4应力与应变关系
弹性力学:04 应力和应变的关系

广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
《材料力学》课件7-4应力与应变间的关系

胡克定律
胡克定律是一个简单而重要的材料力学公式,它描述了应力与应变之间的线性关系。
弹性模量与切变模量
弹性模量是一个常用的材料力学参数,它用于衡量材料在受力时的弹性性质。 切变模量是另一个衡量材料性能的参数,它描述了材料抵抗剪切形变的能力。
《材料力学》课件7-4应 力与应变间的关系
本节课将讨论应力与应变之间的关系,以及胡克定律、弹性模量、切变模量、 杨氏模量和泊松比等概念。
应力与应变的定义
应力是单位面积上的力,用于描述物体内部的分子之间的相互作用力。 应变是物体单位长度的发生变化,用于描述物体在受力时的形变程度。
应力与应变之间的关系
杨氏模量
杨氏模量是一个衡量材料刚度的参数,它描于描述材料性质的参数,它衡量了材料在拉伸时的侧向收缩 程度。
剪切模量
剪切模量是一个衡量材料剪切属性的参数,它描述了材料抵抗剪切形变的能力。
应力和应变之间的关系

即为平面应力状态,有
1
1 E
s 1 s 3
3
1 E
s 3 s 1
联立两式可解得:
s1
E 1
2
1 3
210 10 1 0 .3
2
9
240
0 . 3 160 10
6
s3
44 . 3 M Pa 9 E 210 10 3 1 160 0 . 3 240 10 2 2 1 1 0 .3
利用空间应力状态下最大切应力的计算式可得:
t max s1 s3
2 7.25MPa
§7-5 平面应力状态下的电测法
对各向同性材料图示平面应力状态,在线弹性、 小变形条件下,sx、sy与切应变无关,即有:
sy sx
x y
1 E 1 E
s s
E
x
s s s
y
y F a
sy sx sz
x
a
(a)
z
(b)
解:铜块应力状态如图b所示,横截面上的压应力为:
s
y
F A
30 MPa
受钢槽的限制,铜块在另两个方向的应变为零, 并产生压应力,即有:
x z
1 E 1 E
s s
x
s s
y
s s
z
0 0
所以,应变能密度为: v
d V dxdydz
1tx 2 G
而对纯剪应力状态,其主应力为:
s 1 tx
s2tx
s1 t
x
s
2
第四章 应力和应变的关系

于是
∂K ∂2 u ∂2 v ∂2 w δK = δ t = ∫∫∫ ρ dτ[ 2 δu + 2 δv + 2 δw] ∂t ∂t ∂t ∂t
第二节 弹性变形过程中的能量 对于物体静止时 可认为 δ K = 0 , 不考虑热交换 ,即 δ Q = 0 δ V = δ U , δ U = δ U1 + δ U 2 其中,
c41 = c42 = c43 = 0 c51 = c52 = c53 = 0 c61 = c62 = c63 = 0 只能证9个数为0
第三节 各向同性体中的弹性常数 (2)沿任意两个相反的方向,弹性关系相同。 如只改变z轴方向,w和z的方向改变,则
γ yz
∂w ∂v = + = −γ yz′ ∂y ∂z
σ x = f 1 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) σ y = f 2 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) σ z = f 3 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ xy = f 4 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ yz = f 5 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ zx = f 6 ( ε x , ε y , ε z , γ xy , γ yz , γ zx )
+
σ ij , j + X i = ρ u i
..
