高中抛物线教学设计人教版

合集下载

高中抛物线教学设计人教版

高中抛物线教学设计人教版
让学生体会解决问题的方法,形成良好的解题思路。
通过相互交流,相互解决问题,增强合作意识,发挥团队精神,真正促进学生的思维发展。
再次体现在求解曲线的方程时建系的重要性。
类比的学习方法
形成四种方程间的对比,加深对知识的理解,形成完善的知识结构体系。
培养学生观察、分析、类比、抽象概括的能力。
巩固练习
例1
例2
2、通过几何画板,观察、发现和认识抛物线。
师生利用课件,结合教具共同作与一个定点的距离等于它到定直线的距离的动点的轨迹(图形)——抛物线,培养探索、实验精神。
四、教学策略选择与设计
以多媒体课件为依托,课件可增强课堂教学的直观性、趣味性,促进学生积极思维,能够在动态演示过程中化解教学难点,突出教学重点。教学中采用实验探索、类比法、图表法。
人教版抛物线及其标准方程教学设计
科目:数学
教学对象:高二年级
课时:1课时
提供者:
单位:四中分校
一、教学内容分析:
解析几何是通过建立直角坐标系,用代数方法解决几何问题的学科。它主要研究两个问题:(1)已知曲线求方程;(2)根据方程研究曲线的性质。而椭圆、双曲线、抛物线是重要的圆锥曲线,是学生掌握解析几何的关键,是领会解析法的重要途径,是数形结合的重要知识点。
(3)不仅是一个头脑清晰的讲授者,还是一个反应敏捷的倾听者,让学生有说话权利,重视学生的内心世界,使学生敢于表达自己的见解。
(4)尊重学生在学习活动中的主体地位,引导启发学生的思维参与到有效的学习中。
八、板书设计
一.概念形成三.巩固练习
抛物线的定义
点F不在直线l上四.本节小结
二.抛物线的标准方程五。作业教材P73习题2.4A组1,3
抛物线的定义

人教A版(2019)高中数学选择性必修第一册 《抛物线》教学设计

人教A版(2019)高中数学选择性必修第一册 《抛物线》教学设计
在学生充分思考与推导的基础上,对比分析三种不同形式的抛物线方程及其联系,由学生确定将 作为抛物线的标准方程,同时写出其焦点坐标和准线方程.
设计意图:通过问题2及其三个追问,注重学生思维的发生点,让学生类比椭圆与双曲线标准方程的推导方法,自主推导抛物线的标准方程,体验类比方法,提升数学运算素养.
问题3:在平面直角坐标系中,类比椭圆、双曲线,怎样求不同开口方向的抛物线的标准方程?
追问:(1)动点 是如何获得的?
(2)线段 和线段 的几何意义分别是什么?
(3)变化的量有哪些?变化顺序如何?变化中是否存在不变的关系?
(4)当直线 经过点 时,线段 的垂直平分线 与过点 的定直线 的垂线是什么位置关系?
师生活动:四个追问是让学生在利用信息技术工具操作的过程中从思维层面对问题1进行分析.
《抛物线》教学设计
一、内容和内容解析
1.内容
抛物线的概念、标准方程及其简单应用.
2.内容解析
抛物线是平面内到定点的距离与到定直线的距离相等的点的轨迹,其中的定点、定直线(不经过定点)是确定抛物线的几何要素,这一概念反映了抛物线的几何特征.根据抛物线的概念类比椭圆、双曲线标准方程的获得过程,通过建立适当的平面直角坐标系,用坐标法推导抛物线的标准方程.由于焦点的位置不同,抛物线标准方程的形式也不同.此时,要根据抛物线的位置,充分运用坐标法,对方程的形式进行转化,获得焦点分别在x轴负半轴、y轴正半轴、y轴负半轴上的抛物线的标准方程.通过抛物线的标准方程,结合抛物线的概念,可以研究抛物线的几何性质及其简单应用,特别是过焦点的直线的有关性质.上述过程体现了研究圆锥曲线的一般过程.
(2)三种不同形式的抛物线方程哪个更简单?为什么?
(3)三种不同形式的抛物线方程是否有联系?

