的左、右焦点,两曲线在第一象限交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率,则双曲线C2的离心率e2的取值围是()A.(1,5]B.[2,4]C.[2,5]D.[4,5]13.已知中心在原点,焦点在x轴上的双曲线的一条渐近线的经过点(﹣2,1),则它的离心率为()A.B.C.D.14.双曲线﹣=1(a>0,b>0)的实轴为A1A2,虚轴的一个端点为B,若三角形A1A2B的面积为b2,则双曲线的离心率为()A.B.C.D.15.过双曲线的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为()A.B.C.D.16.若双曲线C的渐近线与实轴的夹角为,则该双曲线的离心率为()A.3B.2C.D.17.已知双曲线,四点P1(2,1),P2(1,0),P3(﹣2,),P4(2,)中恰有三点在双曲线上,则该双曲线的离心率为()A.B.C.D.518.若双曲线的渐近线与抛物线相切,则C的离心率为()A.B.C.2D.19.过双曲线的左焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的右顶点,若点M在以AB为直径的圆的外部,则此双曲线的离心率e 的取值围为()A.()B.(1,)C.(2,+∞)D.(1,2)20.已知双曲线C1:(a>0,b>0)的焦点为F1(0,﹣c),F2(0,c),抛物线C2:的准线与C1交于M、N两点,且MN与抛物线焦点的连线构成等边三角形,则椭圆的离心率为()A.B.C.D.21.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,P是C右支上的一点,PF1与y轴交于点A,△PAF2的切圆在边AF2上的切点为Q,若|F2Q|=2|AQ|,|OA|=b(O是坐标原点)则双曲线C的离心率是()A.B.C.5D.+122.已知双曲线E:﹣=1(a>0,b>0)的左右焦点分别为F1,F2,点P是双曲线E右支上的一点,若线段PF1的中点恰好是虚轴的一个端点,则双曲线E 的离心率为()A.B.C.2D.23.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,则该双曲线的离心率为()A.B.C.D.24.设F1,F2分别是双曲线﹣=1的左、右焦点.若双曲线上存在点M,使∠F1MF2=90°,且|MF1|=2|MF2|,则双曲线离心率为()A.B.C.2D.25.已知双曲线=1(a>0,b>0),若直线1:y=(x+c)(c为双曲线的半焦距)恰好与圆:x2+y2=a2相切,则双曲线的离心率为()A.B.C.2D.26.设F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,点M是双曲线右支上一点,|MF2|=|F1F2|,并且sin∠F1MF2=,则双曲线C的离心率为()A.B.C.D.27.已知双曲线的标准方程,F1,F2为其左右焦点,若P是双曲线右支上的一点,且tan∠PF1F2==2,则该双曲线的离心率为()A.B.C.D.28.若双曲线的焦点都在直线x+2y﹣4=0的下方,则C的离心率的取值围为()A.(4,+∞)B.(1,4)C.(2,+∞)D.(1,2)29.若m<﹣2,则双曲线的离心率的取值围是()A.B.C.D.30.已知双曲线(a>0,b>0)的一条渐近线与y轴所形成的锐角为30°,则双曲线M的离心率是()A.B.C.2D.或231.直线x=2a与双曲线﹣=1(a>0,b>0)在第一和第四象限分别交于点M和N.O为坐标原点,A为y轴上一点〔(不与O重合),若∠AOM=∠MON,则该双曲线的离心率为()A.B.C.D.32.双曲线C:=1(a>0,b>0)的两个焦点分别为F1,F2,过右焦点F2作实轴的垂线交双曲线C于M,N两点若△MNF1是直角三角形,则双曲线C的离心率为()A.B.C.D.33.已知双曲线﹣=1,经过点M(2,2),则其离心率e=()A.B.C.D.34.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,点P是双曲线右支上的点,且∠F1PF2=45°,若坐标原点O到直线PF1的距离等于实半轴长,则该双曲线的离心率为()A.B.C.2D.35.