第二节 弹性变形过程中的能量 由平衡方程: σ ij, j + X i = ρ ui ∂δu ∂u ∂ v ∂u 又 ; ∂ δ v ∂δ u =δ = δε = δγ + = δ +
应力与应变间的关系

22
例题7-7 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 所示。 已知铜的弹 性模量 E=100GPa, 泊松比 =0.34, 当受到P=300kN 的均布 压力作用时, 求该铜块的主应力. 体积应变以及最大剪应力。
P a
y
z
x
23
y
解:铜块上截面上的压应力为
9
3、 特例
(1)平面应力状态下(假设 Z = 0 )
x
1 E
(
x
y)
y
1 E
(
y
x)
z E ( x y)
xy
xy
G
10
(2) 广义胡克定律用主应力和主应变表示时 三向应力状态下:
1
1
E [ 1
(
2
3)]
2
1 E
[
2
(
3
1)]
3
1 E
[
3
( 1
2)]
(7-7-6)
11
平面应力状态下 设 3 = 0, 则
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料的广义胡克定律 (1)符号规定
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
3
(b)三个剪应力分量: 若正面(外法线与坐标轴
dxdydz
dxdydz(1 1 2 3) dxdydz
dxdydz
第四章应力与应变关系

(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
应变和应力的概念
应变和应力的概念一、引言应变和应力是材料力学中重要的概念,在工程和科学研究中有着广泛的应用。
应变是描述物体形变程度的物理量,而应力则是描述物体内部受力状态的物理量。
本文将详细介绍应变和应力的概念,并深入探讨两者之间的关系。
二、应变的概念2.1 应变的定义应变是描述物体形变程度的物理量,通常用符号ε表示。
应变可分为线性应变和非线性应变两种情况。
线性应变发生在物体受到小的力引起的形变情况下,其应变与受力成正比。
非线性应变则发生在物体受到大的力引起的形变情况下,其应变与受力不成正比。
2.2 应变的分类1.纵向应变2.横向应变3.剪切应变4.体积应变三、应力的概念3.1 应力的定义应力是描述物体内部受力状态的物理量,通常用符号σ表示。
应力分为正应力和剪应力两种情况。
正应力是指垂直于物体截面的力在单位面积上的分布情况,剪应力是指平行于物体截面的力在单位面积上的分布情况。
3.2 应力的分类1.纵向应力2.横向应力3.剪切应力4.欧拉应力四、应变与应力的关系应变与应力之间存在着密切的关系,可以由材料的应力-应变曲线来描述。
应力-应变曲线显示了材料在受力下的变形和应力的关系,以此来研究材料的力学性质。
4.1 弹性阶段在弹性阶段,材料受力后会发生一定程度的形变,但当去除外力时,材料可以恢复到原先的形状。
此时应力与应变呈线性关系,称为胡克定律。
4.2 屈服阶段当外力超过了材料的弹性极限时,材料会进入屈服阶段。
此时材料会产生更大的形变,但仍能回复到非常接近原来形状的状态。
4.3 塑性阶段当外力超过了材料的屈服极限时,材料将进入塑性阶段,并发生不可逆的形变。
在这个阶段,应力与应变之间的关系不再是线性的,材料会呈现出时间依赖性和屈服后的流变行为。
4.4 断裂阶段当外力继续增加,超过了材料的断裂强度,材料将发生断裂并失去原有的结构完整性。
五、总结应变和应力是描述材料力学性质的重要概念。
应变是描述物体形变程度的物理量,而应力是描述物体内部受力状态的物理量。
应力与应变之间的关系
σ2 = 0
即为平面应力状态, 即为平面应力状态,有
1 ε 1 = (σ 1 −νσ 3 ) E
1 ε 3 = (σ 3 −νσ 1 ) E
8
E 210 ×10 (ε1 +νε 3 ) = (240 − 0.3 ×160)×10 −6 σ1 = 1 −ν 2 1 − 0.32 = 44.3MPa E 210 ×109 (ε 3 +νε 1 ) = (− 160 + 0.3 × 240)×10−6 σ3 = 1 −ν 2 1 − 0. 3 2 = −20.3MPa 主应变ε2为: ν 0.3 (44.3 − 20.3)×106 ε 2 = − (σ 1 + σ 3 ) = − E 210 ×109 = −34.3 ×10 −6
§10-5 应力与应变之间的关系 101、各向同性材料的广义胡克定律 单向应力状态: 1)单向应力状态:
s
σ ≤ σ P 时, ε x =
横向线应变: 横向线应变:
σ
E
ε y = −ν
纯剪应力状态: 2)纯剪应力状态:
tx
σ
E
ε z = −ν
σ
E
τ ≤ τ P 时,
γ xy =
τx
G
1
gxy
空间应力状态: 3)空间应力状态:
1 ε x = (σ x −νσ y ) E 1 ε y = (σ y −νσ x ) E
εz = − γ xy
ν
E 1 = τ xy G
(σ
x
+σ y )
5
若用主应力和主应变来表示广义胡克定律, 若用主应力和主应变来表示广义胡克定律,有:
应力与应变间的关系
τ xy
右侧面
σx τ xz
x
γ xy
γ yz
γ zx
O
∠ xOy ∠ yOz
∠zox 。
z
σz
前面
2、各向同性材料的广义胡克定 、 律
(1)线应变的推导 线应变的推导 分别单独存在时, 在σx σy σz 分别单独存在时 x 方 依次为: 向的线应变 εx 依次为
x σ
z
x
x σ
εx ' =
σx
τ = Gγ
或
γ=
τ
G
τ γ γ τ
为剪切弹性模量,单位为N/m G 为剪切弹性模量,单位为N/m2.
