高考数学解答题解析原创题

合集下载

数学2024高考试卷解析

数学2024高考试卷解析

数学2024高考试卷解析一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A = {xx^2-3x + 2 = 0},B={xx>1},则A∩ B = ( )A. {1}B. {2}C. {1,2}D. varnothing解析:先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。

又因为B = {xx>1},所以A∩ B={2},答案为B。

2. 复数z=(1 + i)/(1 - i),则z的共轭复数¯z=( )A. -iB. iC. 1 - iD. 1 + i解析:对z=(1 + i)/(1 - i)进行化简,分子分母同时乘以1 + i,得到z=frac{(1 +i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=i,共轭复数实部相同,虚部相反,所以¯z=-i,答案为A。

3. 已知向量→a=(1,2),→b=(m, - 1),若→a⊥→b,则m = ( )A. 2C. (1)/(2)D. -(1)/(2)解析:因为→a⊥→b,根据向量垂直的性质→a·→b=0,即1× m+2×(- 1)=0,解得m = 2,答案为A。

4. 函数y=sin(2x+(π)/(3))的最小正周期是(\space)A. πB. 2πC. (π)/(2)D. (2π)/(3)解析:对于函数y = Asin(ω x+φ),其最小正周期T=(2π)/(ω),这里ω = 2,所以T=π,答案为A。

5. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5=( )A. 9B. 11C. 13D. 15解析:根据等差数列通项公式a_n=a_1+(n - 1)d,当n = 5时,a_5=1+(5 - 1)×2=1 + 8 = 9,答案为A。

高考数学斜率定值问题解答题专项讲解(含答案)

高考数学斜率定值问题解答题专项讲解(含答案)

高考数学斜率定值问题解答题专项讲解(含答案)一、解答题1.如图,在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为√22.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF.(1)求椭圆的方程;(2)求证:直线AC,BD的斜率之和为定值.【答案】(1)x 22+y2=1;(2)详见解析. 【解析】试题分析:(1)解:由题意,得c=1,e=ca =√22,故a=√2,从而b2=a2−c2=1,所以椭圆的方程为x 22+y2=1.①5分(2)证明:设直线AB的方程为y=kx,②直线CD的方程为y=−k(x−1),③7分由①②得,点A,B的横坐标为±√22k2+1,由①③得,点C,D的横坐标为2k 2±√2(k2+1)2k2+1,9分记A(x1,kx1),B(x2,kx2),C(x3,k(1−x3)),D(x4,k(1−x4)),则直线AC,BD的斜率之和为kx1−k(1−x3)x1−x3+kx2−k(1−x4)x2−x4=k⋅(x1+x3−1)(x2−x4)+(x1−x3)(x2+x4−1)(x1−x3)(x2−x4)=k⋅2(x1x2−x3x4)−(x1+x2)+(x3+x4)(x1−x3)(x2−x4)13分=k⋅2(−22k2+1−2(k2−1)2k2+1)−0+4k22k2+1(x1−x3)(x2−x4)=0.16分考点:直线与椭圆的位置关系点评:主要是考查了直线椭圆的位置关系的运用,属于基础题。