已知点P(1,2)在双曲线=1(a>0,b>0)的渐近线上,则C的离心率是()A.B.C.D.36.双曲线=1(a>0,b>0)的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q两点,PQ⊥PF1,且|PF1|、|PQ|、|F2Q|依次成等差数列,则双曲线的离心率为()A.B.C.D.37.已知双曲线的渐近线方程为y=,则双曲线的离心率()A.B.C.或D.或38.设双曲线的一个焦点为F,过F作双曲线C的一条渐近线的垂线,垂足为A,且与另一条渐近线交于点B,若,则双曲线C的离心率为()A.B.2C.D.39.若双曲线的两个焦点为F1,F2,若双曲线上存在一点P,满足|PF1|=3|PF2|,则该双曲线的离心率的取值围是()A.1<e<2B.1≤e≤2C.1<e≤2D.1≤e<2 40.F为双曲线(a>0,b>0)右焦点,M,N为双曲线上的点,四边形OFMN 为平行四边形,且四边形OFMN的面积为bc,则双曲线的离心率为()A.2B.C.D.双曲线离心率专题参考答案与试题解析一.选择题(共40小题)1.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,过点F1与双曲线的一条渐近线平行的直线交双曲线的另一条渐近线于点P,若点P在以线段F1F2为直径的圆,则双曲线离心率的取值围是()A.(1,2)B.(1,)C.(,2)D.(2,+∞)【解答】解:设F1(﹣c,0),双曲线﹣=1的渐近线方程为y=±x,过点F1与双曲线的一条渐近线平行的直线方程为y=(x+c),联立渐近线方程y=﹣x,可得交点P(﹣c,),点P在以线段F1F2为直径的圆,可得(﹣c)2+()2<c2,即有<3,可得双曲线的离心率e==<2,但e>1,即1<e<2.故选:A.2.已知双曲线C:=1(a>0,b>0)的两个顶点分别为A,B,点P是C上异于A,B的一点,直线PA,PB的倾斜角分别为α,β.若=﹣,则C的离心率为()A.B.C.D.【解答】解:双曲线C:=1(a>0,b>0)的两个顶点分别为A(﹣a,0),B(a,0),点P(m,n)是C上异于A,B的一点,可得﹣=1,即有=,设k1=tanα=,k2=tanβ=,k1k2=tanαtanβ===,若=﹣,则==﹣,解得tanαtanβ=5,即b2=5a2,可得双曲线的离心率为e===.故选:D.3.已知双曲线=1(a>0,b>0),过原点的一条直线与双曲线交于A,B两点,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=,则该双曲线离心率e的值为()A.2B.C.2D.【解答】解:如图,可设|AF|=m,|OF|=c,F'为双曲线的左焦点,连接AF',BF',可得四边形AFBF'为矩形,在直角三角形ABF中,∠ABF=,即有|BF|=m,|AF'|=m,2c=2m,2a=m﹣m,则双曲线的离心率e===+1.故选:B.4.已知F1(﹣c,0),F2(c,0)为双曲线的两个焦点,若双曲线上存在点P使得,则双曲线离心率的取值围为()A.(1,+∞)B.[2,+∞)C.D.【解答】解:设P(m,n),可得m2+n2≥a2,由•=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2=﹣c2,可得m2+n2=c2,则c2≥a2,即有e=≥,故选:C.5.双曲线C1:(a>0,b>0)的焦点为F1(0,﹣c)、F2(0,c),抛物线C2:的准线与C1交于M、N两点,且以MN为直径的圆过F2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:抛物线C2:的准线方程为y=﹣c,焦点坐标为(0,c),由,解得x=±,以MN为直径的圆的方程为x2+(y+c)2=,以MN为直径的圆过F2,可得4c2=,即有4c2a2=(c2﹣a2)2,即为a4﹣6a2c2+c4=0,解得a2=(3﹣2)c2,椭圆的离心率的平方为=1﹣(3﹣2)=2﹣2.故选:C.6.设F1,F2分别是双曲线的左、右焦点.圆x2+y2=a2+b2与双曲线C的右支交于点A,且2|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【解答】解:可设A为第一象限的点,且|AF1|=m,|AF2|=n,由题意可得2m=3n,①由双曲线的定义可得m﹣n=2a,②由勾股定理可得m2+n2=4(a2+b2),③联立①②③消去m,n,可得:36a2+16a2=4a2+4b2,即b2=12a2,则e====,故选:D.7.