抛物线(单元教学设计)高中数学人教A版2019选择性必修第一册

抛物线(单元教学设计)高中数学人教A版2019选择性必修第一册

“抛物线”单元教学设计一、内容和内容解析(一)内容1.抛物线及其标准方程2.抛物线的简单几何性质本单元内容结构图如下:抛物线的几何情境抛物线的几何特征抛物线的标准方程抛物线的实际应用抛物线的简单几何性质范围、对称性、顶点、离心率(二)内容解析内容本质:本单元是在抛物线的几何情境中,抽象出抛物线的几何特征,然后建立其标准方程,再利用标准方程研究其几何性质,并利用它们解决简单的实际问题.蕴含的思想与方法:本单元最重要的、最根本的数学思想方法是数形结合与坐标法.当然,在解决问题的过程中,数形结合、转化与化归、分类整合等思想方法也发挥着重要作用.知识点上下位关系:本单元是在学习了直线与圆的方程、椭圆、双曲线的基础上学习的,特别是抛物线与椭圆、双曲线同属圆锥曲线,其研究路径与椭圆、双曲线大致相同,是椭圆与双曲线知识的延续.育人价值:本单元的学习有助于学生学会合乎逻辑地、有条理地、严密精准地分析问题与解决问题,有助于发展学生的数学抽象、逻辑推理、数学运算、直观想象、数学建模等方面的素养.教学重点:抛物线的概念、标准方程与简单几何性质.二、目标和目标分析(一)单元目标1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.了解抛物线的定义、几何图形和标准方程,以及它的简单几何性质.3.了解抛物线的简单应用.(二)目标解析达成上述目标的标志是:1.通过实例(抛物运动轨迹、探照灯反射镜面、卫星接收天线),知道抛物线在生产生活中有广泛应用.2.通过实际绘制抛物线的过程认识抛物线的几何特征,给出椭圆的定义.能类比椭圆、双曲线的方法,通过建立适当的坐标系,得到抛物线的标准方程.能在直观认识抛物线的图形特点的基础上,用抛物线的标准方程推导出抛物线的范围、对称性、顶点、离心率等简单几何性质.能用抛物线的定义、标准方程及简单几何性质解决简单的问题.能通过抛物线与方程的学习,进一步体会建立曲线的方程、用曲线的方程研究曲线性质的方法.3.通过将关于抛物线的实际问题转化为关于抛物线的数学问题,运用抛物线的定义、标准方程及简单的几何性质解决关于抛物线的数学问题,从而解决关于抛物线的实际问题,发展数学建模素养.类比用直线方程与圆、椭圆、双曲线的方程研究直线与圆、椭圆、双曲线的位置关系,用直线方程与抛物线的标准方程研究直线与抛物线的位置关系,知道直线与抛物线的公共点个数与直线的方程和抛物线的标准方程组成的方程组的解的个数的关系,从而体会用方程研究曲线的方法.三、教学问题诊断分析1.学生对坐标法已有了比较深的认识,通过前面直线、圆、椭圆、双曲线方程的学习,对用坐标法研究曲线的基本思想方法有了了解,但是,在建立抛物线方程的时候,如何建立坐标系是第一个教学问题.在教学中,应明确“适当”的“标准”是所得方程简单,能较好的反应曲线的性质,适当的方法是尽可能使曲线关于原点及坐标轴对称.观察抛物线知道,它具有对称性,并且过定点垂直于定直线的直线就是它的对称轴,在此基础上建立适当坐标系,通过对比几种建系的方程得出最简的.2.在掌握了开口方向向右的抛物线的标准方程之后,再考虑开口方向向左、向上、向下的抛物线的标准方程,是第二个教学问题.教学中,应通过类比来建坐标系得出方程.3.在研究抛物线的几何特征时,对于焦点弦问题,是第三个教学问题.在教学过程中,抓住两个方面——一元二次方程根与系数的关系及抛物线的定义,就能解决问题.4.在研究直线与抛物线的位置关系时,通过联立直线方程与抛物线方程得方程,由此判断直线与抛物线的位置关系,是第四个教学问题.在教学时,联立方程消元后,要注意二次项系数是否可以为0,要分类讨论.教学难点:(1)发现抛物线几何特征;(2)直线与抛物线的位置关系.四、教学支持条件分析学生已经学习了直线、圆、椭圆与双曲线,对解析几何的用坐标法研究曲线的基本思想与方法有了比较深入的了解.在本单元的教学中,充分运用网络画板的动态演示效果,包括演示圆锥曲线的统一定义、抛物线的几何特征、抛物线的简单几何性质、直线与抛物线的位置关系.五、课时教学设计本单元共3课时,具体分配如下:第1课时,抛物线及其标准方程;第2课时,抛物线的简单几何性质(一);第3课时,抛物线的简单几何性质(二).。

人教版高中数学抛物线教案

人教版高中数学抛物线教案

人教版高中数学抛物线教案
主题:抛物线
教材版本:人教版高中数学
教学内容:抛物线的基本概念和性质
教学目标:
1. 了解抛物线的定义和基本特征;
2. 熟练掌握抛物线的标准方程;
3. 能够解决与抛物线相关的问题。

教学重点和难点:
重点:抛物线的标准方程和性质。

难点:能够灵活运用抛物线的性质解决问题。

教学过程:
一、导入(5分钟)
教师介绍抛物线的概念,引出本课要学习的内容。

二、讲解(15分钟)
1. 抛物线的定义和形状;
2. 抛物线的标准方程;
3. 抛物线的焦点、准线和顶点。

三、练习(20分钟)
1. 让学生在纸上绘制抛物线,并编写标准方程;
2. 给学生一些练习题,让他们独立解决问题。

四、总结(5分钟)
教师总结本节课的要点,强调抛物线的重要性和应用。

五、作业布置(5分钟)
布置相关练习题作业,鼓励学生在家里复习和巩固所学知识。

※教学结束※
教学反思:
本节课通过讲解抛物线的定义、性质和标准方程,帮助学生更好地理解抛物线的基本概念。

但是在练习环节,部分学生遇到了困难,需要更多的实践和巩固。

下次课程将设计更多的
练习题,加深学生对抛物线的理解和掌握。

高一数学人教版选修2-1《抛物线及其标准方程》教案

高一数学人教版选修2-1《抛物线及其标准方程》教案

一、教课目的(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要修业生进一步娴熟掌握分析几何的基本思想方法,提升剖析、对照、归纳、转变等方面的能力.(三)学科浸透点经过一个简单实验引入抛物线的定义,能够对学生进行理论根源于实践的辩证唯心主义思想教育.二、教材剖析1.要点:抛物线的定义和标准方程.(解决方法:经过一个简单实验与椭圆、双曲线的定义对比较引入抛物线的定义;经过一些例题加深对标准方程的认识. )2.难点:抛物线的标准方程的推导.(解决方法:由三种成立坐标系的方法中选出一种最正确方法,防止了硬性规定坐标系. )3.疑点:抛物线的定义中需要加上“定点 F 不在定直线 l 上”的限制.(解决方法:向学生加以说明.)三、活动设计发问、回首、实验、解说、演板、归纳表格.四、教课过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今日我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思虑两个问题:问题 1:同学们对抛物线已有了哪些认识?在物理中,抛物线被以为是抛射物体的运转轨道;在数学中,抛物线是二次函数的图象?问题 2:在二次函数中研究的抛物线有什么特色?在二次函数中研究的抛物线,它的对称轴是平行于y 轴、张口向上或张口向下两种情况.指引学生进一步思虑:假如抛物线的对称轴不平行于y 轴,那么就不可以作为二次函数的图象来研究了.今日,我们打破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回首平面内与一个定点 F 的距离和一条定直线 l 的距离的比是常数 e 的轨迹,当 0 <e<1 时是椭圆,当 e>1 时是双曲线,那么当 e=1 时,它又是什么曲线?2.简单实验如图 2-29 ,把一根直尺固定在绘图板内直线l 的地点上,一块三角板的一条直角边紧靠直尺的边沿;把一条绳索的一端固定于三角板另一条直角边上的点 A,截取绳索的长等于 A 到直线 l 的距离 AC,并且把绳索另一端固定在图板上的一点F;用一支铅笔扣着绳索,紧靠着三角板的这条直角边把绳索绷紧,而后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.频频演示后,请同学们来归纳抛物线的定义,教师总结.3.定义这样,能够把抛物线的定义归纳成:平面内与必定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线 ( 定点 F 不在定直线 l 上 ) .定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线.(三)抛物线的标准方程设定点 F 到定直线 l 的距离为 p(p 为已知数且大于 0) .下边,我们来求抛物线的方程.