岩体力学-2岩体的变形与强度共88页
合集下载
岩体力学结构面的变形与强度性质

右图为这种结构面在法向应力较低条件下剪切时的剪应力-剪位移曲 线,由图可知,剪应力随剪位移增长至最大值后保持常量不变;剪 切峰值强度等于残余强度。而且在剪切过程中,垂直位移大体为零, 不发生压缩或剪胀。
各种结构面抗剪强度指标的变化范围
结构面剪切刚度直剪试验结果
五、粗糙起伏无充填的结构面的强度特征
充填粘土的断层,岩壁风化 15
5
33
0
充填粘土的断层,岩壁轻微 18
8
风化
新鲜花岗片麻岩不连续结构 20
10ห้องสมุดไป่ตู้
面
玄武岩与角砾岩接触面
20
8
37
0
40
0
45
0
致密玄武岩水平不连续结构 20
7
面
玄武岩张开节理面
20
8
38
0
45
0
玄武岩不连续面
12.7
4.5
0
结构面法向刚度直剪试验结果
岩 组
绢 英 岩
绢英 化花 岗岩
(一)规则锯齿形结构面
1. 当法向应力较低时 I 单个凸起体滑移面上的应力:
剪胀效应:结构面在剪切过程中,由 于起伏度的存在,结构面的摩擦角由 b 增大到( b + i ) 的现象。
剪胀:结构面在剪切过程中产生的 法向位移分量的现象。原因在于在 剪应力作用下,沿凸起的滑移,除产生 切向位移外,还产生沿向上的移动。
经验估算结构面特征法向刚度knmpacm剪切刚度ksmpacm抗剪强度参数摩擦角粘聚力cmpa充填粘土的断层岩壁风化15充填粘土的断层岩壁轻微风化18201040玄武岩与角砾岩接触面20玄武岩张开节理面20玄武岩不连续面12745结构类型未浸水抗剪强度浸水抗剪强度24mpa摩擦角cmpa摩擦角cmpa法向刚度kn1mpacm剪切刚度ks1mpacm平直粗糙有陡坎4041015020363801401643526290起伏不平粗糙有4244020027383901702334824199波状起伏粗糙3940012015363701101322544667平直粗糙3839007011353600800922462246平直粗糙有陡坎404202503538390260304213648108起伏大粗糙有陡坎43480350504041030043357867113波状起伏粗糙3940015023373801302738583863平直粗糙38400090153637008013211434558平直粗糙有陡坎404503004438410300341114772112起伏大粗糙有陡坎444803505540440360446116959120波状起伏粗糙4041025035384102103070844884平直粗糙3941015020374001501751904665结构面法向刚度直剪试验结果二剪切变形性质剪切应力剪切位移法向应力结构面剪切试验示意图结构面剪切位移剪切应力曲线峰值剪切强度残余剪切强度剪切位移一剪切变形特征二剪切变形本构方程卡尔哈韦kalhaway方程通过大量试验发现峰值前的剪应力剪位移曲线可用双曲线拟合三剪切刚度及其确定方法定义
各种结构面抗剪强度指标的变化范围
结构面剪切刚度直剪试验结果
五、粗糙起伏无充填的结构面的强度特征
充填粘土的断层,岩壁风化 15
5
33
0
充填粘土的断层,岩壁轻微 18
8
风化
新鲜花岗片麻岩不连续结构 20
10ห้องสมุดไป่ตู้
面
玄武岩与角砾岩接触面
20
8
37
0
40
0
45
0
致密玄武岩水平不连续结构 20
7
面
玄武岩张开节理面
20
8
38
0
45
0
玄武岩不连续面
12.7