已知双曲线C:﹣=1(a>0,b>)的左焦点为F,右顶点为E,过点F且垂直于x轴的直线与双曲线C相交于不同的两点A,B,若△ABE为锐角三角形,则双曲线C的离心率的取值围为()A.(1,2)B.(1,2]C.(2,3]D.[2,3)【解答】解:根据双曲线的对称性,得:△ABE中,|AE|=|BE|,∴△ABE是锐角三角形,即∠AEB为锐角,由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|,∵|AF|==,|EF|=a+c,∴<a+c,即2a2+ac﹣c2>0,两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2,∵双曲线的离心率e>1,∴该双曲线的离心率e的取值围是(1,2),故选:A.8.已知双曲线的一条渐近线过点(2,﹣1),则双曲线的离心率为()A.B.C.D.【解答】解:∵双曲线的一条渐近线过点(2,﹣1),∴渐近线方程为y=±x,因此,点(2,﹣1)在直线y=﹣x上,可得a=4,∴b=2,可得c=2,由此可得双曲线的离心率e==.故选:C.9.已知双曲线E:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,点M,N 在E上,MN∥F1F2,|MN|=|F1F2|,线段F2M交E于点Q.且=,则E的离心率为()A.B.C.2D.【解答】解:F1(﹣c,0),F2(c,0),∵MN∥F1F2,|MN|=|F1F2|,∴M的横坐标为﹣,N的横坐标为,把x=﹣代入﹣=1得:y=±=±b,∴M(﹣,b),∵=,即Q为MF2的中点,∴Q(,),把Q坐标代入双曲线方程得:﹣=1,即﹣+=1,解得e=.故选:B.10.已知双曲线C1:﹣=1(a>0,b>0)和C2:﹣=1(a>0,b>0)的渐近线将第一象限三等分,则C1的离心率为()A.或B.2或C.2或D.或【解答】解:双曲线C1:﹣=1(a>0,b>0)和C2:﹣=1(a>0,b>0)的渐近线将第一象限三等分,可得双曲线C1的一条渐近线倾斜角为30°或60°,即有=或,e===或2.故选:B.11.已知F为双曲线C:x2﹣m2y2=3(m>0)的一个焦点,若点F到C的一条渐近线的距离为3,则该对曲线的离心率为()A.B.2C.D.3【解答】解:F为双曲线C:x2﹣m2y2=3(m>0)的一个焦点(,0),点F到C的一条渐近线x+my=0的距离为3,可得:=3,解得m=,则a=,c=2,双曲线的离心率为:e==2.故选:B.12.设F1,F2分别为椭圆与双曲线C2公共的左、右焦点,两曲线在第一象限交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率,则双曲线C2的离心率e2的取值围是()A.(1,5]B.[2,4]C.[2,5]D.[4,5]【解答】解:∵F1,F2为椭圆C1:+=1(a>b>0)与双曲线C2的左右焦点,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,∴|MF2|=|F1F2|=2c,∵椭圆C1的离心率e1∈[,],∴当e1=时,=,解得c=,双曲线C2的离心率e2==2,当e1=时,=,解得c=,双曲线C2的离心率e2==5,∴双曲线C2的离心率取值围是[2,5].故选:C.13.已知中心在原点,焦点在x轴上的双曲线的一条渐近线的经过点(﹣2,1),则它的离心率为()A.B.C.D.【解答】解:中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(2,﹣1),可得2b﹣a=0,即4c2﹣4a2=a2,可得4c2=5a2e=.故选:A.14.双曲线﹣=1(a>0,b>0)的实轴为A1A2,虚轴的一个端点为B,若三角形A1A2B的面积为b2,则双曲线的离心率为()A.B.C.D.【解答】解:设B(0,b),则|A1A2|=2a,∵三角形A1A2B的面积为b2,∴S=×2a•b=ab=b2,即a=b,则离心率e====,故选:A.15.过双曲线的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为()A.B.C.D.