2.如图,在平面直角坐标系xoy中,椭圆E:+=1的离心率为,直线l:y=x与椭圆E相交于A,B两点,AB=,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.(1)求a,b的值;(2)求证:直线MN的斜率为定值.【答案】(1),;(2)证明见解析.【解析】试题分析:(1)由已知条件可得的值,进而得的关系,再利用与椭圆相交于,两点,,可得;(2)斜率存在时设出直线,的斜率分别为,,,利用,表示的斜率,利用直线相交分别求的坐标,再利用斜率公式求,运算化简含式子,得出结果,最后再考虑斜率不存在情况亦成立.试题解析:(1)因为e==,所以c2=a2,即a2﹣b2=a2,所以a2=2b2;故椭圆方程为+=1;由题意,不妨设点A在第一象限,点B在第三象限,由解得A(b,b);又AB=4,所以OA=2,即b2+b2=20,解得b2=12;故=2,=2;(2)由(1)知,椭圆E的方程为,从而A(4,2),B(﹣4,﹣2);①当CA,CB,DA,DB斜率都存在时,设直线CA,DA的斜率分别为k1,k2,C(x0,y0),显然k1≠k2;所以k CB=﹣;同理k DB=﹣,于是直线AD的方程为y﹣2=k2(x﹣4),直线BC的方程为y+2=﹣(x+4);从而点N的坐标为;用k2代k1,k1代k2得点M的坐标为;即直线MN的斜率为定值﹣1;②当CA,CB,DA,DB中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA的斜率不存在,从而C(4,﹣2);仍然设DA的斜率为k2,由①知k DB=﹣;此时CA:x=4,DB:y+2=﹣(x+4),它们交点M(4,);BC:y=﹣2,AD:y﹣2=k2(x﹣4),它们交点N ,从而k MN=﹣1也成立;由①②可知,直线MN的斜率为定值﹣1;考点:1、椭圆的几何性质;2、直线与圆锥曲线的位置关系;3、分类讨论;4、直线的斜率.【方法点晴】本题主要考查的是椭圆的几何性质,直线和椭圆的位置关系及直线斜率,直线相交的问题,属于难题.解决第二问时,涉及直线较多,采用设两条直线斜率,表示另外两条的方法,控制引入未知数个数,然后利用直线相交,表示交点坐标,需要较强的类比推理能力及运算能力,还要注意斜率是否存在,要有较强的分类讨论意识.3.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()21A ,. (Ⅰ) 求椭圆C 的方程;(Ⅱ) 若P Q ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.【答案】(Ⅰ) 22182x y +=;(Ⅱ)1.2 【分析】(I )由离心率可得,a c 关系,再将点A 坐标代入,可得,a b 间关系,又222a b c =+,解方程可得22,a b 的值;(II )由PAQ ∠的角平分线总垂直于x 轴,可判断直线,PA AQ 的斜率互为相反数,由两直线都过A 点,由点斜式可写出直线方程.一一与椭圆方程联立,消去x 或y 的值,可得一元二次方程,又A 点满足条件,可求得,P Q 点的坐标,用k 表示.再由斜率公式可得直线PQ 的斜率为定值. 【详解】(Ⅰ) 因为椭圆C , 且过点()2,1A ,所以22411a b +=, 2c a =. 因为222a b c =+, 解得28a =, 22b =,所以椭圆C 的方程为22182x y +=.(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称.设直线PA 的斜率为k , 则直线AQ 的斜率为k −. 所以直线PA 的方程为()12y k x −=−, 直线AQ 的方程为()12y k x −=−−.设点(),P P P x y , (),Q Q Q x y ,由()2212,{1,82y k x x y −=−+=消去y , 得()()222214168161640k x k k x k k +−−+−−=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根,则2216164214P k k x k −−=+, 所以2288214P k k x k −−=+. 同理2288214Q k k x k +−=+.所以21614P Qk x x k −=−+. 又()28414P Q P Q ky y k x x k −=+−=−+. 所以直线PQ 的斜率为12−==−P Q PQ P Qy y k x x . 所以直线PQ 的斜率为定值,该值为12. 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x −=−, 直线QA 的斜率2212QA y k x −=−. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以PA QA k k =−, 即121211022y y x x −−+=−−, ① 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③由②得()()22114410x y −+−=, 得()111112241y x x y −+=−−+, ④同理由③得()222212241y x x y −+=−−+, ⑤ 由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ 由①得()()12211212240x y x y x x y y +−+−++=, ⑦ ⑥-⑦得()12122x x y y +=−+.②-③得22221212082x x y y −−+=,得()12121212142y y x x x x y y −+=−=−+. 所以直线PQ 的斜率为121212PQ y y k x x −==−为定值.法3:设直线PQ 的方程为y kx b =+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PA y k x −=−, 直线QA 的斜率2212QAy k x −=−. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以PA QA k k =−, 即12121122y y x x −−=−−−, 化简得()()12211212240x y x y x x y y +−+−++=. 把1122,y kx b y kx b =+=+代入上式, 并化简得 ()()1212212440kx x b k x x b +−−+−+=. (*)由22,{1,82y kx b x y =++=消去y 得()222418480k x kbx b +++−=, (**) 则2121222848,4141kb b x x x x k k −+=−=++,代入(*)得()()2222488124404141k b kb b k b k k −−−−−+=++, 整理得()()21210k b k −+−=, 所以12k =或12b k =−. 若12b k =−, 可得方程(**)的一个根为2,不合题意. 若12k =时, 合题意. 所以直线PQ 的斜率为定值,该值为12. 4.已知直线l 经过椭圆2222:1x y C a b+=()0a b >>的左焦点和下顶点,坐标原点O 到直线l 的距离为12a .(1)求椭圆C 的离心率;(2)若椭圆C 经过点()2,1P ,点A ,B 是椭圆C 上的两个动点,且APB ∠的角平分线总是垂直于y 轴,试问:直线AB 的斜率是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)2;(2)是定值,定值为1. 【分析】(1)先求出直线l 的方程,再由点到直线的距离公式得出原点O 到直线l 的距离,从而可得出答案. (2)由条件结合(1)先求出椭圆方程,根据条件可得AP BP k k =−,设直线AP 的方程为1(2)y k x −=−,与椭圆方程联立,求解出点A 的横坐标,同理求出点B 的横坐标,从而可得直线AB 的斜率,得出答案. 【详解】解:(1)过点(,0)c −,(0,)b −的直线l 的方程为0bx cy bc ++= 则坐标原点O 到直线l 的距离为12bc d a a ===可得242224224()4410c a bc a a c c e e e a =⇒=−⇒−+=⇒==.(2)由(1)易知a =,则椭圆C :222212x y b b+=经过点(2,1)P ,解得23b =,则椭圆C :22163x y +=. 因为APB ∠的角平分线总垂直于y 轴,所以AP 与BP 所在直线关于直线1y =对称. 则AP BP k k =−,设直线AP 的斜率为k ,则直线BP 的斜率为k −所以设直线AP 的方程为1(2)y k x −=−,直线BP 的方程为1(2)y k x −=−− 设点11(,)A x y ,22(,)B x y .由221(2)163y k x x y −=−⎧⎪⎨+=⎪⎩,消去y ,得2222(12)4(2)8840k x k k x k k ++−+−−=.因为点(2,1)P 在椭圆C 上,则有212884212k k x k −−⋅=+,即21244212k k x k−−=+. 同理可得22244212k k x k+−=+. 所以122812k x x k −−=+,又121228()412ky y k x x k k −−=+−=+. 所以直线AB 的斜率为12121y y x x −=−. 【点睛】关键点睛:本题考查求椭圆的离心率和椭圆中的定值问题,解答本题的关键是由条件得出AP BP k k =−,设直线AP BP ,的方程,与椭圆方程联立,求解出点,A B 的横坐标,属于中档题.5.已知椭圆2222:1x y C a b +=(0a b >>,1F 、2F 是椭圆C 的左、右焦点,P 是椭圆C 上的一个动点,且12PF F △面积的最大值为. (1)求椭圆C 的方程;(2)若Q 是椭圆C 上的一个动点,点M ,N 在椭圆2213x y +=上,O 为原点,点Q ,M ,N 满足3OQ OM ON →→→=+,则直线OM 与直线ON 的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.【答案】(1)2213010x y +=(2)是定值,且定值为13−.【分析】(1)根据题意列出关于a ,b ,c 的方程组,解出a ,b ,c 的值,即可求出椭圆方程;(2)设0(Q x ,0)y ,1(M x ,1)y ,2(N x ,2)y ,所以2200330x y +=,221133x y +=,222233x y +=,由3OQ OM ON →→→=+得0121233x x x y y y =+⎧⎨=+⎩,代入22003x y +得2200121233276(2)x y x x y y +=+++,所以121220x x y y +=,即12OM ON k k =−,从而得到直线OM 与直线ON 的斜率之积为定值,且定值为12−. 【详解】解:(1)由题意可知:222c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得222301020a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2213010x y +=; (2)设()00,Q x y ,()11,M x y ,()22,N x y ,∴2200330x y +=,221133x y +=,222233x y +=, ∵3OQ OM ON →→→=+,∴()()()001122,,3,x y x y x y =+,∴01201233x x x y y y =+⎧⎨=+⎩,∴()()22220012123333x y x x y y +++=+=2222112211226931827x x x x y y y y +++++327=++()12126330x x y y +=,∴121230x x y y +=,∴121213y y x x =−,即13OM ON k k ⋅=−, ∴直线OM 与直线ON 的斜率之积为定值,且定值为13−. 【点睛】本题主要考查了椭圆方程,以及直线与椭圆的位置关系,属于中档题.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,点31,2A ⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程与定值;若不存在,请说明理由.