4.5
0
结构面法向刚度直剪试验结果
岩 组
绢 英 岩
绢英 化花 岗岩
(一)规则锯齿形结构面
1. 当法向应力较低时 I 单个凸起体滑移面上的应力:
剪胀效应:结构面在剪切过程中,由 于起伏度的存在,结构面的摩擦角由 b 增大到( b + i ) 的现象。
剪胀:结构面在剪切过程中产生的 法向位移分量的现象。原因在于在 剪应力作用下,沿凸起的滑移,除产生 切向位移外,还产生沿向上的移动。
经验估算结构面特征法向刚度knmpacm剪切刚度ksmpacm抗剪强度参数摩擦角粘聚力cmpa充填粘土的断层岩壁风化15充填粘土的断层岩壁轻微风化18201040玄武岩与角砾岩接触面20玄武岩张开节理面20玄武岩不连续面12745结构类型未浸水抗剪强度浸水抗剪强度24mpa摩擦角cmpa摩擦角cmpa法向刚度kn1mpacm剪切刚度ks1mpacm平直粗糙有陡坎4041015020363801401643526290起伏不平粗糙有4244020027383901702334824199波状起伏粗糙3940012015363701101322544667平直粗糙3839007011353600800922462246平直粗糙有陡坎404202503538390260304213648108起伏大粗糙有陡坎43480350504041030043357867113波状起伏粗糙3940015023373801302738583863平直粗糙38400090153637008013211434558平直粗糙有陡坎404503004438410300341114772112起伏大粗糙有陡坎444803505540440360446116959120波状起伏粗糙4041025035384102103070844884平直粗糙3941015020374001501751904665结构面法向刚度直剪试验结果二剪切变形性质剪切应力剪切位移法向应力结构面剪切试验示意图结构面剪切位移剪切应力曲线峰值剪切强度残余剪切强度剪切位移一剪切变形特征二剪切变形本构方程卡尔哈韦kalhaway方程通过大量试验发现峰值前的剪应力剪位移曲线可用双曲线拟合三剪切刚度及其确定方法定义
岩石力学第三讲、岩体的变形与强度

岩体的压力-变形曲线分类– 上凹型B
p = f(W), d2 p/d W2> 0 B-1型 : p – W曲线的斜率随压力和循环次数增大,弹 性变形较大, 垂直层面加压时岩体的特性。 B-2型: p – W曲线的斜率随压力和循环次数增大;卸 载时有明显的不可恢复变形和滞回环,高角度节理化 及垂直层面加压时的层状软岩体的特性。
第一节、岩体的变形特征
一、岩体的应力应变曲线与变形指标 二、岩体变形特性参数测定 三、岩体变形的结构效应 四、岩体变形本构方程
一、岩体的应力(压力)-应变(变形)曲线
1、岩体是同时具有弹性、塑性和粘性的多裂隙的非连续 介质,其应力应变全过程曲线原则上与岩石的相似, 但弹性模量、峰值强度、残余强度有所降低、泊松比 则有所提高。岩体与岩石的最大不同点为:弱面的存 在引起岩体变形和强度上的各向异性。
岩 石 力 学 第三讲 ROCK MECHANICS
主讲教师:汪家林 (6学时)
内容:岩体的基本力学性质及工程分类
(岩体变形、强度、原位试验
结构面的力学效应、岩体工程分类)
从岩块到岩体的示意图
上一章主要介绍岩石的 物理力学性质,本章讲 岩体的物理力学性质与 分类,岩体是一定范围 的天然地质体,岩石与 岩体的其物理力学性质 是有较大差异的。 影响岩体力学性的因素: 1、组成岩体的岩石材料性质 2、结构面力学性质 3、结构面的发育组合、岩体 经过结构类型 4、赋存环境如水、地应力