【解答】解:x=2a时,代入双曲线方程可得y=±b,取P(2a,﹣b),∴双曲线的右焦点作一条与其渐近线平行的直线的斜率为,∴=∴e==2+.故选:B.16.若双曲线C的渐近线与实轴的夹角为,则该双曲线的离心率为()A.3B.2C.D.【解答】解:∵双曲线不妨设为:(a>0,b>0)的渐近线与实轴的夹角为30°,∴a=b,∴c==2b,∴e===.故选:D.17.已知双曲线,四点P1(2,1),P2(1,0),P3(﹣2,),P4(2,)中恰有三点在双曲线上,则该双曲线的离心率为()A.B.C.D.5【解答】解:根据双曲线的性质可得P3(﹣2,),P4(2,)中在双曲线上,则P1(2,1),一定不在双曲线上,则P2(1,0)在双曲线上,∴a=1,,解得b2=,∴c2=a2+b2=,∴c=,∴e==,故选:A.18.若双曲线的渐近线与抛物线相切,则C的离心率为()A.B.C.2D.【解答】解:双曲线的渐近线为y=±x,所以其中一条渐近线方程为y=x,又因为渐近线与抛物线y=x2+相切,所以,消去y得x=x2+,即x2﹣x+=0,所以△=﹣4×1×=0,解得b=a,又c2=a2+b2,所以c2=a2,所以离心率e==.故选:A.19.过双曲线的左焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的右顶点,若点M在以AB为直径的圆的外部,则此双曲线的离心率e 的取值围为()A.()B.(1,)C.(2,+∞)D.(1,2)【解答】解:设双曲线方程为,a>0,b>0则直线AB方程为:x=﹣c,因此,设A(﹣c,m),B(﹣c,﹣m),∴,解之得m=,得|AF|=,∵双曲线的左焦点M(﹣a,0)在以AB为直径的圆外部,∴|MF|>|AF|,即a+c>,将b2=c2﹣a2,并化简整理,得2a2+ac﹣c2>0,两边都除以a2,整理得e2﹣e﹣2<0,∵e>1,解之得1<e<2,故选:D.20.已知双曲线C1:(a>0,b>0)的焦点为F1(0,﹣c),F2(0,c),抛物线C2:的准线与C1交于M、N两点,且MN与抛物线焦点的连线构成等边三角形,则椭圆的离心率为()A.B.C.D.【解答】解:抛物线C2:的准线方程为y=﹣c,焦点坐标为(0,c)由,解得x=±,则MN=,∵MN与抛物线焦点的连线构成等边三角形,∴=tan60°=,∴2ac=b2=(c2﹣a2),即2e=(e2﹣1),解得e=,∴椭圆的离心率为==,故选:B.21.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,P是C右支上的一点,PF1与y轴交于点A,△PAF2的切圆在边AF2上的切点为Q,若|F2Q|=2|AQ|,|OA|=b(O是坐标原点)则双曲线C的离心率是()A.B.C.5D.+1【解答】解:设△PAF2的切圆在边PF2上的切点为M,在AP上的切点为N,则|PM|=|PN|,|AQ|=|AN|,|QF2|=|MF2|,由双曲线的对称性可得|AF1|=|AF2|=|AQ|+|QF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PA|+|AF1|﹣|PM|﹣|MF2|=+|AN|+|NP|﹣|PM|﹣|QF2|=+|AQ|﹣|QF2|=﹣|AQ|=﹣==2a,化为9a2=2c2﹣a2,即5a2=c2,离心率e==.故选:B.22.已知双曲线E:﹣=1(a>0,b>0)的左右焦点分别为F1,F2,点P是双曲线E右支上的一点,若线段PF1的中点恰好是虚轴的一个端点,则双曲线E 的离心率为()A.B.C.2D.【解答】解:由已知中点P是双曲线E右支上的一点,线段PF1的中点恰好是虚轴的一个端点,可得P点横坐标为c,则P为通径的一个端点,则,即b=2a,则c==,故双曲线E的离心率e=,故选:D.23.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,则该双曲线的离心率为()A.B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,即=,∴b=a,∴c==a,∴双曲线的离心率为e===.故选:D.24.设F1,F2分别是双曲线﹣=1的左、右焦点.若双曲线上存在点M,使∠F1MF2=90°,且|MF1|=2|MF2|,则双曲线离心率为()A.B.C.2D.【解答】解:设F1,F2分别是双曲线﹣=1的左、右焦点.