三、复杂应力状态下应力与应变的关系 σx σy σz τ x y τ y z τ z x εx ε y ε z γ x y γ y z γ z x
1、各向同性材料的广义胡克定律 (1)符号规定 ) (a)三个正应力分量 拉应力为正 (a)三个正应力分量 三个正应力分量:拉应力为正
因此, 该圆筒变形后的厚度并无变化, 因此 该圆筒变形后的厚度并无变化 仍然为 t =10mm .
G G G
在线弹性范围内, 小变形条件下, 在线弹性范围内 小变形条件下 各向同性材料。 各向同性材料。
1 εx = σx ν (σ y +σz ) E 1 E
[
]
公式的适用范围 : 在线弹性范围内,小 在线弹性范围内 小 变形条件下, 变形条件下 各向同性材 料。
ε y = [σ y ν (σz +σx )]
ν ν ε z = (σ x + σ y ) = (τmax + τmax ) = 0 E E
同理可得,圆筒中任一点 该点到圆筒横截面中心的距离为 该点到圆筒横截面中心的距离为ρ 同理可得 圆筒中任一点 (该点到圆筒横截面中心的距离为ρ) 处 的径向应变为
我所认识的应力与应变的关系
我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4-1 广义虎克定律
基本变形时的胡克定律
y
1)轴向拉压胡克定律 x E x 横向变形
x
x
y x
2)纯剪切胡克定律
x
E
G
物体中一点的应力状态用六个应力分量所确定,同一点 的应变状态用六个应变分量所确定。故应力与应变之间的关 系可以用下列解析形式的函数来表示 • 应力只取决于应变状态,与达到该状态的过程无关 x= x(x,y,z,xy, yz, zx) y= y (x,y,z, xy, yz, zx) ……. zx= zx (x,y,z, xy, yz, zx)
可以得到:
x y z
x x (3 2 ) y z x 2 (3 2 )
xy yz zx 0
比较可以得到:
(3 2 ) E ; 2( ) E E ; (1 )(1 2 ) 2(1 )
y =c21x+ c22y+ c23z+ c24xy+ c25yz+ c26zx
z =c31x+ c32y+ c33z+ c34xy+ c35yz+ c36zx
xy =c41x+ c42y+ c43z+ c44xy+ c45yz+ c46zx
yz =c51x+ c52y+ c53z+ c54xy+ c55yz+ c56zx
对于正交各向异性体,由于对称 关系(正应力分量只产生线应变, 不产生剪应变)。因此,弹性矩阵 中的36个弹性常数中,有24个为0, 在剩下的12个只有9个是独立的。
a21a22 a23o o o a31a32 a33o o o [ A] o o o a44o o o o o o a55o o o o o o a 66
xy xy yz yz zx zx
此为一般情况下,任意正交坐标系各向同性体应力分量与应 变分量的关系。称为各向同性体的广义虎克定律。
令
x y z (3 2 )t
此为体积应变的广义虎克定律。
可以得到:
x x , 2 2 (3 2 ) y y , 2 2 (3 2 ) z z , 2 2 (3 2 )
1 根据试验, E 0, 0 2 所以 0, 0
由扭转(纯剪)试验可以测得剪切弹性模量
x y z yz zx 0
x y z yz zx 0 xy xy G xy 由广义虎克定律: xy
式中:{}为应力列阵;{}为应变列阵;[D] 、[A]为弹性矩阵。
c11c12c13c14c15c16 c c c c c c 21 22 23 24 25 26 c31c32c33c34c35c36 [ D] [ A] c41c42c43c44c45c46 c c c c c c 51 52 53 54 55 56 c61c62c63c64c65c66
证明: 设1、2、3轴是弹性体内任一点的应变主轴,则对应的 剪应变为零。
12 23 31 0
由广义虎克定律可以得到:
2
2‘
3‘
12 C411 C42 2 C43 3
1’ O
1
1 , 2 , 3 为该点的主应变。(对应于1、2、3轴)
将坐标系绕2轴转180,得到坐标轴1’,2‘,3’
4、横观各向异性(如层状结构岩体)
物体中某一平面内的各方向弹性性质相同(各向同性面), 而垂直此面方向的弹性性质不同。
因此, 对于横观各向异性体来说,弹性矩阵中的36个弹性 常数中,只有5个是独立的,即:E、 ׀ ׀E┴ 、μ 、 ׀ ׀μ ┴ 、G。
5、各向同性
物体内任一点任何方向的弹性都相同。
1 a1 b 2 3 2 a 2 b 3 1 3 a 3 b 1 2
a b 2 , b , t 1 2 3