如何选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生谈论一下,教师巡视,启迪指导,最后简单小结成立直角坐标系的几种方案:方案 1:( 由第一组同学达成,请一优等生演板.)以 l 为 y 轴,过点 F 与直线 l 垂直的直线为 x 轴成立直角坐标系 ( 图 2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的会合为: p={M||MF|=|MD|} .化简后得: y2=2px-p 2(p >0) .方案 2:( 由第二组同学达成,请一优等生演板)以定点 F 为原点,平行 l 的直线为 y 轴成立直角坐标系 ( 图 2-31) .设动点 M 的坐标为 (x , y) ,且设直线 l 的方程为 x=-p ,定点 F(0 , 0) ,过 M作 MD⊥l 于 D,抛物线的会合为:p={M||MF|=|MD|}.化简得: y2=2px+p2(p >0) .方案 3:( 由第三、四组同学达成,请一优等生演板.)取过焦点 F 且垂直于准线 l 的直线为 x 轴, x 轴与 l 交于 K,以线段 KF的垂直均分线为 y 轴,成立直角坐标系 ( 图 2-32) .抛物线上的点M(x,y) 到 l 的距离为 d,抛物线是会合p={M||MF|=d} .化简后得: y2=2px(p > 0) .比较所得的各个方程,应当选择哪些方程作为抛物线的标准方程呢?指引学生剖析出:方案 3 中得出的方程作为抛物线的标准方程.这是因为这个方程不单拥有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的 2 倍.因为焦点和准线在座标系下的不一样散布状况,抛物线的标准方程有四种情况( 列表如下) :将上表画在小黑板上,解说时出示小黑板,并讲清为何会出现四种不一样的情况,四种情况中 P>0;并指出图形的地点特色和方程的形式应联合起来记忆.即:当对称轴为 x 轴时,方程等号右端为± 2px,相应地左端为 y2;当对称轴为 y 轴时,方程等号的右端为± 2py,相应地左端为 x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题: (1) 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是 F(0 , -2) ,求它的标准方程.方程是 x2=-8y .练习:依据以下所给条件,写出抛物线的标准方程:(1)焦点是 F(3 ,0) ;(3)焦点到准线的距离是 2.由三名学生演板,教师予以校正.答案是: (1)y 2=12x;(2)y 2=-x ;(3)y 2=4x,y2=-4x ,x2=4y,x2=-4y .这时,教师小结一下:因为抛物线的标准方程有四种形式,且每一种形式中都只含一个系数 p,所以只需给出确立 p 的一个条件,就能够求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定此后,它的标准方程就独一确立了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、部署作业到准线的距离是多少?点M的横坐标是多少?2.求以下抛物线的焦点坐标和准线方程:(1)x 2=2y;(2)4x2+3y=0;(3)2y 2+5x=0;(4)y2-6x=0.3.依据以下条件,求抛物线的方程,并描点画出图形:(1)极点在原点,对称轴是 x 轴,并且极点与焦点的距离等于 6;(2)极点在原点,对称轴是 y 轴,并经过点 p(-6 ,-3) .4.求焦点在直线3x-4y-12=0 上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x(2)x 2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),进而可得抛物线方程为 x2=-12y 或 y2=16x六、板书设计一、教课目的(一)知识教课点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,进而培育学生剖析、归纳、推理等能力.