【答案】(1)22143x y +=,(2)存在符合条件的圆,且此圆的方程为227x y +=,定值为34− 【分析】(1)利用离心率和点在椭圆上列出方程,解出,,a b c 即可(2)当直线l 的斜率存在时,设l 的方程为y kx m =+,先将直线的方程与椭圆的方程联立,利用直线l 与椭圆有且仅有一个公共点,推出2243m k =+,然后通过直线与圆的方程联立,设()111,P x y ,()222,P x y ,结合韦达定理,求解直线的斜率乘积,推出12k k 为定值,然后再验证直线l 的斜率不存在时也满足即可 【详解】 (1)由题意得:12c a =,222a b c =+ 又因为点31,2A ⎛⎫ ⎪⎝⎭在椭圆C 上 所以221914a b+=解得2,1a b c ===所以椭圆的标准方程为:22143x y +=(2)结论:存在符合条件的圆,且此圆的方程为227x y +=证明如下:假设存在符合条件的圆,且设此圆的方程为:222(0)x y r r +=> 当直线l 的斜率存在时,设l 的方程为y kx m =+由方程组22143y kx m x y =+⎧⎪⎨+=⎪⎩得()2224384120k x kmx m +++−=因为直线l 与椭圆有且仅有一个公共点 所以()()()222184434120km k m ∆=−+−=即2243m k =+由方程组222y kx m x y r=+⎧⎨+=⎩得()2222120k x kmx m r +++−= 则()()()222222410km k m r∆=−+−>设()111,P x y ,()222,P x y ,则221212222,11km m r x x x x k k −−+==++ 设直线1OP ,2OP 的斜率分别为1k ,2k所以()()()221212121212121212kx m kx m k x x km x x my y k k x x x x x x +++++=== 222222222222222111m r kmk km m m r k k k m r m r k −−⋅+⋅+−++==−−+ 将2243m k =+代入上式得()2212224343r k k k k r−+=+−要使得12k k 为定值,则224343r r−=−,即27r = 所以当圆的方程为227xy +=时,圆与l 的交点1P ,2P 满足12k k 为定值34−当直线l 的斜率不存在时,由题意知l 的方程为2x =±此时圆与l 的交点1P ,2P 也满足12k k 为定值34−综上:当圆的方程为227xy +=时,圆与l 的交点1P ,2P 满足12k k 为定值34−【点睛】涉及圆、椭圆的弦长、交点、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.7.已知圆F 1:(x +1)2+y 2=r 2(1≤r ≤3),圆F 2:(x -1)2+y 2= (4-r )2. (1)证明:圆F 1与圆F 2有公共点,并求公共点的轨迹E 的方程;(2)已知点Q (m ,0)(m <0),过点E 斜率为k (k ≠0)的直线与(Ⅰ)中轨迹E 相交于M ,N 两点,记直线QM 的斜率为k 1,直线QN 的斜率为k 2,是否存在实数m 使得k (k 1+k 2)为定值?若存在,求出m 的值,若不存在,说明理由.【答案】(1)见解析,22143x y +=(2)存在,2m =−【分析】(1)求出圆1F 和圆2F 的圆心和半径,通过圆F 1与圆F 2有公共点求出12F F 的范围,从而根据124PF PF +=可得P 点的轨迹,进而求出方程;(2)过2F 点且斜率为k 的直线方程为(1)y k x =−,设()11,M x y ,()22,N x y ,联立直线方程和椭圆方程,根据韦达定理以及111y k x m =−,212y k x m =−,可得()212222(624)4(1)312m k k k k m k m −+=−+−,根据其为定值,则有23120m −=,进而可得结果. 【详解】(1)因为1(1,0)F −,2(1,0)F ,所以122F F =, 因为圆1F 的半径为r ,圆2F 的半径为4r −,又因为13r ≤≤,所以|4|2r r −−≤,即12|4||4|r r F F r r −−≤≤−+, 所以圆1F 与圆2F 有公共点,设公共点为P ,因此124PF PF +=,所以P 点的轨迹E 是以1(1,0)F −,2(1,0)F 为焦点的椭圆, 所以24a =,12c a =⇒=,b =即轨迹E 的方程为22143x y +=;(2)过2F 点且斜率为k 的直线方程为(1)y k x =−,设()11,M x y ,()22,N x y由22143(1)x y y k x ⎧+=⎪⎨⎪=−⎩消去y 得到()22224384120k x k x k +−+−=, 则2122843k x x k +=+,212241243k x x k −=+, ①因为111y k x m=−,212y k x m =−,所以()()()121212121211k x k x y y k k k k k x m x m x m x m −−⎛⎫⎛⎫+=+=+⎪ ⎪−−−−⎝⎭⎝⎭()()()()()()2212211212121111x x m x x m x x k k x m x m x m x m −−+−−⎛⎫−−=+= ⎪−−−−⎝⎭()()21212212122(1)2x x m x x mk x x m x x m −+++=−++,将①式代入整理得()212222(624)4(1)312m k k k k m k m −+=−+− 因为0m <,所以当23120m −=时,即2m =−时,()121k k k +=−. 即存在实数2m =−使得()121k k k +=−. 【点睛】本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.8.已知△ABC 中,B (-1,0),C (1,0),AB =6,点P 在AB 上,且∠BAC =∠PCA . (1)求点P 的轨迹E 的方程;(2)若813Q ⎛⎫⎪⎝⎭,,过点C 的直线与E 交于M ,N 两点,与直线x =9交于点K ,记QM ,QN ,QK 的斜率分别为k 1,k 2,k 3,试探究k 1,k 2,k 3的关系,并证明.【答案】(1)()221398x y x +=≠±.(2) k 1+k 2=2k 3证明见解析;【分析】(1)利用已知条件判断P 的轨迹为椭圆,转化求解即可.(2)如图,设M (x 1,y 1),N (x 2,y 2),可设直线MN 方程为y =k (x -1),则K (4,3k ),联立直线与椭圆方程,通过韦达定理转化求解斜率关系,证明k 1+k 2=2k 3. 【详解】解:(1)如图三角形ACP 中,∠BAC =∠PCA ,所以P A =PC , 所以PB +PC =PB +P A =AB =6,所以点P 的轨迹是以B ,C 为焦点,长轴为4的椭圆(不包含实轴的端点),所以点P 的轨迹E 的方程为()221398x y x +=≠±.(2)k 1,k 2,k 3的关系:k 1+k 2=2k 3.证明:如图,设M (x 1,y 1),N (x 2,y 2), 可设直线MN 方程为y =k (x -1),则K (4,3k ),由()221981x y y k x ⎧+=⎪⎨⎪=−⎩,,可得(9k 2+8)x 2-18k 2x +(9k 2-72)=0, 21221898k x x k +=+,212297298k x x k −=+, ()()1111118818331131y k x k k x x x −−−===−−−−,()22831k k x =−−,38813913k k k −==−−, 因为()()()()121323121212228112803311331x x k k k k x x x x x x +−⎛⎫−+−=−+=−⋅= ⎪−−−++⎝⎭, 所以:k 1+k 2=2k 3. 【点睛】本题考查直线与椭圆的位置关系的综合应用,椭圆的定义的应用,考查转化思想以及计算能力,是难题.9.如图,在平面直角坐标系xOy 中,椭圆()2222:10x y E a b a b +=>>的焦距为2,且过点⎭.(1)求椭圆E 的方程;(2)若点,A B 分别是椭圆E 的左右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于,A B 的任意一点,直线AP 交l 于点M .①设直线OM 的斜率为1k ,直线BP 的斜率为2k ,求证:12k k 为定值; ②设过点M 垂直于PB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.【答案】(1)22143x y +=;(2)见解析. 【详解】试题分析:(1)根据条件列方程组223221,1c a b =+=,解得2,a b ==,(2)①设()00,P x y,则可由直线交点得0042,2y M x ⎛⎫⎪+⎝⎭,再根据斜率公式化简12k k ,最后利用点P 在椭圆上得定值;②先探求定点为()1,0−,再根据点斜式写出直线m 方程,最后令y=0解得x=-1.试题解析:(1)由题意椭圆2222:1(0)x y E a b a b +=>>的焦距为2,且过点2⎫⎪⎪⎭, 所以223221,1c a b =+=,解得2,a b ==, 所以椭圆E 的标准方程为22143x y +=.(2)①设()()000,0P x y y ≠,则直线AP 的方程为()0022y y x x =++, 令2x =得0042,2y M x ⎛⎫⎪+⎝⎭,因为01022y k x =+,因为0202y k x =−,所以2012202y k k x =−,因为()()000,0P x y y ≠在椭圆上,所以2200143x y +=,所以1232k k =−为定值, ②直线BP 的斜率为1212y k x =−,直线m 的斜率为112m x k y −=,则直线m 的方程为()()()11110111122422212x x y x y x y x x y y x y −−−=−+=−+=++, 所以直线m 过定点()1,0−.点睛:1.求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y kx b =+,然后利用条件建立,k b 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.10.已知椭圆C 的方程为22143x y +=,斜率为12的直线l 与椭圆C 交于A ,B 两点,点31,2P ⎛⎫ ⎪⎝⎭在直线l的左上方.(1)若以AB 为直径的圆恰好经过椭圆右焦点2F ,求此时直线l 的方程; (2)求证:PAB △的内切圆的圆心在定直线1x =上. 【答案】(1)11127y x =−.(2)见解析 【分析】(1)设直线l 的方程为12y x m =+.设()11,A x y ,()22,B x y .由直线方程与椭圆方程联立消元后应用韦达定理得1212,x x x x +,由判别式大于0得m 的一个范围,由点31,2P ⎛⎫⎪⎝⎭在直线l 的左上方再一个m 的范围,两者结合得m 的取值范围,以AB 为直径的圆恰好经过椭圆C 的右焦点2F ,说明220AF BF ⋅=,用坐标表示并代入1212,x x x x +可求得m ,注意m 的取值范围,即得直线方程;(2)由(1)计算0PA PN k k +=,即得直线1x =是APB ∠的内角平分线,可得结论. 【详解】解:(1)设直线l 的方程为12y x m =+.设()11,A x y ,()22,B x y . 由2214312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x mx m ++−=,则12x x m +=−,2123x x m =−. 由()22430m m =−−>△,解得22m −<<. 又∵点31,2P ⎛⎫⎪⎝⎭在直线l 的左上方,∴21m −<<. 若以AB 为直径的圆恰好经过椭圆C 的右焦点2F , 则220AF BF ⋅=,即()()11221,1,0x y x y −−⋅−−=,化简得274110m m +−=,解得117m =−,或1m =(舍).∴直线l 的方程为11127y x =−. (2)∵1212332211PAPBy y kk x x −−+=+−−12123131222211x m x mx x −−−−=+−− ()12111111m x x ⎛⎫=+−+ ⎪−−⎝⎭()()()1212122111x x m x x x x −+=+−−++()222221110132m m m m m m m m +−−+=+−=+=++−+−, ∴直线1x =平分APB ∠,即PAB △的内切圆的圆心在定直线1x =上. 【点睛】本题考查直线与椭圆相交问题,考查直线的对称性.直线与椭圆相交问题采取设而不求思想,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +,用1212,x x x x +参与运算求解.11.如图已知椭圆()222210x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且0AC BC ⋅=,2OC OB BC BA −=−.