若双曲线上存在点M,使∠F1MF2=90°,且|MF1|=2|MF2|,设|MF2|=t,|MF1|=2t,(t>0)双曲线中2a=|MF1|﹣|MF2|=t,2c==t=2a,∴离心率为,故选:D.25.已知双曲线=1(a>0,b>0),若直线1:y=(x+c)(c为双曲线的半焦距)恰好与圆:x2+y2=a2相切,则双曲线的离心率为()A.B.C.2D.【解答】解:直线1:y=(x+c)(c为双曲线的半焦距)恰好与圆:x2+y2=a2相切,可得=a,化简可得c=2a,即e==2,故选:C.26.设F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右焦点,点M是双曲线右支上一点,|MF2|=|F1F2|,并且sin∠F1MF2=,则双曲线C的离心率为()A.B.C.D.【解答】解:设|MF2|=|F1F2|=2c,并且sin∠F1MF2=,可得cos∠F1MF2==,由双曲线的定义可得|MF1|=2a+|MF2|=2a+2c,在△MF1F2中,可得cos∠F1MF2===,即4c=5a,即e==.故选:B.27.已知双曲线的标准方程,F1,F2为其左右焦点,若P是双曲线右支上的一点,且tan∠PF1F2==2,则该双曲线的离心率为()A.B.C.D.【解答】解:设P(m,n),可得﹣=1,F1(﹣c,0),F2(c,0)为其左右焦点,可得直线PF1的斜率k1=,直线PF2的斜率k2=,k2=﹣2,k1=,即为=,=﹣2,解得m=c,n=c,则﹣=1,由b2=c2﹣a2,e=可得9e2﹣=25,化为9e4﹣50e2+25=0,即为e2=5(<1舍去),可得e=.故选:A.28.若双曲线的焦点都在直线x+2y﹣4=0的下方,则C的离心率的取值围为()A.(4,+∞)B.(1,4)C.(2,+∞)D.(1,2)【解答】解:双曲线的焦点(0,±),双曲线的焦点都在直线x+2y﹣4=0的下方,可得:2﹣4<0,解得b2<3,因为a=1,所以c∈(1,2).∴双曲线C的离心率的取值围为:(1,2).故选:D.29.若m<﹣2,则双曲线的离心率的取值围是()A.B.C.D.【解答】解:根据题意,双曲线中,a=1,c=,m<﹣2,其离心率e==,故选:A.30.已知双曲线(a>0,b>0)的一条渐近线与y轴所形成的锐角为30°,则双曲线M的离心率是()A.B.C.2D.或2【解答】解:∵双曲线(a>0,b>0)的一条渐近线与y轴所形成的锐角为30°,则这条渐近线与x轴的夹角为60°,∴=tan60°=,∴e===2.故选:C.31.直线x=2a与双曲线﹣=1(a>0,b>0)在第一和第四象限分别交于点M和N.O为坐标原点,A为y轴上一点〔(不与O重合),若∠AOM=∠MON,则该双曲线的离心率为()A.B.C.D.【解答】解:直线x=2a与双曲线﹣=1(a>0,b>0)在第一和第四象限分别交于点M和N.O为坐标原点,A为y轴上一点〔(不与O重合),∠AOM=∠MON,可得∠AOM=∠MON=60°,所以M(2a,),所以,∴b=,e===,故选:C.32.双曲线C:=1(a>0,b>0)的两个焦点分别为F1,F2,过右焦点F2作实轴的垂线交双曲线C于M,N两点若△MNF1是直角三角形,则双曲线C的离心率为()A.B.C.D.【解答】解:双曲线C:=1(a>0,b>0)的两个焦点分别为F1,F2,过右焦点F2作实轴的垂线交双曲线C于M,N两点,不妨M在第一象限,若△MNF1是直角三角形,可得M(c,2c),可得,即,e>1,解得e2=3+2,可得e=1+.故选:B.33.已知双曲线﹣=1,经过点M(2,2),则其离心率e=()A.B.C.D.【解答】解:双曲线﹣=1,经过点M(2,2),可得﹣=1,解得m=4,则双曲线的a=,b=2,c=,则其离心率e==,故选:A.34.已知F1,F2分别是双曲线﹣=1(a>0,b>0)的左、右焦点,点P是双曲线右支上的点,且∠F1PF2=45°,若坐标原点O到直线PF1的距离等于实半轴长,则该双曲线的离心率为()A.B.C.2D.【解答】解:如图,OM⊥PF1,ON⊥PF1,依题意|OM|=a,|NF2|=2a,∵且∠F1PF2=45°,可知三角形PF2N是一个等腰直角三角形,∴|PF2|=2a,|PF1|=2a+2a,在△F1PF2中,由余弦定理可得:(2c)2=(2a+2a)2+(2a)2﹣2×,化简得c2=3a2,∴该双曲线的离心率为.