(二) 结构面性质的影响:结构面的张开程度、充填程度、 充填物性质与岩体变形有密切关系。压力大小也对变形有 影响。
水平方向, 压力垂直 无充填的 张开裂隙。 灌浆前后 变形特征 有变化。
垂直片麻理
岩体变形的结构效应
(三)结构面密度的影响: 结构面密度越大,岩体变形 模量越小。岩体变形模量E0与岩石弹模E的比值随RQD 的增大而增大,但结构面密度达到一定程度后(如RQD 或波速比的平方大于65%)再加密,对岩体变形的影响 不再明显。
岩石的变形与强度特征-岩石力学

6.1 加载方式的影响---逐级循环加载的岩石变形性状
对应变强化现象、塑性滞环、记忆的解释 应力从脆弱部分向坚硬骨架的转移,应力水平与记忆 塑性滞环与闭合裂纹的摩擦和反向滑动有关。 峰值后,岩石仍有强度,卸载时仍有可恢复变形。
六、荷载条件对单轴变形与强度的影响
6.2 加载方式的影响---反复循环荷载作用下的岩石变形与强度
五、峰值后的变形阶段
伺服控制的刚性试验机与岩石的应力-应变全过程曲线
5.1 稳定破裂传播型:荷载位移曲线为反坡型,试件在 峰值后所储存的变形能不能使其破坏,试验机需继续做 功,有残余强度。
5.2 非稳定破裂传播型:试件在峰值后,不需试验机做 功,所储存的变形能使其继续破坏。
六、荷载条件对单轴变形与强度的影响
4、长期强度:岩石在长期荷载(应 变速率小于10-6/s)作用下的强度, 即稳定蠕变与不稳定蠕变的分界点。
5、抗压强度:抵抗压缩破坏的能力 6、抗剪强度:抵抗剪切破坏的能力 7、抗拉强度:抵抗拉伸破坏的能力
二、岩石的单向抗压强度
1、压力试验机、试件:强度试验可不 考虑变形,只记录荷载。
2、抗压强度的计算:
AB段:线性变形阶段,此阶段的变 形除弹性变形外,仍有闭合裂纹的相 互滑动,变形不完全恢复。
BC段:裂纹稳定扩展的非线性变形 阶段,新裂纹产生,扩容,破坏前兆
CD段:裂纹加速扩展至岩石破坏: 裂纹密集、搭接、相连,形成宏观裂 纹与裂缝带,延伸至破坏。
线性变形阶段
在线性变形阶段卸载,加载与卸载曲线并不重合,变形不能 完全恢复,除弹性变形外,还有闭合裂纹的相互滑动。
4.2 以弹性变形为主的变形
结构致密、坚硬的岩石,如石英岩、玄武岩等,应力应 变曲线为直线型,无明显压密阶段,变形可恢复。变形 原因为物质质点空间格架受力后的压密与歪斜。
岩石力学ppt课件第三章 岩体力学性质

(2)上凹型(塑-弹性岩体)
含软弱夹层的层状岩体及裂隙岩体 (3)上凸型(弹-塑性岩体)
结构面发育且有泥质充填的岩体。
(4)复合型:阶梯或“S”型(塑-弹-塑性岩体)
20结21/8构/17面发育不均或岩性不均匀的岩体。
23
(二)剪切变形特征:
(a)沿软弱结 构面剪切
(b)沿粗糙结构面、 软弱岩体及强风
化岩体剪切
(c)坚硬岩体 受剪切
峰前变形平均斜 率小,破坏位移 大;峰后强度损 失小。
2021/8/17
峰前变形平均斜 率较大,峰值强 度较高;峰后有 明显应力降。
峰前变形斜率大,
峰值强度高,破坏
位移小;峰后残余 强度较低。
24
(三)各向异性变形特征:(P101蔡)
岩石的全部或部分物理、力学特性随方向不同而 表现出差异的现象称为岩石的各向异性。
2021/8/17
2
§3.1 概述
岩体=结构面(弱面)+结构体(岩石块体) 结构面:断层、褶皱、节理……统称
影响岩体力学性质的基本因素:
结构体(岩石)力学性质、结构面力学性质、岩体 结构力学效应和环境因素(特别是水和地应力的作用)
2021/8/17
3
§3.2岩体结构的基本类型 (地质学、复习、了解)
36
孔隙静水压力作用
(三)力学作用:
孔隙动水压力作用
当多孔连续介质岩土体中存在孔隙地下水时, 未充满孔隙的地下水使岩土体的有效应力增加:
p
σα有效应力,σ 总应力,p 孔隙静水水压力
当地下水充满多孔连续介质岩土体时,使有效 应力减小:
p
2021/8/17
σα,σ ,p : 含义同上
37
含软弱夹层的层状岩体及裂隙岩体 (3)上凸型(弹-塑性岩体)
结构面发育且有泥质充填的岩体。
(4)复合型:阶梯或“S”型(塑-弹-塑性岩体)
20结21/8构/17面发育不均或岩性不均匀的岩体。
23
(二)剪切变形特征:
(a)沿软弱结 构面剪切
(b)沿粗糙结构面、 软弱岩体及强风
化岩体剪切
(c)坚硬岩体 受剪切
峰前变形平均斜 率小,破坏位移 大;峰后强度损 失小。
2021/8/17
峰前变形平均斜 率较大,峰值强 度较高;峰后有 明显应力降。
峰前变形斜率大,
峰值强度高,破坏
位移小;峰后残余 强度较低。
24
(三)各向异性变形特征:(P101蔡)
岩石的全部或部分物理、力学特性随方向不同而 表现出差异的现象称为岩石的各向异性。
2021/8/17
2
§3.1 概述
岩体=结构面(弱面)+结构体(岩石块体) 结构面:断层、褶皱、节理……统称
影响岩体力学性质的基本因素:
结构体(岩石)力学性质、结构面力学性质、岩体 结构力学效应和环境因素(特别是水和地应力的作用)
2021/8/17
3
§3.2岩体结构的基本类型 (地质学、复习、了解)
36
孔隙静水压力作用
(三)力学作用:
孔隙动水压力作用
当多孔连续介质岩土体中存在孔隙地下水时, 未充满孔隙的地下水使岩土体的有效应力增加:
p
σα有效应力,σ 总应力,p 孔隙静水水压力
当地下水充满多孔连续介质岩土体时,使有效 应力减小:
p
2021/8/17
σα,σ ,p : 含义同上
37
岩体力学02-岩石的基本物理力学性质.资料

波速比(Kv):风化岩石弹性波纵波波 速(cp)与新鲜岩块弹性波纵波波速 (rp)之比的平方。
风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。
风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。
岩石的强度和特征 PPT课件

变εp。
CD段-加速蠕变阶段:蠕变加速发 展直至岩块破坏(D点)。
(1)稳定蠕变:岩石在较小的恒定力作用下,变形随时 间增加到一定程度后就趋于稳定,不再随时间增加而变化, 应变保持为一个常数。稳定蠕变一般不会导致岩体整体失稳。
(2)非稳定蠕变:岩石承受的恒定荷载较大,当岩石应 力超过某一临界值时,变形随时间增加而增大,其变形速率 逐渐增大,最终导致岩体整体失稳破坏。
1、变形阶段的划分—几个概念
v
p
C
r
e
B
A
r
o
a
扩容:压缩应力下岩石体积出现膨胀的现象称为岩石扩容
1、变形阶段的划分—五个阶段
v c
峰前
峰后
D
p
C
r
e
a
B
E
A
r
o
a
① 空隙压密阶段(OA) ② 弹性变形阶段(AB) ③ 微裂隙稳定发展阶段(BC)
④ 微裂隙非稳定发展阶段(CD) ⑤ 破坏后阶段(DE)
物体受力后产生变形在外力去除后不能完全恢复原状的性质不能恢复的那部分变形称为塑性变形或称永久变形残余变形当物体既有弹性变形又有塑性变形且具有明显的弹性后效时弹性变形和塑性变形就难以区别在外力作用下只发生塑性变形或在一定的应力范围内只发生塑性变形的物体称为塑性介质粘性viscosity物体受力后变形不能在瞬时完成且应变速率随应力增加而增加的性质称为粘性
类型Ⅱ:弹-塑性—在应力较低时,近似于直线;应力增加 到一定数值后,应力-应变曲线向下弯曲变化,且随着应力 逐渐增加,曲线斜率也愈来愈小,直至破坏。典型岩石: 石灰岩、泥岩、凝灰岩
类型Ⅰ
类型Ⅱ
σ σ
类型Ⅲ
ε
类型Ⅳ
CD段-加速蠕变阶段:蠕变加速发 展直至岩块破坏(D点)。
(1)稳定蠕变:岩石在较小的恒定力作用下,变形随时 间增加到一定程度后就趋于稳定,不再随时间增加而变化, 应变保持为一个常数。稳定蠕变一般不会导致岩体整体失稳。
(2)非稳定蠕变:岩石承受的恒定荷载较大,当岩石应 力超过某一临界值时,变形随时间增加而增大,其变形速率 逐渐增大,最终导致岩体整体失稳破坏。
1、变形阶段的划分—几个概念
v
p
C
r
e
B
A
r
o
a
扩容:压缩应力下岩石体积出现膨胀的现象称为岩石扩容
1、变形阶段的划分—五个阶段
v c
峰前
峰后
D
p
C
r
e
a
B
E
A
r
o
a
① 空隙压密阶段(OA) ② 弹性变形阶段(AB) ③ 微裂隙稳定发展阶段(BC)
④ 微裂隙非稳定发展阶段(CD) ⑤ 破坏后阶段(DE)
物体受力后产生变形在外力去除后不能完全恢复原状的性质不能恢复的那部分变形称为塑性变形或称永久变形残余变形当物体既有弹性变形又有塑性变形且具有明显的弹性后效时弹性变形和塑性变形就难以区别在外力作用下只发生塑性变形或在一定的应力范围内只发生塑性变形的物体称为塑性介质粘性viscosity物体受力后变形不能在瞬时完成且应变速率随应力增加而增加的性质称为粘性
类型Ⅱ:弹-塑性—在应力较低时,近似于直线;应力增加 到一定数值后,应力-应变曲线向下弯曲变化,且随着应力 逐渐增加,曲线斜率也愈来愈小,直至破坏。典型岩石: 石灰岩、泥岩、凝灰岩
类型Ⅰ
类型Ⅱ
σ σ
类型Ⅲ
ε
类型Ⅳ
岩石的力学性质-岩石强度讲解 ppt课件

2.7~5.4
20.6~29.9
15.6~23.3
灰岩类
煤
石灰岩
52.9~157.8
4.9~49
PPT课件
7.7~13.8
2~4.9
9.8~30.4
1.08~16.2
19
1.3抗剪切强度
1)定义:岩石在剪切荷载作用下达到破坏前所能承受 的最大剪应力称为岩石的抗剪切强度(Shear strength)。 剪切强度试验分为非限制性剪切强度试验 (Unconfined shear strength test)和限制性剪切强 度试验(Confined shear strength test)二类。 非限制性剪切试验在剪切面上只有剪应力存在,没有 正应力存在;限制性剪切试验在剪切面上除了存在剪 应力外,还存在正应力。
PPT课件
20
2)四种典型的非限制性剪切强度试验:a.单 面剪切试验, b.冲击剪切试验, c.双面剪切试 验,d.扭转剪切试验,分别见图。
PPT课件
21
3)非限制性剪切强度记为So计算公式:
(a)单面剪切试验 So=Fc/A (b)冲击剪切试验 So=Fc/2πra (c)双面剪切试验 So=Fc/2A (d)扭转剪切试验 So=16M c /πD3
PPT课件
36
PPT课件
5
c.压缩实验设备示意图(500t压力机)
PPT课件
6
3)4种破坏形式: 1.X状共轭斜面剪切破坏,是最常见的破坏形式。 2.单斜面剪切破坏,这种破坏也是剪切破坏。 3.塑性流动变形,线应变≥10%。 4.拉伸破坏,在轴向压应力作用下,在横向将产生 拉应力。这是泊松效应的结果。这种类型的破坏就 是横向拉应力超过岩石抗拉极限所引起的。