(Ⅰ)求椭圆的方程:(Ⅱ)设,P Q 为椭圆上异于,A B 且不重合的两点,且PCQ ∠的平分线总是垂直于x 轴,是否存在实数λ,使得PQ AB λ=,若存在,请求出λ的最大值,若不存在,请说明理由.【答案】(Ⅰ)223144x y +=(Ⅱ)max λ= 【分析】(Ⅰ)易知2,a =根据条件确定AOC ∆形状,即得C 坐标,代入椭圆方程可得2b ,(Ⅱ)即先判断PQ AB ∥是否成立,设PC 的直线方程,与椭圆联立方程组解得P 坐标,根据P 、Q 关系可得Q 坐标,利用斜率坐标公式即得PQ 斜率,进而判断PQ AB ∥成立,然后根据两点间距离公式计算PQ 长度最大值,即可得λ的最大值. 【详解】(Ⅰ)∵0AC BC ⋅=, ∴,90AC BC ACB ⊥∠=︒又2OC OB BC BA −=−,即2BC AC =,22,OC AC OC AC == ∴AOC ∆是等腰直角三角形 ∵(2,0)A , ∴(1,1)C 因为点C 在椭圆上,∴22111,2,a a b +==∴243b = ∴所求椭圆方程为223144x y +=(Ⅱ)对于椭圆上两点P 、Q ,∵PCQ ∠的平分线总是垂直于x 轴∴PC 与CQ 所在直线关于1x =对称,设(0PC k k k =≠且1)k ≠±,则CQ k k =−, 则PC 的直线方程1(1)(1)1y k x y k x −=−⇒=−+ ①QC 的直线方1(1)(1)1y k x y k x −=−−⇒−−+ ②将①代入223144x y +=得222(13)6(1)3610k x k k x k k +−−+−−= ③∵(1,1)C 在椭圆上,∴1x =是方程③的一个根,∴22361113p p k k x x k −−⋅==+ 以k −替换k ,得到2236131Q k k x k +−=+.222226242()211313121231313p Q p Q PQ p Q p Q k k k k y y k x x k k k k k k x x x x k k−−⋅−−+−++=====−−−−++因为(1,1)B −−,所以1,3AB k =∴,PQ AB k k = ∴PQ AB ∥,∴存在实数λ,使得PQ AB =λ||(PQ x ====≤当2219k k =时即21,3k k ==时取等号, 又||10AB =maxλ==【点睛】解析几何存在性问题,一般解决方法先假设存在,即设参数,运用推理,将该问题涉及的几何式转化为代数式或三角问题,然后直接推理、计算,根据计算结果确定是否存在.其中直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化.12.已知椭圆2222:1(0)x y C a b a b +=>>经过(1,()222A B −两点,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设动直线l 与椭圆C 有且仅有一个公共点,且与圆22:3O x y +=相交于,M N 两点,试问直线OM 与ON 的斜率之积OM ON k k ⋅是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1)2212x y +=;(2)为定值,12−【分析】(1)将,A B 两点坐标代入椭圆方程,建立22,a b 的方程组,即可求出结论;(2)先求出直线l 斜率不存在时OM ON k k ⋅的值,当直线l 斜率存在时,设其方程为y kx m =+,与椭圆方程联立,根据已知求出,m k 关系,再将直线l 与圆方程联立,根据根与系数关系将,M N 坐标用,m k 表示,进而求出OM ON k k ⋅,即可得出结论. 【详解】(1)依题意,2222112113241a ba b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得2221a b ⎧=⎨=⎩,所以椭圆方程为2212x y +=.(2)当直线l 的斜率不存在时,直线l的方程为x =若直线l的方程为x =M ,N的坐标为,1))−,12OM ON k k ⋅=−.若直线l的方程为x =M ,N的坐标为,(1)()−,12OM ON k k ⋅=−.当直线l 的斜率存在时,可设直线:l y kx m =+, 与椭圆方程联立可得()222124220kxkmx m +++−=,由相切可得()222222168(1)(21)8210k m m k k m ∆=−−+=−+=,2221m k ∴=+.又223y kx m x y =+⎧⎨+=⎩,消去y 得()2221230k x kmx m +++−= ()222222244(3)(1)4334(2)0k m m k k m k ∆=−−+='+−=+>,设()11,M x y ,()22,N x y ,则12221222131km x x k m x x k ⎧+=−⎪⎪+⎨−⎪=⎪+⎩∴()()()222212121212231m k y y kx m kx m k x x km x x m k−=++=+++=+, 2222212222123213113213222OM ONy y m k k k k k k x x m k k −+−−⋅=⋅====−−+−−. 故OM ON k k ⋅为定值且定值为12−.综上,OM ON k k ⋅为定值且定值为12−. 【点睛】本题考查待定系数法求椭圆方程、直线与椭圆的位置关系以及圆与直线的位置关系,要熟练掌握根与系数关系设而不求的方法求相交弦问题,属于中档题.13.已知椭圆2222:1(0)x y C a b a b+=>>, c =左、右焦点为12,F F ,点,,P A B 在椭圆C 上,且点,A B关于原点对称,直线,PA PB 的斜率的乘积为14−. (1)求椭圆C 的方程;(2)已知直线l 经过点()2,2Q ,且与椭圆C 交于不同的两点,M N ,若163QM QN =,判断直线l 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)直线l 【分析】(1)利用斜率乘积为2214b a −=−,c =222a b c =+可构造出方程组,求解得到2a 和2b ,从而可得椭圆标准方程;(2)联立直线l 与椭圆方程,可得关于x 的一元二次方程;利用判别式大于零可求得k 的取值范围;利用韦达定理表示出12x x +和12x x ;根据163QM QN =,可得到163QM QN ⋅=;利用向量数量积坐标运算,代入韦达定理整理得到()2216116143k k +=+,解方程可求得结果.【详解】(1)由题意知:2214PA PBb k k a ⋅=−=−,又c =222a b c =+可得:24a =,21b =,23c =∴椭圆C 的方程为:2214x y += (2)设直线l 的方程为:()22y k x −=−将其代入2214x y +=,整理可得:()221416(1)k x k k x ++−+216(1)40k −−=则()()()22216141416140k k k k ⎡⎤∆=−−+−−>⎡⎤⎣⎦⎣⎦,得:38k > 设()11,M x y ,()22,N x y则()12216114k k x x k −+=+,()()221222448316141414k k k x x k k−+−−==++ 又163QM QN =,且,0QM QN <>= 163QM QN ∴⋅=又()112,2QM x y =−−,()222,2QN x y =−− 所以()()()()12121622223x x y y −−+−−=又()1122y k x =−+,()2222y k x =−+()()()()()()()()()2212121212121622222212413x x y y x x k x x x x k ∴−−+−−=−−+=−+++=⎡⎤⎣⎦ ()()()222244831611624114143k k k k k k k ⎡⎤−+−⎢⎥∴−⨯++=++⎢⎥⎣⎦化简得:()2216116143k k +=+,解得:22k =38k >k ∴=∴直线l【点睛】本题考查椭圆标准方程的求解、椭圆中的定值类问题.解决本题的关键是灵活利用韦达定理的形式来表示出已知中的等量关系,通过整理可得到关于k 的方程,解方程求得结果;要注意的是,需要通过判别式确定k 的取值范围.14.已知椭圆2222:1x y C a b +=(0a b >>,且过点()4,1M .(1)求椭圆C 的方程;(2)若直线:l y x m =+(3m ≠−)与椭圆C 交于,P Q 两点,记直线,MP MQ 的斜率分别为12,k k ,试探究12k k +是否为定值,若是,请求出该定值;若不是,请说明理由.【答案】(1) 221205x y += (2) 12k k +为定值,该定值为0.【解析】试题分析:(1)由椭圆的离心率公式,求得a 2=4b 2,将M 代入椭圆方程,即可求得a 和b 的值,求得椭圆方程;(2)将直线l :代入椭圆方程,利用韦达定理及直线的斜率公式,即可取得k 1+k 2=0. 试题解析:(1)依题意,222221611,a b a b c c a⎧+=⎪⎪⎪−=⎨⎪⎪=⎪⎩,解得22220,5,15a b c ===,故椭圆C 的方程为221205x y +=;(2)120k k +=,下面给出证明:设()11,P x y ,()22,Q x y ,将y x m =+代入221205x y+=并整理得22584200x mx m ++−=,()()228204200m m ∆=−−>,解得55m −<<,且 3.m ≠−故1285m x x +=−,2124205m x x −=,则()()()()()()1221121212121414114444y x y x y y k k x x x x −−+−−−−+=+=−−−−, 分子=()()()()12211414x m x x m x +−−++−−()()()()()()212122420852*******5m m m x x m x x m m −−=+−+−−=−−−=,故12k k +为定值,该定值为0.15.椭圆C : 22221(0)x y a b a b +=>>的左、右焦点分别是F 1、F 2,离心率为2,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为l . (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围.(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1、PF 2的斜率分别为k 1、k 2,若k≠0,试证明1211kk kk +为定值,并求出这个定值. 【答案】(1)2214x y +=;(2)3322m −<<;(3)-8 【解析】试题分析:(1)根据题意可得2221,2.b a b a ==即又因为2c e a ==,所以可得a ,b 的值,即可得方程;(2)设出点p 坐标,由两点式列出直线12,PF PF 方程,然后利用点m 到两直线的距离相等来确定m 值,再根据p 点,横坐标的范围,来确定m 范围;(3)设直线方程为()00.y y k x x −=−与椭圆方程联立,需满足()22200000,4210.x k x y k y ∆=−++−=即求得004x k y =−,由(2)可知0120211x k k y +=,代入化简即可试题解析:(1)由于22222222,1,,x y b c a b x c y a b a=−=−+==±将代入椭圆方程得由题意知2221,2.b a b a==即又222, 1. 1.4c x e a b C y a ====+=所以所以椭圆的方程为(2)设()()000,0.P x y y ≠())((121212000,,,:0,:0,PF PF F F PF PF l y x x y l y x x y −=−−=又所以直线的方程分别为=由于点P在椭圆上,所以221. 4xy+==00322,.433.(522m x m xm<<−<<==−<<因为所以因此分)(3)设()()000,0.P x y y≠则直线l的方程为()00.y y k x x−=−联立()()()() 22222222000000 001,{1484210.4,xyk x ky k x x y kx y k x y y k x x+=++−+−+−=−=−整理得由题意得()22200000,4210.x k x y k y∆=−++−=即又2222200000001,1680,.44x xy y k x y k x ky+=++==−所以故由(2)知00012000211,x x xk k y y y++=+=所以0012120042111118,y xkk kk k k k x y⎛⎫⎛⎫+=+=−⋅=−⎪⎪⎝⎭⎝⎭因此12118.kk kk+为定值,这个定值为-考点:1.椭圆方程的性质;2.直线与椭圆。