故选:B.35.已知点P(1,2)在双曲线=1(a>0,b>0)的渐近线上,则C的离心率是()A.B.C.D.【解答】解:点P(1,2)在双曲线=1(a>0,b>0)的一条渐近线上,可得:,即b=2a,所以e===.故选:D.36.双曲线=1(a>0,b>0)的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q两点,PQ⊥PF1,且|PF1|、|PQ|、|F2Q|依次成等差数列,则双曲线的离心率为()A.B.C.D.【解答】解:可设P,Q为双曲线右支上一点,设|PF2|=m,|QF2|=n,|F1F2|=2c,由双曲线的定义可得|PF1|=2a+m,|QF1|=2a+n,且|PF1|、|PQ|、|F2Q|依次成等差数列,可得2|PQ|=|PF1|+|QF2|,即2(m+n)=2a+m+n,即|PQ|=2a,由PQ⊥PF1,在直角△PF1Q中,|QF1|2=|PF1|2+|PQ|2,即(4a﹣m)2=(2a+m)2+4a2,解得m=a,|PF1|=2a+m=a,由|PF1|2+|PF2|2=|F1F2|2,即a2+a2=4c2,化为e2==,即e=,故选:A.37.已知双曲线的渐近线方程为y=,则双曲线的离心率()A.B.C.或D.或【解答】解:∵双曲线的焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)可得双曲线的渐近线方程是y=x结合题意双曲线的渐近线方程是y=±x,∴2b=a,可得c==a因此,此双曲线的离心率e==.当双曲线的焦点在y轴上,∴设双曲线的方程为,(a>0,b>0)可得双曲线的渐近线方程是y=x结合题意双曲线的渐近线方程是y=±x,∴b=2a,可得c==a因此,此双曲线的离心率e==.故选:C.38.设双曲线的一个焦点为F,过F作双曲线C的一条渐近线的垂线,垂足为A,且与另一条渐近线交于点B,若,则双曲线C的离心率为()A.B.2C.D.【解答】解:双曲线的一个焦点为F(0,﹣c),渐近线方程为y=±x,若,可得BF=2FA,由F到渐近线y=x的距离FA==b,BF=2b,在直角三角形OAF中,OF=c,可得OA==a,在直角三角形OAB中,可得OB=,由OF为∠AOB的平分线可得=,即=,化为a2=3b2,由b2=c2﹣a2,可得3c2=4a2,则e==.故选:C.39.若双曲线的两个焦点为F1,F2,若双曲线上存在一点P,满足|PF1|=3|PF2|,则该双曲线的离心率的取值围是()A.1<e<2B.1≤e≤2C.1<e≤2D.1≤e<2【解答】解根据双曲线定义可知|PF1|﹣|PF2|=2a,即3|PF2|﹣|PF2|=2a.∴a=|PF2|,|PF1|=3a在△PF1F2中,|F1F2|<|PF1|+|PF2|,2c<4|PF2|,c<2|PF2|=2a,∴<2,当p为双曲线顶点时,=2又∵双曲线e>1,∴1<e≤2故选:C.40.F为双曲线(a>0,b>0)右焦点,M,N为双曲线上的点,四边形OFMN 为平行四边形,且四边形OFMN的面积为bc,则双曲线的离心率为()A.2B.C.D.【解答】解:设M(x0,y0),x0>0,y0>0.∵四边形OFMN为平行四边形,∴,∵四边形OFMN的面积为bc,∴|y0|c=bc,即|y0|=b,∴,代入双曲线方程得,∵e>1,∴.故选:B.。

2022年高考复习 椭圆、双曲线的离心率

2022年高考复习  椭圆、双曲线的离心率

过关检测
2.已知 A,B 为双曲线 E 的左、右顶点,点 M 在 E 上,△ABM 为等腰三角形,且顶
角为 120°,则 E 的离心率为 (
(A) 2
(B)2
A
)
(C) 3
(D) 5
x2 y2
设双曲线方程为 2 - 2 =1(a>0,b>0) ,如图所示,|AB|=|BM|,∠ABM=120°,
a b
2022
高考复习
椭圆、双曲线的离心率


核心
考点
>>
常考
题型
>>
跟踪
检测
核心考点
离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据
椭圆标准方程中 a,b,c 的关系是 b2=a2-c2,离心率 e=
c
∈(0,1),
a
双曲线标准方程中 a,b,c 的关系是 b2=c2-a2,离心率 e=
a
b
对称,且满足 FA ·FB =0,|FB|≤|FA|≤ 3 |FB|,则椭圆 C 的离心率的取值范围为(
