第四章应力与应变关系本构方程

合集下载

《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档

《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档

应变能增量A 中有体积分和面积分,利用
柯西公式和散度定理将面积分换成体积分。
17.04.2020
8
§4-1 应变能、应变能密度与弹性材料的 本构关系
A V fiu id V s F iu id S U VW d V
SF i uidSS(ij ui)njdS V(jiui),j dV
17.04.2020
19
§4-2 线弹性体的本构关系
2.2 具有一个弹性对称面的材料
若物体内各点都有这样一 x3 个平面,对此平面对称方
向其弹性性质相同,则称
此平面为弹性对称面,垂
直弹性对称面的方向称为
弹性主轴。
x1
弹性主轴
x2
17.04.2020
20
§4-2 线弹性体的本构关系
如取弹性对称面为x1 —x2
{}=[c]{}
T 11 22 33 23 31 12
T 11 22 33 23 31 12
17.04.2020
16
§4-2 线弹性体的本构关系
2.1 各向异性材料
{}=[c]{}
C11 C12
C C21 C22
C61 C62
C16
C26
C66
17.04.2020
17.04.2020
3
§4-1 应变能、应变能密度与弹性材料的 本构关系
外力做实功 A: A=U 物体的应变能U
U VWdV
W:应变能密度——单位体积的应变能。
17.04.2020
4
§4-1 应变能、应变能密度与弹性材料的 本构关系
1.2 应变能密度W与材料的i
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。

材料力学 第四章 本构关系

材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。

第4章 塑性应力应变关系(本构方程)

第4章 塑性应力应变关系(本构方程)

强化材料卸载:
f ( ij ) 0,
f df d ij 0 ij
4.3 增量理论
在塑性变形时,全量应变和加载历史有关,要建立普遍的全量应变与应力 之间的关系是很困难的,所以主要研究应力和应变增量或应变速率之间的关系 。这种关系叫做增量理论,其中包括:密席斯方程、塑性流动方程和劳斯方程 。前两者适用于理想刚塑性材料,后者适用于弹塑性材料。
x

y 4G2 x y
2
2
2 2 6 xy 4G 2 xy 6
2 2 2 2 2 2 xy yz xz 等式左边为: x y y z z x 6
1 等效应力为:
1 i 2 1
2 2 2 yz xz x y y z z x 6 xy 2 2 2
则等效应变与弹性应变强度关系为: 当 =0.5 时
3 i = 2(1 )

i
弹性应力应变关系特点: 1.应力与应变成线性关系 2.弹性变形是可逆的,应力应变关系单值对 应 3.弹性变形时,应力球张量使物体产生体积 变化;物体形状的改变只是由应力偏张量引 起的。 4.应力主轴与应变2G
同理可得:
y m
1 - E 1 - E
x
z m z
m


1 y y 2G
1 z z 2G

m
x

1 x 2G
1 y y 2G 1 z z 2G
d
2 2 2 x d y d y d z d z d x 6 d xy d yz d xz 2 2 2

材料力学中的应力与应变关系

材料力学中的应力与应变关系

材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。

本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。

一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。

根据受力情况的不同,可以分为正应力、切应力和体积应力。

正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。

正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。

切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。

体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。

二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。

根据变形方式的不同,可以分为线性应变和体积应变。

线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。

线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。

体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。

三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。

根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。

弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。

常见的弹性模量有杨氏模量、剪切模量和泊松比。

杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。

剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。

泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。

4.应力应变关系

4.应力应变关系
因此,在塑性变形时,应力和变形的关系是比 较复杂的,有各种理论。总的来说,有增量理论和全 量理论。
Levy-von Mises 增量理论 Prandtl-Reuss 全量理论
Stress-strain relations
4.2.1 Levy-Mises 增量理论
该理论认为应变增量与相应的偏应力分量成正比


2
(d x d y ) ( x y ) d (d y dz )2 ( y z )2 d2 (d z d x )2 ( z x )2 d2
2 2 2
9 2 2 2 2 2 2 2 d x y y z z x 6 xy yz zx 2
(4-6)
从方程式 (4-3),(4-4)中得,应力可以用应变表示:
ij 2G ij ij
式中,
(4-7)

1 1 2
E
x y z
1 [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 2 ( x y ) 2 4G 2 ( x y ) 2

1 2 2 2 ( x y ) 2 ( y z ) 2 ( z x ) 2 6( xy yz zx ) 2
2 2 2

Байду номын сангаас
6d yz 6 yz d2 2 2 6d zx 6 zx d2 2 2 6d zx 6 zx d2
(4-15)
平衡方程式:
x yx 0 y x xy y 0 y x
(4-16)

弹塑性力学第四章

弹塑性力学第四章


x

y
)
2019/7/26
36
§4-3 各向同性材料弹性常数

yz

2(1 )
E
yz

xy

2(1
E
)

xy

zx

2(1
E
)
zx
采用指标
符号表示:
ij

1 E
(1 ) ij
ij kk
ij

E
1
ij
1 2
ij kk
2G
0 0 0

2G
0
0
0


2G 0 0 0

2G 0
0



2G 0



2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

第四章应力与应变关系

第四章应力与应变关系

(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(C11
C22 )
x C11 x C12 y C13 z
y C12 x C11 y C13 z
z C13 x C13 y C33 z
xy
1 2
(C11
C12 ) xy
yz C55 yz
zx C55 zx
如:层向垂直Z轴,则:
x
x
E
y
E
z
E
y
y
E
x
因应变能是应变分量的单值连续函数,全微分形式
U 0
U 0
x
x
U 0
y
y
U 0
z
z
U 0
xy
xy
U 0
yz
yz
U 0
zx
zx
则得:
四、弹性常数之间的关系
Cmn Cnm
36个常数就变为21个常数 1. 对于完全的各向异性弹性体,有21个弹性常数 2. 对于具有一个弹性对称面的各向异性材料,具有13个弹
x
x
E
y
E
z
E
y
y
E
x
E
z
E
z
z
E
y
E
x
E
xy
xy
G
yz
yz
G
zx
zx
G
常数关系:
E (1 )(1 2 )
E G 2(1 )
zzdxdydz
xy xydxdydz 2. 剪应力作的功: yzyzdxdydz
zx zxdxdydz
则,单元体积上内力的功:
A x x y y z z xy xy yz yz zx zx
三、格林公式
U0 A xx y y zz xy xy yzyz zx zx
第四章 应力与应变关系 本构方程
4―1 4-2 4-3 4-4 4-5
广义虎克定律 应变能、应变能与弹性常数的关系 正交各向异性体的本构方程 层向同性体的本构方程 各向同性体的本构方程
4―1 广义虎克定律
一、单向虎克定律
E
二、广义虎克定律的一般形式
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
4-2 应变能、应变能与弹性常数的关系
一、弹性体的变形能原理
外力在变形过程中作功,弹性体内部的能量也要相应 的发生变化 外力在变形过程中作功,全部转化为变形能(无热能损失)
UA
单位体积的变形能,即应变能
U0 U0 ( x , y , z , xy , yz , zx )
二、弹性体内力的功
xxdxdydz 1. 正应力作的功: y ydxdydz
本构方程:
x
x
Ex
xy y
Ey
xz z
Ez
y
y
Ey
yx x
Ex
yz z
Ez
z
z
Ez
zy y
Ey
zx x
Ex
xy
xy
Gxy
yz
yz
Gyz
zx
zx
Gzx
4-4 层向同性体的本构方程
层向同性材料,弹性常数有5个
C11 C12 C13 C23 C55 C66
C44
1 2
性常数 3. 对于正交各向异性材料,弹性常数有9个 4. 对于层向同性材料,弹性常数有5个 5. 对于各向同性材料,弹性常数有2个
Cmn Cnm
4-3 正交各向异性体的本构方程
对于正交各向异性材料,弹性常数有9个
C15 C16 C25 C26 C35 C36 C45 C46 0 C14 C24 C34 C65 0
E
z
E
z
z
E
y
E
x
E
xy
2(1 E
) xy
ห้องสมุดไป่ตู้
yz
yz
G
zx
zx
G
4-5 各向同性体的本构方程
各向同性材料,弹性常数有2个
C12 C13 C44 C55
x 2x y 2 y z 2z xy xy yz yz zx zx
C11 C33 2
相关文档
最新文档