【原创】2020年新高考全国卷Ⅱ数学试题(海南卷)(解析版)

【原创】2020年新高考全国卷Ⅱ数学试题(海南卷)(解析版)

2020 年普通高等学校招生全国统一考试数学(海南)一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项符合题目要求的)1. 设集合A ={2,3,5,7},B ={1,2,3,5,8},则A B =( )A. {1,3,5,7}B. {2,3}C. {2,3,5}D. {1,2,3,5,7,8} 【答案】C【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A ={2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =故选:C【点睛】本题考查的是集合交集的运算,较简单.2. (12)(2)i i ++=( )A. 45i +B. 5iC. -5iD. 23i + 【答案】B【解析】【分析】直接计算出答案即可.【详解】2(12)(2)2425i i i i i i ++=+++=故选:B【点睛】本题考查的是复数的计算,较简单.3. 在ABC 中,D 是AB 边上的中点,则CB =( )A. 2CD CA +B. 2CD CA -C. 2CD CA -D. 2CD CA +【答案】C【解析】【分析】根据向量的加减法运算法则算出即可. 【详解】()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-=故选:C【点睛】本题考查的是向量的加减法,较简单.4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【答案】B【解析】【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A. 62%B. 56%C. 46%D. 42%【答案】C【解析】【分析】 记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C【点睛】本题考查了积事件的概率公式,属于基础题.6. 要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A. 2种B. 3种C. 6种D. 8种【答案】C【解析】【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有12323C C =种分法第二步,将2组学生安排到2个村,有222A =种安排方法所以,不同的安排方法共有326⨯=种故选:C【点睛】解答本类问题时一般采取先组后排的策略.7. 已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( )A. (2,)+∞B. [2,)+∞C. (5,)+∞D. [5,)+∞【答案】D【解析】【分析】首先求出()f x 的定义域,然后求出2()lg(45)f x x x =--的单调递增区间即可.【详解】由2450x x -->得5x >或1x <-所以()f x 的定义域为(),1(5,)-∞-⋃+∞因为245y x x =--在(5,)+∞上单调递增所以2()lg(45)f x x x =--在(5,)+∞上单调递增所以5a ≥故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.8. 若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A. [)1,1][3,-+∞B. 3,1][,[01]--C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.二、选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分)9. 我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A. 这11天复工指数和复产指数均逐日增加;B. 这11天期间,复产指数增量大于复工指数的增量;C. 第3天至第11天复工复产指数均超过80%;D. 第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A 错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B 错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.10. 已知曲线22:1C mx ny +=.( )A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C是双曲线,其渐近线方程为y = D. 若m =0,n >0,则C 是两条直线【答案】ACD【解析】【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n +=, 此时曲线C表示圆心在原点,半径为n n的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=, 此时曲线C 表示双曲线,由220mx ny +=可得m y x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, n y =±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.11. 下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +) B. πsin(2)3x - C. πcos(26x +) D. 5πcos(2)6x - 【答案】BC【解析】【分析】 首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.12. 已知a >0,b >0,且a +b =1,则( ) A. 2212a b +≥ B. 122a b -> C. 22log log 2a b +≥-D. ≤【答案】ABD【解析】【分析】 根据1a b +=,结合基本不等式及二次函数知识进行求解.详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=, 当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b -->=,故B 正确; 对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为()21212a b ab a b +=+≤++=,所以2a b +≤,当且仅当12a b ==时,等号成立,故D 正确; 故选:ABD 【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.三、填空题(本题共 4 小题,每小题 5 分,共 20 分)13. 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________【答案】13【解析】【分析】利用11A NMD D AMN V V --=计算即可.【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯= 故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.14. 3C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163 【解析】 【分析】 先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =-代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == 所以212116||1||13|3|33AB k x x =+-=+⋅-= 解法二:10036640∆=-=>设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.15. 将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.【答案】232n n -【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.16. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+ 【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=, 因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形; 在直角OQD △中,25OQ r =,27DQ =, 因为3tan 5OQ ODC DQ ∠==,所以32522125=, 解得22r =等腰直角OAH △的面积为11222242S =⨯=; 扇形AOB 的面积(221322324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+. 【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.四、解答题(本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17.在①ac =sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解. 【详解】解法一: 由sin 3sin AB可得:ab=不妨设(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =选择条件①的解析:据此可得:2ac m =⨯==1m ∴=,此时1c m ==. 选择条件②的解析: 据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:sin A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析: 可得1c mb m==,c b =, 与条件=c 矛盾,则问题中的三角形不存在. 解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭, ()1??22sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,则32=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.18. 已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式; (2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可.【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=,11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础.19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:2 2()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)0.64;(2)答案见解析;(3)有.【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K,结合临界值表可得结论.【详解】(1)由表格可知,该市100天中,空气中的 2.5PM浓度不超过75,且2SO浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM浓度不超过75,且2SO浓度不超过150的概率为640.64100=;(2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80(]75,11510 10 20合计74 26 100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bcKa b c d a c b d-⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.【点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题. 20. 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB 2,求PB 与平面QCD 所成角的正弦值. 【答案】(1)证明见解析;(26. 【解析】 【分析】(1)利用线面平行的判定定理以及性质定理,证得//AD l ,利用线面垂直的判定定理证得AD ⊥平面PDC ,从而得到l ⊥平面PDC ;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>,即可得到直线PB 与平面QCD 所成角的正弦值. 【详解】(1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥ 且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CDPD D =所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 因为QB 2222(1)(01)(10)21m m -+-+-=⇒=设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,则1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,则2222226cos ,2310(1)111n PB n PB n PB⋅<>====⨯++-⋅++ 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|n PB <>=所以直线PB 与平面QCD 6【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.21. 已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18. 【解析】 【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【详解】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22. 已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围. 【答案】(1)21e -(2)[1,)+∞ 【解析】【分析】(1)先求导数,再根据导数几何意义得切线斜率,根据点斜式得切线方程,求出与坐标轴交点坐标,最后根据三角形面积公式得结果;(2)解法一:利用导数研究,得到函数()f x 得导函数()’f x 的单调递增,当a=1时由()’10f =得()()11min f x f ==,符合题意;当a>1时,可证1()(1)0f f a ''<,从而()'f x 存在零点00x >,使得01001()0x f x ae x -'=-=,得到min ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1x ≥恒成立;当01a <<时,研究()f 1.即可得到不符合题意.综合可得a 的取值范围. 解法二:利用指数对数的运算可将()111lna x lnx f x elna x e lnx +-≥++-≥+转化为,令()xg x e x =+,上述不等式等价于()()1g lna x g lnx +-≥,注意到()g x 的单调性,进一步等价转化为1lna lnx x ≥-+,令()1h x lnx x =-+,利用导数求得()max h x ,进而根据不等式恒成立的意义得到关于a 的对数不等式,解得a 的取值范围.【详解】(1)()ln 1x f x e x =-+,1()x f x e x'∴=-,(1)1k f e '∴==-. (1)1f e =+,∴切点坐标为(1,1+e ),∴函数f(x)在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --, ∴所求三角形面积为1222||=211e e -⨯⨯--; (2)解法一:1()ln ln xf x ae x a -=-+,11()x f x ae x-'∴=-,且0a >. 设()()g x f x =',则121()0,x g x ae x -'=+> ∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增,当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e -<∴,111()(1)(1)(1)0a f f a e a a-''∴=--<, ∴存在唯一00x >,使得01001()0x f x ae x -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,0101x ae x -∴=,00ln 1ln a x x ∴+-=-, 因此01min 00()()ln ln x f x f x ae x a -==-+001ln 1ln 2ln 12ln 1a x a a a x =++-+≥-+=+>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立.综上所述,实数a 的取值范围是[1,+∞).解法二:()111x lna x f x ae lnx lna e lnx lna -+-=-+=-+≥等价于11lna x lnx e lna x lnx x e lnx +-++-≥+=+,令()xg x e x =+,上述不等式等价于()()1g lna x g lnx +-≥, 显然()g x 为单调增函数,∴又等价于1lna x lnx +-≥,即1lna lnx x ≥-+,令()1h x lnx x =-+,则()111x h x x x-=-=' 在()0,1上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减,∴()()10max h x h ==,01lna a ≥≥,即,∴a 的取值范围是[1,+∞).【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.。

2024新高考I卷数学详细解析(含选填)

2024新高考I卷数学详细解析(含选填)

2024年普通高等学校招生全国统一考试(新课标I卷)数学参考答案与解析1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准注意事项:考证号条形码粘贴在答题卡上的指定位置。

考试结束后,请将本试卷和答题卡一并上交。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|−5<x3<5},B={−3,−1,0,2,3},则A B=A.{−1,0}B.{2,3}C.{−3,−1,0}D.{−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513,而1<513<2,因此A B={−1,0}.故答案为A.2.若zz−1=1+i,则z=A.−1−iB.−1+iC.1−iD.1+i【答案】C.【解析】两边同时减1得:1z−1=i,进而z=1+1i=1−i.故答案为C.3.已知向量a=(0,1),b=(2,x).若b⊥(b−4a),则x=A.−2B.−1C.1D.2【答案】D.【解析】即b⋅(b−4a)=0.代入得4+x(x−4)=0,即x=2.故答案为D.4.已知cos(α+β)=m,tanαtanβ=2,则cos(α−β)=A.−3mB.−m 3C.m 3D.3m【答案】A.【解析】通分sin αsin β=2cos αcos β.积化和差12(cos (α−β)−cos (α+β))=2⋅12(cos (α−β)+cos (α+β)).即cos (α−β)=−3cos (α+β)=−3m .故选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为√3,则圆锥的体积为A.2√3π B.3√3πC.6√3πD.9√3π【答案】B.【解析】设二者底面半径为r ,由侧面积相等有πr √r 2+3=2πr ⋅√3,解得r =3.故V =13⋅πr 2⋅√3=√33π×9=3√3π.故答案为B.6.已知函数为f(x)=⎧{⎨{⎩−x 2−2ax −a,x <0e x +ln (x +1),x ⩾0在R 上单调递增,则a 的取值范围是A.(−∞,0]B.[−1,0]C.[−1,1]D.[0,+∞)【答案】B.【解析】x ⩾0时,f ′(x)=e x +11+x>0,故f(x)在[0,+∞)上单调递增.而y =−x 2−2zx−a 的对称轴为直线x =−a ,故由f(x)在(−∞,0)上单调递增可知−a ⩾0⇒a ⩽0.在x =0时应有−x 2−2ax −a ⩽e x +ln (x +1),解得a ⩾−1,故−1⩽a ⩽0.故答案为B.7.当x ∈[0,2π]时,曲线y =sin x 与y =2sin (3x −π6)的交点个数为A.3B.4C.6D.8【答案】C.【解析】五点作图法画图易得应有6个交点.故答案为C.8.已知函数f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时f(x)=x ,则下列结论中一定正确的是A.f(10)>100 B.f(20)>1000 C.f(10)<1000 D.f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)>143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从种植区抽取样本,得到推动出口后亩收入的样本均值为x =2.1,样本方差s 2=0.01.已知该种植区以往的亩收入x 服从正态分布M(1.8,0.12),假设推动出口后的亩收入Y 服从正态分布N(x,s 2),则(若随机变量Z 服从正态分布N(μ,σ2),则P (Z <μ+σ)≈0.8413)A.P (X >2)>0.2 B.P (X >2)<0.5 C.P (Y >2)>0.5 D.P (Y >2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P (X >2)<P (X >1.9)=1−P (X <1.9)=1−0.8413<0.2,A 错误;P (X >2)<P (X >1.8)=0.5,B 正确;P (Y >2)>P (Y >2.1)=0.5,C 正确;P (Y >2)=P (Y <2.2)=0.8413>0.8,D 错误.故答案为BC.10.设函数f(x)=(x −1)2(x −4),则A.x =3是f(x)的极小值点B.当0<x <1时,f(x)<f(x 2)C.当1<x <2时,−4<f(2x −1)<0D.当−1<x <0时,f(2−x)>f(x)【答案】ACD.【解析】计算知f ′(x)=3(x −1)(x −3).故x ∈(1,3)时f(x)单调减,其余部分单调增.由此知x =3为f(x)极小值点,A 正确;由上知x ∈(0,1)时f(x)单调增,又此时x >x 2,故f(x)>f(x 2),B 错误;此时2x −1∈(1,3),故f(2x −1)∈(f(3),f(1))=(−4,0),C 正确;由f(2−x)=(x −1)2(−x −2),故f(2−x)−f(x)=2(1−x)3>0,D 正确.故答案为ACD.11.造型∝可以看作图中的曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于−2;到点F (2,0)的距离与到定直线x =a(a <0)的距离之积为4,则A.a =−2B.点(2√2,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点(x 0,y 0)在C 上时,y 0⩽4x 0+2【答案】ABD.【解析】由原点O 在曲线C 上且|OF |=2知O 到直线x =a 距离为2,由a <0知a =−2,A 正确;由x >−2知C 上点满足(x +2)√(x −2)2+y 2=4,代(2√2,0)知B 正确;解出y 2=16(x +2)2−(x −2)2,将左边设为f(x),则f ′(2)=−0.5<0.又有f(2)=1,故存x0∈(0,1)使f(x0)>1.此时y>1且在第一象限,C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D正确.故答案为ABD.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线C∶x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为▴..【答案】3 2 .【解析】根据对称性|F2A|=|AB|2=5,则2a=|F1A|−|F2A|=8,得到a=4.另外根据勾股定理2c=|F1F2|=12,得到c=6,所以离心率e=ca=32.13.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a=▴..【答案】ln2.【解析】设曲线分别为y1,y2,那么y′1=e x+1,得到切线方程y−1=2x,根据y′2=1x+1得到切点横坐标为−12,代入y2得到a=ln2.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为▴..【答案】1 2 .【解析】.由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8),为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7}.首先注意到8是最大的,故甲不可能得四分.若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况;若甲得两分,则讨论在何处得分:若在b,c处,则同样c=7,b=5,进而a=1,d=3,共一种;若在a,c处,则必有c=7,a≠1,b≠5,在b=1时有全部两种,在d=1时仅一种,共三种;若在a,b处,则b∈{5,7},a≠1,c≠7.当a=5时,由上述限制,c=1时有两种,d=1时仅一种;当a=7时,a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种.故共有1+3+8=12种,又总数为4!=24,故所求为1−1224=12.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C=√2cos B,a2+b2−c2=√2ab.(1)求B;(2)若△ABC的面积为3+√3,求c.【解析】(1)根据余弦定理a 2+b 2−c 2=2ab cos C =√2ab ,那么cos C =√22,又因为C ∈(0,π),得到C =π4,此时cos B =12,得到B =π3.(2)根据正弦定理b =c sin B sin C =√62c ,并且sin A =sin (B+C)=sin B cos C +cos B sin C =√6+√24,那么S =12bc sin A =3+√3,解得c =2√2.16.(15分)已知A(0,3)和P (3,32)为椭圆C ∶x 2a 2+y 2b2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【解析】(1)直接代入后解方程,得到a 2=12,b 2=9,c 2=3,所以e 2=14,离心率e =12.(2)设B(x 0,y 0),则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AB =(x 0−3,y 0−32),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗AP =(3,−32).得到9=S=12∣−32(x 0−3)−3(y 0−32)∣,或者x 0+2y 0=−6,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3),对应的直线方程y =12x 或者y =32x −3.17.(15分)如图,四棱锥P −ANCD 中,P A⊥底面ABCD ,P A =AC =2,BC =1,AB =√3.(1)若AD⊥AB ,证明:AD平面P BC ;(2)若AD⊥DC ,且二面角A −CP −D 的正弦值为√427,求AD .【解析】(1)由P A⊥面ABCD 知P A⊥AD ,又AD⊥P B ,故AD⊥面P AB .故AD⊥AB ,又由勾股定理知AB⊥BC ,故AD//BC ,进而AD//面P BC .(2)由P A⊥面ABCD .P A⊥AC ,P C =2√2,设AD =t ,则P D =√4+t 2,CD =√4−t 2,由勾股定理知P D⊥CD .则S △P CD =12√16−t 4,S △ACD =12t √4−t 2,设A到P CD距离为ℎ.由等体积,S△P CD ⋅ℎ=S△ACD⋅P A.代入解出ℎ=2t√4+t2.考虑A向CP作垂线AM,二面角设为θ则ℎ=AM sinθ=2√217.由此解出t=√3.18.(17分)已知函数f(x)=lnx2−x+ax+b(x−1)3.(1)若b=0,且f′(x)⩾0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>−2当且仅当1<x<2,求b的取值范围.【解析】函数定义域(0,2).(1)当b=0时,f′(x)=1x+12−x+a=2x(2−x)+a⩾0恒成立.令x=1得a⩾−2.当a=−2时,f′(x)=2(x−1)2x(2−x)⩾0,从而a的最小值为−2.(2)f(x)+f(2−x)=lnx2−x+ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1),且定义域也关于1对称,因此y=f(x)是关于(1,a)的中心对称图形.(3)先证明a=−2.由题意,a=f(1)⩽−2.假设a<−2,由f(2e|b|+11+e|b|+1)> |b|+1−|b|=1,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0,矛盾.故a=−2.此时,f′(x)=(x−1)2x(2−x)[3bx(2−x)+2].当b⩾−23,f′(x)⩾(x−1)2x(2−x)(2−4x+2x2)⩾0,且不恒为0,故f(x)在(0,2)递增.f(x)>−2=f(1)当且仅当1<x<2,此时结论成立.当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0,且f′(x)<0,当x∈(x0,1),因此f(x)在(x,1)递减,从而f(x0)>f(1)=−2,而x0∉(1,2)此时结论不成立.综上,b的取值范围是[−23,+∞).19.(17分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为0的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1)写出所有的(i,j),1⩽i⩽j⩽6,使数列a1,a2,⋯a6是(i,j)−可分数列;(2)当m⩾3时,证明:数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j),记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为Pm ,证明Pm>18.【解析】记{a n }的公差为d .(1)从a 1,a 2,⋯,a 6中去掉两项后剩下4项,恰构成等差数列,公差必为d ,否则原数列至少有7项.因此剩下的数列只可能为a 1,a 2,a 3,a 4,a 2,a 3,a 4,a 5,a 3,a 4,a 5,a 6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2).(2)考虑分组(a 1,a 4,a 7,a 10),(a 3,a 6,a 9,a 12),(a 5,a 8,a 11,a 14),(a 4k−1,a 4k ,a 4k+1,a 4k+2)(4⩽k ⩽m),(当m =3时只需考虑前三组即可)即知结论成立.(3)一方面,任取两个i,j(i <j)共有C 24m+2种可能.另一方面,再考虑一种较为平凡的情况:i−1,j−i−1均可被4整除,此时,只要依次将剩下的4m 项按原顺序从头到尾排一列,每四个截取一段,得到m 组公差为d 的数列,则满足题意,故此时确实是(i,j)−可分的.接着计算此时的方法数.设i =4k+1(0⩽k ⩽m),对于每个k ,j 有(4m +2)−(4k +1)−14+1=m−k+1(种),因此方法数为m∑k=1(m −k +1)=(m +1)(m +2)2.当m =1,2,已经有(m +1)(m +2)2/C 24m+2>18.下面考虑m ⩾3.我们证明:当i −2,j −i +1被4整除,且j −i +1>4时,数列是(i,j)−可分的.首先我们将a 1,a 2,⋯,a i−2,及a j+2,a j+3,⋯,a 4m+2顺序排成一列,每4个排成一段,得到一些公差为d 的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j −i +1个数即可.为书写方便,我们记j −i =4t −1(t >1),并记b n =a n+i−2,即证b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组.引理:设j−1能被4整除.若b 1,b 2,⋯,b j+1是(2,j)−可分的,则b 1,b 2,⋯,b j+9是(2,j+8)−可分的.引理证明:将b 1,b 2,⋯,b j+1去掉b 2,b j 后的j −14组四元组再并上(b j ,b j+2,b j+4,b j+6),(b j+3,b j+5,b j+7,b j+9)即证.回原题.由(2),b 1,⋯,b 14是(2,13)−可分数列,且(b 1,b 3,b 5,b 7)和(b 4,b 6,b 8,b 10)知b 1,⋯,b 10是(2,9)−可分数列,因而结合引理知b 1,b 3,b 4,⋯,b 4t ,b 4t+2可被划分成若干组,由此结论成立.计算此时的方法数.设i =4k+2(0⩽k ⩽m−1),则此时j 有(4m +2)−(4k +2)4−1=m −k −1种,因此方法数为m−1∑k=0(m −k −1)=m(m −1)2.因此我们有p m ⩾m(m −1)+(m +1)(m +2)2C 2m+1>18.。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学解答题(新高考)数列求和(错位相减法)(典型例题+题型归类练)(解析版)

高考数学解答题(新高考)数列求和(错位相减法)(典型例题+题型归类练)(解析版)

专题07 数列求和(错位相减法)(典型例题+题型归类练)一、必备秘籍错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)类型二:除型二、典型例题类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)例题1.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为21n b n =+,求1122n n n T a b a b a b =+++的值.感悟升华(核心秘籍) 错位相减法的两个陷阱(易错点):(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,令,则求解目标,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)【答案】(1)3=n a (2)3n T n =⋅ (1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a . (2)01-13353(21)3n n T n =⨯+⨯+++,③12-133353+(21)?3(21)?3n n n T n n =⨯+⨯+-++,④③−④得:121232(333)(21)3n n n T n --=++++-+13(13)32(21)313n n n --=+⨯-+-(2)3n n =-,所以3n n T n =.例题2.(2022·黑龙江·哈尔滨三中模拟预测(理))已知数列{}n a ,13a =,点()1,n n a a +在曲线5823x y x -=-上,且12n n b a =-. (1)求证:数列{}n b 是等差数列; (2)已知数列{}n c 满足122n b n n c b +=⋅,记n S 为数列{}n c 的前n 项和,求n S .【答案】(1)证明见解析(2)16(23)2n n S n +=+-⋅;证明见解析(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)因为点()1,n n a a +在曲线5823x y x -=-上,所以15823n n n a a a +-=-,因为13a =,所以11111232b a ===--, 因为11111158222223n n n n n n n b b a a a a a ++-=-=-------231222n n n a a a -=-=--, 所以数列{}n b 是首项为1,公差为2的等差数列. (2)由(1)得1(1)221n b b n n =+-⋅=-, 所以1221)22(n n b n nc b n +=⋅=-⋅,所以123123252(212)n n n S =⨯+⨯+⨯++-⋅,3124123252(21)22n n S n +=⨯+⨯+⨯++-⋅,所以231222(222)(21)2n n n n S S n +-=++++--⋅,所以114(12)22(21)212n n n S n -+--=+⨯--⋅-16(32)2n n +=-+-⋅,所以16(23)2n n S n +=+-⋅.类型二:除型nn na cb =(其中n a 是等差数列,n b 是等比数列) 例题3.(2022·湖南·模拟预测)设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式;(2)若23n n a b n =,求数列{}n b 的前n 项和n T .【答案】(1)123n n a -=⨯(2)323443n nn T +=-⨯第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减,化简,求和:(注意此处等比数列求和有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)122n n a S +=+,① 当2n ≥时,122n n a S -=+,②①-②得()1122n n n n n a a S S a +--=-=,∴13(2)n n a a n +=≥,∴13n na a +=, ∵12a =,∴21226a S =+=,∴21632a a ==也满足上式, ∴{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a --=⋅=⋅. 即{}n a 的通项公式为123n n a -=⨯.(2)由(1)知123n n a -=⨯,所以233n n n n nb a ==, 令211213333n n n n nT --=++++,① 得231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-11111113311323313n n n n n n++⎛⎫- ⎪⎛⎫⎝⎭=-=-- ⎪⎝⎭-, 所以323443n nn T +=-⨯.例题4.(2022·河南·灵宝市第一高级中学模拟预测(文))已知数列{}n a 满足()()*1111n n a a n n n n n +-=∈++N ,且11a =.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足13nn n a b -=,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1133n n n S -+=-第(2)问思路点拨:由(1)知:根据题意,得,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减:化简求和:解答过程:(1)因为()1111111n n a a n n n n n n +-==-+++, 所以()111211n n a a n n n n n--=-≥--, 12111221n n a a n n n n ---=-----, …2111122a a -=-, 所以()1112n a a n n n-=-≥. 又11a =,所以21n a n n n-=,所以()212n a n n =-≥. 又11a =,也符合上式, 所以21n a n =-. (2)结合(1)得1213n n n b --=,所以 01231135********n n n S --=++++⋅⋅⋅+,① 2311352133333n n n S -=+++⋅⋅⋅+,② ①-②,得212111211233333n n n n S --⎛⎫=+++⋅⋅⋅+- ⎪⎝⎭111213321221213313n n nn n -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭-+⎢⎥⎣⎦=+-=--,所以1133n n n S -+=-. 三、题型归类练1.(2022·辽宁·沈阳市外国语学校高二期中)设数列{}n a 的前n 项和为n S ,且满足4n n S a =-,数列{}n b 满足13b =,且1n n n b b a +=+. (1)求数列{}n b 的通项公式;(2)设n n c na =,数列{}n c 的前n 项和为n T ,求n T . 【答案】(1)3172n n b -⎛⎫=- ⎪⎝⎭(2)()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭(1)解:∵4n n S a =-,当2n ≥时114n n S a --=-, 两式作差得()12n n n a a a n -=-+≥, 即()1122n n a a n -=≥.当1n =时1114a S a ==-,∴12a =, ∴{}n a 为首项为2,公比为12的等比数列,∴1122n n a -⎛⎫=⋅ ⎪⎝⎭,∴11122n n n b b -+⎛⎫=+⋅ ⎪⎝⎭,即11122n n n b b -+⎛⎫-=⋅ ⎪⎝⎭,又13b =,∴当2n ≥时,()()()121321n n n b b b b b b b b -=+-+-+⋅⋅⋅+-0121113222222n -⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111232112n -⎛⎫- ⎪⎝⎭=+⨯-3172n -⎛⎫=- ⎪⎝⎭,当1n =时,1311372b -⎛⎫==- ⎪⎝⎭,∴3172n n b -⎛⎫=- ⎪⎝⎭;(2)解:由题意1122n n c n -⎛⎫=⋅ ⎪⎝⎭则011111242222n n T n -⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①则()121111112*********n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,②①-②得012111111122222222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1112221212nnn ⎛⎫- ⎪⎛⎫⎝⎭=⨯-⋅ ⎪⎝⎭-()14222n n ⎛⎫=-+⋅ ⎪⎝⎭,∴()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭,2.(2022·广东·模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .【答案】(1)3n n a =(2)1133244n n n T +⎛⎫=+- ⎪⎝⎭(1)解:因为()22*11230n n n n a a a a n ++--=∈N , 所以()()1130n n n n a a a a +++-=,又因0n a >,所以130n n a a +-=, 即13n na a +=, 所以数列{}n a 是以3为等比的等比数列,是以3n n a =;(2)解:()3131log l 313g 3o n n n n n n b a n a ++=+==⋅,则()2323334313n n T n =⨯+⨯+⨯+++,()23413233343313n n n T n n +=⨯+⨯+⨯++⋅++, 两式相减得()2312633313n n n T n +-=++++-+()()131331313n n n +⨯-=+-+-113322n n +⎛⎫=-++ ⎪⎝⎭, 所以1133244n n n T +⎛⎫=+- ⎪⎝⎭. 3.(2022·河南郑州·三模(理))已知数列{}n a 的前n 项和为n S ,122n n n a S -=. (1)证明数列2nn a ⎧⎫⎨⎬⎩⎭为等差数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)证明见解析;(2)()2124n n T n +=-⋅+.(1)N n *∈,122n n n a S -=,当2n ≥时,111122n n n a S ----=,两式相减得:111222n n n n n a a a ----=-, 即11122n n n a a ---=,则有11122n n n n a a ---=,而11122a S -=,解得14a =, 所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列. (2)由(1)知,()21112n n a n n =+-⨯=+,即()12n n a n =+⋅,于是得12n n S n +=⋅, ()2341122232122n n n T n n +=⨯+⨯+⨯++-⨯+⨯,因此()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯=,两式相减得:22341222(22222222(112))214n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅--, 所以()2124n n T n +=-⋅+. 4.(2022·全国·模拟预测)已知公差为整数的等差数列{}n a 满足23a =,5810a <<.(1)求数列{}n a 的通项公式;(2)设()2nn n b a =-⋅,求数列{}n b 的前n 项和n S . 【答案】(1)21n a n =-;(2)()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. (1)解:设等差数列{}n a 的公差为d ,因为23a =,5810a <<,所以83310d <+<,解得5733d <<, 又d ∈Z ,所以2d =, 所以()()2232221n a a n d n n =+-=+-=-.(2)解:因为()2n n n b a =-⋅,所以()()212n n b n =-⋅-, 所以()()()()()()()231123252232212n n n S n n -=⨯-+⨯-+⨯-++-⋅-+-⋅-,① ()()()()()()23121232232212n n n S n n +-=⨯-+⨯-++-⋅-+-⋅-,②①-②得,()()()()()231322222212n n n S n +⎡⎤=-+⨯-+-+⋅⋅⋅+---⋅-⎣⎦()()()()()()2111222122223221321n n n n n +++---⎛⎫-=--⋅- ⎪-=⎝⎭-+⨯--⋅-, 所以()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. 5.(2022·江西南昌·三模(理))已知数列{}n a 为等比数列,且11a =,2112n n n a a -+=-.(1)求{}n a 的通项公式; (2)设(1)n n nn b a -⋅=,求数列{}n b 的前n 项和n S . 【答案】(1)1(2)n n a -=-(2)1242n n n S -+=- 【解析】(1)因为2112n n n a a -+=-,所以21122n n n a a +++=-, 两式相除可得24n na a +=,即24q =, 因为21n n n a a a q +=,所以22120n n a q +=-<,可得0q <,所以2q =-,所以111(2)n n n a a q --==-. (2)11(1)(2)2n n n n n n b ---⋅==--, 则01221123122222n n n n n S ---⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ① 12311231222222n n n S n n --⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ② ①-②可得:1211111122121222222212nn n n n n S n n n -⎛⎫- ⎪+⎛⎫⎝⎭=-+++⋅⋅⋅+-=-=- ⎪⎝⎭-, 故1242n n n S -+=-. 6.(2022·全国·模拟预测)已知数列{}n a 满足11a =,121n n a a n +=+-.(1)证明:{}n a n +为等比数列;(2)求数列{}2nn a的前n 项和n S . 【答案】(1)证明见解析(2)222n nn S n +=-+ (1)由已知得()()112n n a n a n +++=+.又因为111120a +=+=≠,所以{}n a n +是首项为2,公比为2的等比数列;(2)由(1)可知1222n n n a n -+=⨯=.所以122n n n a n =-. 记2n n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则n n S n T =-,且有 231232222n n n T =+++⋅⋅⋅+, ① 12⨯①得 2341112322222n n n T +=+++⋅⋅⋅+, ② -①②得23411111112222222n n n n T +=++++⋅⋅⋅+- 1111221212n n n +⎛⎫- ⎪⎝⎭=--所以222n nn T +=- 所以222n n n n S n T n +=-=-+. 7.(2022·河南河南·三模(理))已知等差数列{}n a 的前n 项和为n S ,13a =-,612S =,数列{}n b 的前n 项和为122n n G .(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1)25,2n n n a n b =-=(2)127214n n T n .(1)设等差数列{}n a 的公差为d ,则1615181512,2a d d d +=-+==,所以25n a n =-. 由122n n G ,令1n =得21222b ,当2n ≥时,112222n n n n G G +-⎧=-⎨=-⎩,两式相减得()22n n b n =≥,12b =也符合上式, 所以2n n b =.(2)252n n c n ,()()()123212252n n T n =-⋅+-⋅++-⋅①, ()()()23123212252n n T n +=-⋅+-⋅++-⋅②,①-②得:()34116222252n n n T n ++-=-++++--⋅ ()()()311121262521472212n n n n n -++-=-+--⋅=-+-⋅-, 所以127214n n T n .8.(2022·全国·模拟预测(理))设数列{}n a 满足12a =,()122*n n a a n n --=-∈N .(1)求证:{}n a n -为等比数列,并求{}n a 的通项公式;(2)若()n n b a n n =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析,12n n a n -=+(2)()121n n T n =-⨯+(1)解:因为12a =,()122*n n a a n n --=-∈N , 所以122n n a a n -=+-,即()121n n a n a n -⎡⎤-=--⎣⎦ 又11211a -=-=,所以{}n a n -是以1为首项,2为公比的等比数列,所以112n n a n --=⨯,所以12n n a n -=+(2)解:由(1)可得()12n n n b a n n n -=-⋅=⨯,所以01211222322n n T n -=⨯+⨯+⨯++⨯①,所以12321222322n n T n =⨯+⨯+⨯++⨯②,①-②得12311121212122n n n T n --=+⨯+⨯+⨯++⨯-⨯ 即12212n n n T n --=-⨯-,所以()121n n T n =-⨯+; 9.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N . (1)求{}n a 的通项公式;(2)若n nn b a =,求数列{}n b 的前n 项和n T . 【答案】(1)3n n a =(2)323443n n n T +=-⨯ (1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去), 令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3n n a =.(2)由(1)可得,3n n n n n b a ==, 所以231233333n nn T =++++, 所以2341112333333n n n T +=++++, 两式相减得,23412111113333333n n n n T +=+++++- 11111123331322313n n n n n ++⎛⎫- ⎪+⎝⎭=-=-⋅-, 所以323443n nn T +=-⨯. 10.(2022·江西萍乡·二模(文))已知数列{}n a 中,111,2n n n a a a +==,令2n n b a =.(1)计算123,,b b b 的值,并求数列{}n b 的通项公式;(2)若()31n n c n b =+,求数列{}n c 的前n 项和n T .【答案】(1)1232,4,8b b b ===;2n n b =(2)1(32)24n n T n +=-⋅+(1)由12nn n a a +=得12nn n a a +=,又11a =,423562,2,4,84,a a a a a ∴=====,4612232,4,8b a b a b a ∴======,由 12n n n a a +=得1122n n n a a +++=,两式相除可得 22n na a +=, 则 12222n n n nb a b a ++==, {}n b ∴ 是以2 为首项,2 为公比的等比数列,故 2n n b =;(2)由 (1) 知 (31)2n n c n =+,则 ()2314272102322(31)2n n n T n n -=⨯+⨯+⨯++-++,()234124272102322(31)2n n n T n n +=⨯+⨯+⨯++-++, 两式相减得()2123112283222(31)283(31)212n n n n n T n n +++--=+⨯+++-+=+⨯-+- 1(23)24n n +=-⋅-,故1(32)24n n T n +=-⋅+。

数学高考真题答案及解析版

数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。

设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。

因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。

因此,选项A正确。

2. 根据题目,我们需要求解不等式。

首先,将不等式整理为标准形式:3x - 2 > 7。

解得x > 3,所以选项C是正确答案。

3. 题目涉及三角函数的图像和性质。

正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。

因此,选项B描述正确。

4. 这是一个关于复数的问题。

设复数z = a + bi,其中a和b是实数。

根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。

又因为z的实部为3,即a = 3。

代入模长公式,解得b = 4。

所以,复数z = 3 +4i,选项D正确。

5. 本题要求我们利用概率的基本原理计算事件的概率。

根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。

这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。

所以,P(A) = 3/8。

选项B是正确答案。

二、填空题1. 题目要求求解几何级数的和。

根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。

将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。

2. 本题考查圆的方程和直线与圆的位置关系。

设圆心为O(0,0),半径r = 3。

直线方程为y = x + 1。

圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。

因为 d < r,所以直线与圆相交。

根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。

三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学解答题解析(原创题)
1、命题内容:选修4-4 坐标系与参数方程
2、考纲要求:理解参数方程及极坐标的概念,了解常用参数方程中参数的几何意义,掌握参数方程、极坐标方程与普通方程的互化;
3、考查知识内容:考查直线的参数方程及利用参数t 的几何意义,考查参数方程与极坐标方程与普通方程的互化,考查等比数例性质等基础知识的应用;
4、能力要求:考查学生运算求解能力,逻辑推理能力,以及分析问题、解决问题的能力;
5、难度情况:中偏易;
6、试题价值: 坐标系与参数方程是历年全国卷高考考查的重要内容之一,是选作题(3选1)中之一, 与其他知识结合,能有效培养学生转化与化归、方程的数学思想,;
7、题目:在平面直角坐标系xoy 中,已知过点M(0,-1)的直线l 的参数方程为
,1,x y ⎧=⎪⎪⎨⎪=-⎪⎩( t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 2sin (0),m m ρθθ=>
(1)写出直线l 与曲线C 的普通方程;
(2)若直线l 与曲线C 分别交于A 、B 两点,且AB MA MB 是与的等比中项,求m 的值。

8、答案解析:
(1)
将,1,x y ⎧=⎪⎪⎨⎪=-+⎪⎩消去参数t 化为普通方程y=x-1;
----------2分
由222cos 2sin cos 2sin ,m m ρθθρθρθ==得将cos sin x y ρθρθ=⎧⎨=⎩
代入得到曲线C 的普通方程22(0)x my m =>。

----------4分
(2)将代
入,1,x y ⎧=⎪⎪⎨⎪=-⎪⎩代入曲线
C 的方程2
2(0)x my m =>,整理
得240,t m -+=
设方程的两根为12,t t ,则
有1212,4,t t t t m +==
----------6分 又AB MA MB 是与等比中项,故2
AB MA MB =•,即(21212,()t t t t -=得21212()50t t t t +-= ----------8分
即28200,m m -=解得5(0)2m m =>。

----------10分。

相关文档
最新文档