(A)[
2
,1)
2
化简得到 c=
所以 α+
(B)[
2
, 3 -1]
2
(C)[ 3 -1,1)
(D)[
故 sin(α+
3
2
,
]
2
2
a
a
c
π π
,故椭圆离心率为 e= =
.因为 α∈[ , ],
π
a b
则 A(a,0)到直线 bx-ay=0 的距离为
又∠MAN=60°,故 d=
ab
a 2 b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容:一、直接利用椭圆、双曲线的方程式和离心率公式计算。

二、利用三角形三边的关系建立不等关系(但要注意可以取到等号成立)三角形的三边关系:两边之和大于第三边,两边之差小于第三边三、利用三角函数有界性结合余弦定理建立不等关系余弦定理:四、利用圆锥曲线中x、y 的范围建立不等关系22例1:双曲线x2 y2 1(a 0,b 0)的两个焦点为F1, F2 ,若P为其上一点,且PF1 2 PF2 ,则ab双曲线离心率的取值范围是( )A.(1,3) B .(1,3] C .(3, ) D .[3, )归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P在双曲线x 2y2x2y2x 2y2 1的左支上则x a;若点p在双曲线x2y2 1的右支上则x a 。

a b a b五、利用曲线的几何性质数形结合建立不等关系例2、已知双曲线x2y2 1(a 0,b 0) 的左、右焦点分别为F1( c,0),F2(c,0) .若双曲线上存在ab22点P 使sin PF1F2 a,则该双曲线的离心率的取值范围是sin PF2F1 c六、利用判别式建立不等关系2例5、已知双曲线x2 y2 1(a 0)与直线l:x y 1交于P、Q 两个不同的点,求双曲线离心a 率的取值范围七、利用均值不等式建立不等关系均值不等式:22例6、已知椭圆x2y2 1(a> b> 0)的两个焦点为F1,F2,P为椭圆上一点,∠ F1PF2=60°则椭ab 圆离心率 e 的取值范围练习2、已知点P在双曲线x2y2 1(a 0,b 0)的右支上,双曲线两焦点为F1、F2,| PF1 |最 a b |PF2 | 小值是8a ,则双曲线离心率的取值范围八、利用二次函数的性质建立不等关系22例7、设a 1,则双曲线x2y2 1的离心率 e 的取值范围是( )a2 (a 1)2A.( 2,2) B.( 2, 5) C.(2,5) D.(2, 5)1、设 F 1,F 2为椭圆的两个焦点,若椭圆上存在点 P 满足∠ F 1PF 2=120°,则椭圆的离心率的取值范围是( )A .[ 23 ,1)B.( 23 ,1)C.(0 , 23)D.(0 , 23 ]2 2 2 2222、设点 P 在双曲线 x 2 y 2 1(a 0,b 0)的右支上,双曲线两焦点 F 1、F 2 ,| PF 1 | 4|PF 2 |,求 a 2 b 2双曲线离心率的取值范围。

223、一个圆经过椭圆 x y 1 的三个顶点,且圆心在 x 轴上,则该圆的标准方程为16 4224、已知方程 m 2x+n –3m 2y–n =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是()(A )( –1,3)(B )( –1, 3)(C )(0,3) (D )(0, 3)x 2 2 5、已知 M (x 0,y 0)是双曲线 C :xy 1上的一点, F 1、F 2是 C 上的两个焦点, 若 MF 1 MF 2 <20,则 y 0的取值范围是( )(C )(,) ( D )( ,)3 3 3 36、 已知 F 是双曲线 C :x 2 my 2 3m (m 0)的一个焦点,则点 F 到C 的一条渐近线的距离为()A. 3B.3C. 3mD. 3m227、已知双曲线 E 1: x 2 y 2 1(a >0,b >0),若矩形 ABCD 的四个顶点在 E 上, AB ,CD 的中点ab为 E 的两个焦点,且 2| AB|=3| BC| ,则 E 的离心率是 ___ .228 、 平 面 直 角 坐 标 系 x O y 中 , 双 曲 线 C 1: x 2 y 2 1(a 0,b 0) 的 渐 近 线 与 抛 物 线a1 2 3 4 b 2为 .9、已知抛物线 C : y 2 8x 的焦点为 F ,准线为 l ,P 是l 上一点, Q 是直线 PF 与C 的一个交点,若 FP 4FQ ,则 |QF |=()75A. 7B. 5C.3D.222210、在直角坐标系 xoy 中,曲线 C :y=x 与直线 y kx a ( a >0)交与 M, N 两点,当 k=0时,分4B )(- 3, 36,6C 2 : x 2 2 py ( p 0交) 于 点 O,A,B , 若 O A B 的 垂 心 为 C 2 的 焦 点 , 则 C 1 的 离 心 率 2 2 2 211、已知 a b ,椭圆 C 1的方程为x 2 y 2 1,双曲线 C 2的方程为 x 2 y 2 1,C 1与C 2的离心率 a b a b之积为 3 ,则C 2的渐近线方程为( ) 2(A ) x 2y 0(B ) 2x y 0(C ) x 2y 0(D ) 2x y 012、以抛物线 C 的顶点为圆心的圆交 C 于 A ,B 两点,交 C 的准线于 D ,E 两点.已知| AB|= 4 2,| DE|=2 5 ,则 C 的焦点到准线的距离为() ( A ) 2(B )4(C )6( D ) 82213、已知双曲线x 2 y2 1(a 0,b 0)的两条渐近线均和圆 C: x 2 y 2 6x 5 0相切,且双曲线 ab的右焦点为圆 C 的圆心,则该双曲线的方程为( )x 2y 2x 2y 2x 2y 2x 2y 2A. 1B. 1C. 1D. 1544 5 3 6 6 314、已知圆 O 的半径为 1,PA 、PB 为该圆的两条切线, A 、B 为两切点,那么 PA PB 的最小值为 ()A 4 2B 3 2C 4 2 2D 3 2 215、已知 F 是椭圆 C 的一个焦点, B 是短轴的一个端点,线段 BF 的延长线交 C 于点 D , 且 BF 2FD ,则 C 的离心率为.223、一个圆经过椭圆 1x 6 y 4 1的三个顶点,且圆心在 x 轴上,则该圆的标准方程为224、已知方程 m 2x+n –3m 2y–n =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是()(A )( –1,3)(B )( –1, 3)(C )(0,3) (D )(0, 3)6、 已知 F 是双曲线 C :x 2 my 2 3m (m 0)的一个焦点,则点 F 到C 的一条渐近线的距离为()A. 3B.3C. 3mD. 3m5、已知 M (x 0,y 0)是双曲线 C : 0,则 y 0的取值范围是((A )(- 33,3)C )( 232 ,32 2) 32 x 22 y 2)1上的一点,F 1、F 2是 C 上的两个焦点, 若 MF 1 MF 2<B )(- 66)D )( 233, 2 333)27、已知双曲线E1:x22y2 1(a>0,b>0),若矩形ABCD的四个顶点在E 上,AB,CD的中点b为E的两个焦点,且2| AB|=3| BC|,则E的离心率是228、平面直角坐标系xO y中,双曲线C1:x2y2 1(a 0,b 0)的渐近线与抛物线a2b2 C2: x22 py( p 0交)于点O,A,B ,若OAB的垂心为C2 的焦点,则C1 的离心率为.9、已知抛物线C:y2 8x的焦点为F,准线为l ,P是l上一点,Q是直线PF与C的一个交点,若FP 4FQ ,则|QF |=(A.7 B.5)C.3D.22 212、以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|= 4 2,10、在直角坐标系xoy 中,曲线C:2y=x与直线y kx a(a>0)交与M, N两点,当k=0时,分4别求C在点M和N处的切线方程;2211、已知a b,椭圆C1的方程为a x2 b y21,双曲线C2 的方程为22x2y2 1,C1与C2 的离心率ab之积为23,则C2的渐近线方程为()A)x 2y 0 (B)2x y 0 C)x 2y 0 (D)2x y 0| DE|=2 5 ,则 C 的焦点到准线的距离为( A )22213、已知双曲线 x 2 y 2 1(a 0,b 0)的两条渐近线均和圆 C: x 2 y 2 6x 5 0相切,且双曲线 a 2 b 2的右焦点为圆 C 的圆心,则该双曲线的方程为( )2222 22 22 A. x2y 21 B. x 2y 21 C. x 2y 21 D.x 2y 2 1544 53 66 3别求 C 在点 M 和 N 处的切线方程;B )4)。

相关文档
最新文档