20.6~29.9
15.6~23.3
灰岩类
煤
石灰岩
52.9~157.8
4.9~49
PPT课件
7.7~13.8
2~4.9
9.8~30.4
1.08~16.2
19
1.3抗剪切强度
1)定义:岩石在剪切荷载作用下达到破坏前所能承受 的最大剪应力称为岩石的抗剪切强度(Shear strength)。 剪切强度试验分为非限制性剪切强度试验 (Unconfined shear strength test)和限制性剪切强 度试验(Confined shear strength test)二类。 非限制性剪切试验在剪切面上只有剪应力存在,没有 正应力存在;限制性剪切试验在剪切面上除了存在剪 应力外,还存在正应力。
PPT课件
20
2)四种典型的非限制性剪切强度试验:a.单 面剪切试验, b.冲击剪切试验, c.双面剪切试 验,d.扭转剪切试验,分别见图。
PPT课件
21
3)非限制性剪切强度记为So计算公式:
(a)单面剪切试验 So=Fc/A (b)冲击剪切试验 So=Fc/2πra (c)双面剪切试验 So=Fc/2A (d)扭转剪切试验 So=16M c /πD3
PPT课件
36
PPT课件
5
c.压缩实验设备示意图(500t压力机)
PPT课件
6
3)4种破坏形式: 1.X状共轭斜面剪切破坏,是最常见的破坏形式。 2.单斜面剪切破坏,这种破坏也是剪切破坏。 3.塑性流动变形,线应变≥10%。 4.拉伸破坏,在轴向压应力作用下,在横向将产生 拉应力。这是泊松效应的结果。这种类型的破坏就 是横向拉应力超过岩石抗拉极限所引起的。
岩体力学-2岩体的变形与强度

2.1.5 岩体动力变形特性
一、岩体中弹性波的传播规律
• 面波(L波):沿岩体表面或岩体内不连续面传播的弹 性波。可以分为瑞利波(R波)、勒夫波(Q波)。
2.1.0 概述
• 岩体变形控制量化分析的基础是正确获得岩体的变形 破坏规律及相应的变形参数及强度参数。岩体变形参数需 要通过岩体变形试验来获得。
• 岩体变形试验包括:承压板法,狭缝法、单(双)轴压 缩法、钻孔径向加压法、隧道液压枕径向加压法、隧道水 压法等。可以获得变形模量、弹性模量、泊松比等。
• • 一、岩体变形试验分类 • (一)按照施加荷载作用方向 • (1)法向变形试验:承压板法、狭缝法、单双轴三轴压
压力,MPa;D为承压板的边长或直径。
ω 为与承压板形状和刚度有关的系数,
圆形板为0.785,方形板为0.866;
W0为相应于压力p下的总变形量, We为相应于p压力下岩体的弹性变形。 μ需要根据其它方法结果综合确定。
2.1.4 岩体变形的结构效应
• 研究岩体中结构面的方向、性质、密度和组合方式对 岩体变形的影响。
岩体特征:节理岩体。
节理面与加压方向夹角较 小,结构体在压力作用下, 产生楔入效应,退压后变 形难以恢复。
2.1.2 岩体的压力—变形曲线类型
(3)上凸形—C型
p=f(W), dp/dW随着P增加而减小。
岩体特征: ①节理裂隙很发育,且具有泥质充填; ②岩石性质软弱(如泥岩、风化岩); ③岩体较深处埋藏有1.1 试验方案
• 承压板法试验可分为刚性承压板法和柔性承压板法。 • 柔性承压板法又可分为双枕法、四枕法、环形枕法和
中心孔法。 • 刚性承压板法适用于各级岩体;柔性承压板法适用于
完整和较完整的岩体。 • 试验宜在平洞内进行,特殊情况下也可在露天或竖井