1 t 21 2 t 2 2 3 t 2 3
G
各向同性体的广义虎克定律: (用应力分量表示应变分量)
可以知道在弹性体内任一点的每一个应力分量都是六 个应变分量的线性函数。 根据假设: (1)无初应力
(2)无热交换
(3)动力系统速度、加速度不考虑 (4)线性弹性假设
• 对于线性弹性材料,应力与应变是线性关系
x =c11x+ c12y+ c13z+ c14xy+ c15yz+ c16zx
因此, 对于各向同性体来说,弹性矩阵中的36个弹性常数 中,只有2个是独立的,即:E、μ 。
§4-2 各向同性体的广义虎克定律
由各向同性的性质,可以知道在任何方向的弹性性质 都相同,故各个方向上的应力和应变的关系相同。 本节要证明各向同性体只有两个独立的弹性常数。
首先证明,各向同性体内任一点的应力主轴的方向是 与该点的应变主轴方向相重合的。
E
y
x
x
y z x
x
E
xy yz zx 0
由广义虎克定律:
x x , 2 2 (3 2 ) y y , 2 2 (3 2 ) z z , 2 2 (3 2 )
或
Hale Waihona Puke { } [ A]{ } a11a12 a13a14 a15 a16 a a a a a a 21 22 23 24 25 26 a31a32 a33a34 a35a36 a41a42 a43a44 a45 a46 a a a a a a 51 52 53 54 55 56 a61a62 a63a64 a65a66
xy xy yz yz , zx zx
§4-3 弹性常数的测定
由轴向拉伸试验可以测定材料的杨式弹性模量和泊松比。 由扭转(纯剪)试验可以测得剪切弹性模量。 现在确定拉梅常数:
由轴向拉压胡克定律
y z xy yz zx 0 x x
前面我们研究了 弹性体的应力和应变,得到了平衡 微分方程、运动微分方程、几何方程等重要的方程。 引入了六个应力分量,六个应变分量、三个位移分量。 本章通过对应力和应变的内在联系分析,建立应力 和应变之间的关系,即广义虎克定律。
应力和应变之间的关系涉及到材料所固有的物理特 性,所以这些关系又称为物理方程。
考虑小变形假设,应变分量都是微量,故将上面的式子 展开成麦克劳林级数。略去二次以上的项,可以得到
x x x x x x 0 x y z x 0 z 0 y 0 xy x xy 0 yz yz x zx zx 0 0
数与点的位置没有关系。
可以证明,对于各向异性体,36个弹性常数中只有21个是
独立的;
对于各向同性体只有3个弹性常数,其中只有两个是独立 的。
C11 C 21 C31 D C 41 C51 C61
C12 C22 C32 C42 C52 C62
C13 C23 C33 C43 C53 C63
12 C411 C42 2 C43 3
12 C411 C42 2 C43 3
12 12
上式成立,必须要有: 12 同理可以证明: 23
0
31 0
说明1、2、3轴是应变主轴,则对于这些轴的剪应力 也等于零,换言之,1、2、3轴也是应力主轴。 于是得到证明,对各向同性的弹性体内任一点,当某 轴为应变主方向时,同时也为其应力主方向,即应变主轴 与应力主轴重合。
有36个弹性常数。
1、极端各向异性
任何两个方向的弹性性质都互不相同。 对于极端各向异性体来说,由弹性力学可知: [D]、 [A]为对称矩阵,即有cij=cji; aij=aji 。
因此,36个弹性常数中只有21个是独立的。
2、正交各向异性
物体中存在这样一个平面,在任意两个与此平面对称的方 向上,物体的弹性都相同。该平面称为弹性对称面,一般有3个 a11a12 a13o o o 这样的弹性对称面。
常数λ 、μ称为拉梅(lame)弹性常数,简称拉梅常数。
1 t 21 2 t 2 2 3 t 2 3
此式反映了主应力与主应变的关系。 通过坐标变换,进一步建立任意正交坐标系应力和应变的关系。
x t 2 x y t 2 y z t 2 z
1 , 2 , 3为该点的主应变。(对应于1’、2’、3’轴)
由转轴时应力分量的变换公式:
12 l1m212 12
由转轴时应变分量的变换公式:
l121 1 1 m2 2 2 2 2 n32 3 3 3
代入可得:
现在来确定各向同性材料独立的弹性常数的个数,设 所取的坐标为三个主轴方向,由广义虎克定律可以得到:
1 C111 C12 2 C13 3 2 C211 C22 2 C23 3 3 C311 C32 2 C33 3
Cij 表示在j轴方向的单位主应变所引起在i轴方向的主应力。
因为研究的是各向同性材料,各个方向的主应变对其此 方向的主应力的影响是相同的,因此有:
C11 C22 C33
还有某个方向的主应变对另外方向的主应力的影响也是相 同的,因此存在: