压汞公式表(新)
油层物理3-4 第四节 毛管力

二、 各种曲面附加压力
3、锥形毛管中的毛管力
如图,粗端曲面的曲率半径为R1=r1/cos(θ +β ),细 端曲面的曲率半径为R2=r2/cos(θ -β ),那么曲面上的 毛管压力为:
2 cos( ) P ci r i
15
二、 各种曲面附加压力
4.两相流体处于裂缝间(平行板间)的毛管力
3
— OB — WB
一、毛管中液体的上升 1源自1 毛管力公式的推导当液面上升到一定高度时, 存在平衡关系式:
2 2 r cos r h g 1 , 2
由此得到: h
21,2 cos rg
再由U形管原理得:
p p gh p ' B c B
式中Pc为毛管力,定义为两相界面上的压力差,其数值
7
毛管力性质
2)毛管力Pc与cosθ成正比。对油水体系,岩石表面亲 水时,即θ<90°,cosθ>0时,毛管力为正,水面就会 上升,岩样可以自然吸水。反之,岩石表面亲油时,θ> 90°,毛管力为负,岩样不能自动吸水,毛管力成为阻力, 如要使水进入岩心,则必须施加一个外力克服毛管力。 3)毛管力Pc与毛细管半径r成反比。毛管孔道半径越小, 毛管力越大,亲水毛管中液面上升越高。因此,油藏中毛 细管直径不同,毛细管中的液面参差不齐,油水界面或油 气界面成为一个具有相当厚度的油水或油气过渡带,而不 是一个截然分开的平面。 4)对于实际油层来说,当岩石表面为亲水性时,水能在 毛管力作用下自动进入岩心,驱出了岩心中的油,这一过 程就称为吸吮过程或称自吸过程。反之,当岩石表面亲油 (θ>90°)时,岩样不能自动吸水,如要使水进入岩心 使水驱油,则必须施加一个外力克服毛管力,这种过程即 为驱替过程。
压汞方法与数据解析

<美国康塔仪器公司培训教材>压汞法应用基础摘要1921年,Washburn 首先提出了多孔固体的结构特性可以通过把非浸润的液体压入其孔中的方法来分析的观点。
在当时,Washburn假定迫使非浸润的液体进入半径为R的孔所需的最小压力P由公式P=KR确定,这里K是一个常数。
这个简单的概念就成为了现代压汞法测孔仪的理论基础,相应地压汞法成为了描述各种固体特性的一项技术。
尽管能感觉得出这一方法有其根本和实际应用上的局限性,但压汞法在未来仍将被看作是测量大孔和中孔分布的标准方法。
这是因为该项技术在长时间的应用过程中存在三个明显的优点:1原理简单;2试验速度快;3该方法的最独到之处还在于它所测定的孔半径的范围比现在正在应用的其它方法(如:气体吸附,测热量法,热注汞法等)的范围要宽阔很多。
很明显,大家希望从试验结果可以推导出尽可能多的有关结构的信息。
令人惊奇的是,现在已公开的文献上根据压汞法测得的孔分布总结出来的材料相当少。
在这里,本文就通过研究各种报导中测试颗粒的分布、颗粒间和颗粒内部的孔隙率、孔的弯曲率、渗透性、喉/孔比、分形特性和可压缩性时(通过注汞曲线及退汞曲线)的优缺点,来加强压汞数据解释和分析,作者认为做这样的工作还是很有必要的。
关键词:压汞法;孔特性;孔;颗粒目录1.介绍2.压汞法作为分析特性的一个工具2.1理论基础2.1.1滞后现象2.1.2理想孔系统的研究2.2实验研究2.2.1连续扫描与分步加压方法的对比2.2.2接触角测量2.2.3汞的纯度2.2.4空白修正2.3应用范围2.3.1样品种类2.3.2压力和孔尺寸极限2.4汞孔率的数据分析2.4.1颗粒尺寸分布2.4.1.1Mayer-Stowe(MS)理论2.4.1.2Smith-Stermer(SS)理论2.4.2孔间隙和颗粒内孔隙率2.4.3 孔的弯曲率2.4.4 渗透性2.4.5 孔喉比2.4.6 分形特性2.4.7样品的可压缩性3.结论4.致谢5.参考资料1. 绪言压汞法是研究多孔物质特性一项较好的技术(1-3)。
压汞原理简介-石油行业定义

2.2 孔隙结构特征参数的定义为了对不同类型的岩心的孔隙结构进行定量分析,根据恒速压汞实验结果,结合国内外近十年来恒速压汞的应用成果,我们对相关孔隙结构特征参数的定义如下。
2.2.1平均喉道(throat)半径:设喉道半径为r i的每一喉道的分布频率为f i,则每一喉道半径归一化的分布频率密度αi,(2-1)平均喉道半径为:(2-2)2.2.2平均孔隙(pore)半径定义为孔隙半径加权平均值。
设孔隙半径为r i的每一孔隙的分布频率为f i,则每一孔隙半径归一化的分布频率密度βi,(2-3)平均孔隙半径为:(2-4)2.2.3孔喉半径比平均值定义为孔隙/喉道半径比的加权平均值。
设孔隙/喉道半径比为ηi的分布频率为f i,则每一孔隙/喉道半径比的归一化分布频率密度γi,(2-5) 平均孔隙/喉道半径比为:(2-6)2.2.4平均毛管(tube)半径建立在毛管束模型基础之上。
任一毛管孔道r i的体积V i与所有毛管孔道体积和V p的比值相当于该毛管孔道在总毛管系统中的饱和度。
(2-7)(2-8)2.2.5 喉道半径方均根值:(2-9)2.2.6 单个喉道对渗透率的贡献率在泊谡叶公式的基础上,推导出单根喉道对整个岩心的贡献率公式:(2-10)式中Si的定义见(2-7)。
比较(2-9)得:(2-11)2.2.7主流喉道半径采用喉道对渗透率累积贡献率达80%以前喉道半径的加权平均值,因为对于低渗透油藏,有效渗流能力随驱替动力增加而增加,只有当驱替动力达到一定值时,有效渗流能力趋于稳定。
其转折点处的压力梯度很大,油藏开发时不可能达到如此大的压力梯度。
因此取渗透率贡献率达到80%时喉道的加权平均值。
主流喉道半径R M定义如下:(2-12)(2-13)2.2.8主流喉道半径下限为喉道对渗透率累积贡献率达80%时的喉道半径。
(2-14)2.2.9微观均质系数a定义为各喉道半径对最大喉道半径的总偏离度。
a值越大,组成样品的喉道半径越接近最大喉道半径,样品的喉道分布越均匀。
2-压汞法测量孔分布原理精选全文

The sample cell or penetrometer (sometimes called a dilatometer) is used both to contain the sample and to facilitate the measurement of intrusion and extrusion volumes.
Material
Dimethylglyoxime丁二酮肟 Galactose半乳糖 Barium chromate铬酸钡 Titanium oxide二氧化钛 Zinc oxide氧化锌 Dodecyl sodium sulfate十二烷基硫酸钠 Antimony oxide氧化锑 Fumaric acid富马酸 Starch淀粉 Carbon 碳
High pressure intrusion/extrusion (scan or step)
© 2001, 2002 Quantachrome Instruments
实验结果综述Results Overview
© 2001, 2002 Quantachrome Instruments
© 2001, 2002 Quantachrome Instruments
应用
孔体积测定范围最主要依赖于仪器的压力范围,但 也依赖于接触角.
Pore size range depends predominantly on the instrument pressure range but also on the contact angle.
Washburn 方程
Pr 2 cos 480 N / m and 140
P 0.736 r
压汞仪实验指导书

压汞仪实验指导书1. 实验目的:混凝土是由粗骨料、细骨料、水泥水化颗粒、未水化水泥颗粒、孔隙和裂纹等不同组分组成的水泥基复合材料,是一种多孔的、在各尺度上多相的非均质复杂体系。
孔结构对混凝土的渗透性和强度等宏观性能有重要影响。
压汞法(mercuryintrutionporosimetry )测孔是研究水泥基复合材料孔结构参数(如孔隙率、孔径尺寸和孔径分布)的一种广泛应用的方法,成功应用于许多关于硬化水泥浆和水泥砂浆体的研究,并取得了大量的成果,促进了混凝土材料科学的进步。
本实验的目的是了解压汞仪工作原理;掌握压汞仪操作;并学会分析所测孔结构数据。
2压汞仪工作原理:通过加压使汞进入固体中,进入固体孔中的孔体积增量所需的能量等于外力所做的功,即等于处于相同热力学条件下的汞-固界面下的表面自由能。
而之所以选择水银作为试验液体,是根据固体界面行为的研究结论,当接触角大于90度时,固体不会被液体润湿。
同时研究得知,水银的接触角是117度,故除非提供外加压力,否则混凝土不会被水银润湿,不会发生毛细管渗透现象。
因此要把水银压入毛细孔,必须对水银施加一定的压力克服毛细孔的阻力。
通过试验得到一系列压力p 和得到相对应的水银浸入体积V ,提供了孔尺寸分布计算的基本数据,采用圆柱孔模型,根据压力与电容的变化关系计算孔体积及比表面积,依据华西堡方程计算孔径分布。
压汞试验得到的比较直接的结果是不同孔径范围所对应的孔隙量,进一步计算得到总孔隙率、临界孔径(临界孔径对应于汞体积屈服的末端点压力。
其理论基础为,材料由不同尺寸的孔隙组成,较大的孔隙之间由较小的孔隙连通,临界孔是能将较大的孔隙连通起来的各孔的最大孔级。
根据临界孔径的概念,该表征参数可反映孔隙的连通性和渗透路径的曲折性)、平均孔径、最可几孔径(即出现几率最大的孔径)及孔结构参数等。
图1 毛细孔中汞受力情况若欲使毛细孔中的汞保持一平衡位置,必须使外界所施加的总压力P 同毛细孔中水银的表面张力产生的阻力P 1相等,根据平衡条件,可得公式; 2P 2cos s r p P r ππσθ==-22cos r p r ππσθ=-只有当施加的外力P ≥ Ps 时,水银才可进入毛细孔,从而得到施加压力和孔径之间的关系式,即Washburn 公式:3实验用原材料、仪器及操作步骤和注意事项:美国产PoreMaster-33全自动压汞仪,天平,脱脂棉,镊子,汞,液氮,硫磺,酒精 美国产PoreMaster-33全自动压汞仪主要技术指标:孔分布测定范围孔直径为微米;从真空到33000psia 可连续或步进加压。
压汞实验结果数据处理说明

Porowin 安装及使用说明1、直接双击执行文件setup.exe,选择安装目录。
2、安装完毕后会跳出一个Calibration窗口,提示插入软盘,这是用于安装仪器测试参数,和数据处理无关,按取消。
3、安装完毕后,打开Poromaster for windows,点击主菜单options,再击tabulardata options,将print one out of every 10 data point,改为1。
(很重要,不然数据点很少)4、直接打开测量文件,显示的是原始测量(孔径/累计孔体积)曲线。
按鼠标右键,选择相应目录即可得到所需曲线或数据。
5、常用目录:(1) 绘孔径分布图Graphics Plots-----Pore Size Distribution ----- -dv/dlogR------ -dv/dlogR VS. poresize(2)导出数据Tables----Pore Size Distribation----by V olume----Intrusion,单击鼠标右键,save as,另存为文本文件。
数据处理参见“数据处理说明”文件。
可以自己绘制曲线。
(3)孔隙率数据Tables----Porosity----Porosity Summary,同上操作,另存为文本文件。
孔隙率应看total porosity数据,其它的Total interparticle porosity(粒子间孔隙率)和Total intraparticle porosity(粒子内孔隙率)没有实际意义。
(4)孔容、比表面数据Tables----Standard Report Summary,同上操作,另存为文本文件。
6、注意:文件中经常会出现乱码现象,这是由于Windows操作系统是中文所致,你可以通过修改windows中的“区域和语言选项”,将“区域选项”改成-英语美国就可以了。
压汞实验结果数据处理说明1、带prm后缀的文件是原始文件,需要用数据处理软件Porowin打开。
催化剂的物理结构

(b) 吸附剂含的微孔 被氮的多层吸附充填 堵塞, 堵塞 , 有碍于多层的 进一步发展
(c) 发生毛细凝 聚现象, 聚现象 , 表观吸 附量大于多层吸 附量
二、催化剂的孔结构
固体催化剂是具有发达孔隙结构的颗 粒集合体.催化剂的孔结构参数主要包 括密度、比孔体积、平均孔半径、孔 径分布等。下面主要介绍密度、比孔 体积和孔径分布。
根据孔径范围的不同, 根据孔径范围的不同,孔分布的测定可采 用不同的方法: 压汞法:可以测定大孔和孔径4nm以上的 压汞法:可以测定大孔和孔径4nm以上的 中孔的孔径分布 气体吸附法:可以测定半径小于20气体吸附法:可以测定半径小于20-30nm 的中孔孔径分布和大于0.3nm微孔孔径分 的中孔孔径分布和大于0.3nm微孔孔径分 布
催化剂颗粒集合体示意图 催化剂颗粒集合体示意图
孔的类型
闭孔 交联孔(开孔)
通孔(开孔) 盲孔(开孔)
孔形的分类
筒形孔 裂隙孔
锥形孔
空隙或裂缝 球形孔(墨水瓶孔)
1.密度 1.密度
催化剂的密度是单位体积内含有的催化剂 的质量
X=m/V
实际催化剂是多孔体,成型的催化剂粒团 包含固体骨架体积V真,内孔体积V孔和孔隙 体积V隙。
一、催化剂的比表面积及测定
1.比表面积定义及表示( 1.比表面积定义及表示(specific 比表面积定义及表示 area) surface area) 比表面通常用来表示物质分散的程度, 比表面通常用来表示物质分散的程度, 分散的程度 又称分散度。 又称分散度。 催化剂比表面积定义为每克催化剂或吸 催化剂比表面积定义为每克催化剂或吸 比表面积定义 附剂的总面积,表示为Sg。 附剂的总面积,表示为Sg。 Sg
vB
压汞毛管力曲线测定实验

中国石油大学渗流物理实验报告实验日期: 成绩: 班级: 学号: 姓名: 教师: 张俨彬同组者:压汞毛管力曲线测定实验一.实验目的1.了解压汞仪的工作原理及仪器结构;2.掌握毛管力曲线的测定方法及实验数据处理方法。
二.实验原理岩石的孔隙结构极其复杂,可以看作一系列相互连通的毛细管网络。
汞不润湿岩石孔隙,在外加压力作用下,汞克服毛管力可进入岩石孔隙。
随压力增加,汞依次由大到小进入岩石孔隙,岩心中的汞饱和度不断增加。
注入压力与岩心中汞饱和度的关系曲线即为毛管力曲线,如图4-1所示。
三.实验流程图1 压汞仪流程图(岩心尺寸:φ25×20--25mm,系统最高压力50MPa)四.实验步骤1.装岩心、抽真空:将岩样放入岩心室并关紧岩心室,关岩心室阀,开抽空阀,关真空泵放空阀;开真空泵抽空15~20分钟;2.充汞:开岩心室阀,开补汞阀,调整汞杯高度,使汞杯液面至抽空阀的距离H 与当前大气压力下的汞柱高度(约760mm)相符;开隔离阀,重新调整汞杯高度,此时压差传感器输出值为28.00~35.00cm之间;关抽空阀,关真空泵,打开真空泵放空阀,关闭补汞阀;3.进汞、退汞实验:关高压计量泵进液阀,调整计量泵,使最小量程压力表为零;按设定压力逐级进泵,稳定后记录压力及汞体积测量管中汞柱高度,直至达到实验最高设定压力;按设定压力逐级退泵,稳定后记录压力及汞体积测量管中汞柱高度,直至达到实验最低设定压力;4.结束实验:开高压计量泵进液阀,关隔离阀;开补汞阀,开抽空阀;打开岩心室,取出废岩心,关紧岩心室,清理台面汞珠。
(注意:进泵时,压力由小到大,当压力达到压力表量程的2/3时,关闭相应的压力表;退泵时,压力降到高压表量程的1/3以下并在下一级压力表的量程范围内时,才能将下一级压力表打开。
)五.数据处理1.毛管力曲线测定原始记录表1 毛管力曲线测定原始记录表岩心直径: 2.500 cm 计量管截面积:0.3532 cm2岩心长度: 2.394 cm 岩心孔隙度:35.2 %以进汞压力为10MP 为例(1) 校正计量管中汞柱的高度:σ∆+='i i h h =24.34+0.99=24.33 (2) 含汞饱和度Hg S :%100)(%1000⨯'-=⨯=Pi PHg Hg V h h A V V S=%53.79%100394.25.225.0)33.24-64.33(3532.02=⨯⨯⨯⨯⨯π (3) 对应的毛管半径:)(07354.0107354.07354.0140cos 4802cos 2m P P P r cccμθσ===⨯⨯-==(4) 岩石的最大孔喉半径:)(71.81009.07354.07354.0max m P r Tμ===(5) 含汞饱和度为50%时相应的毛管压力Pc50=2.6MP(6) 退汞效率%54.42%100%53.79%70.45%53.79%100max min max =⨯-=⨯-=Hg Hg Hg S S S We2.计算岩心含汞饱和度,绘制毛管力曲线(举例说明计算过程,并将含汞饱和度填入原始记录表);(1)校正计量管中汞柱的高度:σ∆+='i i h h式中:i h '-任一压力下,校正后的计量管中汞柱的高度,cm ;i h -任一压力下,计量管中汞柱的高度,cm ;σ∆—任一压力下,主要包含汞本身的压缩值在内的系统误差,σ∆通过空载实验测得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录:参数意义、公式
1. P d 排驱压力(MPa): 指非润湿相开始进入岩样最大喉道的压力,也就是非润湿相刚开始进入岩样的压力。
2. r max 最大孔喉半径(μm): 压力为排驱压力时非润湿相进入岩石的孔喉半径为最大孔喉半径,与P d 一起是表示岩石渗透
性好坏的重要参数。
3. P 50 饱和度中值压力(MPa): 非润湿相饱和度50%时相应的毛管压力为P 50,它越小反映岩石渗滤性越好,产能越高。
4. r 50 孔喉半径中值(μm): 非润湿相饱和度为50%时相应的孔喉半径为r 50,它可近似地代表样品的平均孔喉半径。
5. r 孔喉半径平均值(μm): 它是表示岩石平均孔喉半径大小的参数。
采用半径对汞饱和度的权衡求出。
6. α 均质系数: 均质系数表征储油岩石孔隙介质中每一个孔喉(ri)与最大孔喉半径的偏离程度,α在0~1
之间变化,α愈大,孔喉分布愈均匀。
7. F 岩性系数: 它是岩样实测渗透率与计算渗透率之比,反映喉道的迂曲情况。
8. Smax 最大汞饱和度(%): 实验最高压力时的累计汞饱和度%。
9. We 退汞效率(%): 在限定的压力范围内,从最大注入压力降到起始压力时,从岩样内退出的水银体积与降压前
注入的水银总体积的百分数。
它反映了非湿相毛细管效应采收率。
10. φp 结构系数: 它表征了真实岩石孔隙特征与假想的长度相等、粗细不同的圆柱形平行毛管束模型之间的差
别,它的数值是影响这种差别的各种综合因素的度量。
11. 1/Dr φp 特征结构系数: 它是相对分选系数Dr 与结构系数φp 乘积的倒数,既反映孔喉分选程度,又反映孔喉连通程
度,此值愈小,岩样孔隙结构愈差。
12. S KP 偏态(又称歪度): 表示孔喉大小分布对称性的参数,当S KP =0时为对称分布;S KP >0时为正偏(粗歪度);S KP <0
时为负偏(细歪度)。
13. K P 峰态: 表示孔喉分布频率曲线陡峭程度的参数,当S KP =1时为正态分布曲线;S KP >1时为高尖峰曲线;
S KP <1时为缓峰或双峰曲线。
14. D r 变异系数: 又称相对分选系数,能更好反映孔喉大小分布均匀程度的参数。
数值越小,孔喉分布越均匀。
15. K j 渗透率贡献值(%): 以某孔喉半径所能提供的渗透率百分数。
16. J(sw)函数: 又称为毛管力函数,是基于因次分析推论出的一个半经验关系的无因次函数,它是毛管力曲
线的一个很好的综合处理方法,并可用来鉴别岩石的物性特征。
(1) d P r
7354.0max
=
(2)
50
507354.0P r = (3) ∑∑-----+=
)
(2)
)((111
i i i i i i s s s s r r
r (4) %100max
min max ⨯-=S S S We (5)
⎰
∑∑⨯⨯=
∆∆⨯=
==max
)(max
max 1
1
max
1S s n
i i
n
i i
i
dS
r S r S S r
r α(6)
⎰
=
m ax
2)(0000111333.0S S ds
r K
F φ
(7)
5
.0)(⎪⎪⎭⎫
⎝⎛=φσk p s J c w (8)
∑∑∆∆⨯-⨯=
-i
i
i p kp S
S r S S 33
)( (9)
∑∑∆∆⨯-⨯=
-i
i
i p p S
S r r S K 44
)(
(10)
2
)
(8r K
p φ
φ=
(11)
⎰
⎰+=
m ax
1
2
)
(2)(S S S S j dS
r
dS r K j j (12)
∑∑∆∆⨯-=
=i
i
i
p
r S S
r r r
r S D 2
)(1
式中: r —平均孔喉半径μm ; S i —某点的汞饱和度%; r i —某点的孔喉半径μm
а—均质系数(无因次量); ΔS i —对应于r i 的某一区间的汞饱和度%; r max —最大孔喉半径,μm
F —岩性系数(无因次量); K —空气渗透率μm 2; φ —孔隙度%;
r (s)—孔喉半径分布函数中某一孔喉半径μm ; ds —对应于的某一区间汞饱和度%;
Smax —实验最高压力时的累计汞饱和度%; Smin —退汞到起始压力时残留在孔隙中汞饱和度%; We —退汞效率%; φp —结构系数,无因次量; S KP —偏态,无因次量; S p —分选系数; K j —渗透率贡献值%; S —汞饱和度%;
P c —毛管压力MPc ; σ—界面张力dyn/cm ; D r —变异系数(无因次量); K P —峰态(无因次量); 1/Dr φp —特征结构系数(无因次量);。