(三)学科浸透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系观点的理解,这样才能解决抛物线中的弦、最值等问题.二、教材剖析1.要点:抛物线的几何性质及初步运用.(解决方法:指引学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决方法:经过几个典型例题的解说,使学生掌握几何性质的应用.) 3.疑点:抛物线的焦半径和焦点弦长公式.(解决方法:指引学生证明并加以记忆.)三、活动设计发问、填表、解说、演板、口答.四、教课过程(一)复习1.抛物线的定义是什么?请一起学回答.应为:“平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一起学回答.应为:抛物线的标准方程是y2=2px (p > 0) ,y2=-2px(p >0) ,x2=2py(p >0) 和 x2=-2py(p >0) .下边我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p > 0) 出发来研究它的几何性质.(二)几何性质如何由抛物线的标准方程确立它的几何性质?以y2=2px(p >0) 为例,用小黑板给出下表,请学生对照、研究和填写.填写完成后,再向学生提出问题:和椭圆、双曲线的几何性质对比,抛物线的几何性质有什么特色?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,固然它也能够无穷延长,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与极点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个极点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为 1.注意:这样不单引入了抛物线离心率的观点,并且把圆锥曲线作为点的轨迹一致起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法绘图的基本方法,给出以下例1.例 1 已知抛物线对于 x 轴对称,它的极点在座标原点,并且经过点解:因为抛物线对于x 轴对称,它的极点在座标原点,并且经过点程是 y2=4x.后一部分由学生演板,检查一放学生对用描点法绘图的基本方法掌握状况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就能够画出抛物线的另一部分( 如图 2-33) .例 2已知抛物线的极点在原点,对称轴是x 轴,抛物线上的点 M(-3 ,m)到焦点的距离等于 5,求抛物线的方程和 m的值.解法一:由焦半径关系,设抛物线方程为y =-2px(p >0) ,则准线方2因为抛物线上的点M(-3, m)到焦点的距离 |MF| 与到准线的距离得 p=4.所以,所求抛物线方程为y2=-8x .又点 M(-3 ,m)在此抛物线上,故m2=-8(-3) .解法二:由题设列两个方程,可求得p 和 m.由学生演板.由题意在抛物线上且 |MF|=5 ,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离 ( 即此点的焦半径 ) 等于此点到准线的距离.可得焦半径公式:设 P(x 0,这个性质在解决很多相关焦点的弦的问题中常常用到,所以一定娴熟掌握.(2)由焦半径不难得出焦点弦长公式:设 AB是过抛物线焦点的一条弦 ( 焦点弦 ) ,若 A(x 1,y1) 、B(x 2,y2) 则有 |AB|=x 1+x2+p.特别地:当 AB⊥x 轴,抛物线的通径 |AB|=2p( 详见课本习题 ) .例 3 过抛物线 y2=2px(p >0) 的焦点 F 的一条直线与这抛物线订交于 A、B 两点,且 A(x 1,y1) 、B(x 2,y2)( 图 2-34) .证明:(1) 当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是 A、 B 两点的纵坐标,则有y1y2=-p 2.或 y1=-p ,y2=p,故 y1y2=-p 2.综合上述有y1y2=-p 2又∵ A (x 1,y1) 、B(x 2,y2) 是抛物线上的两点,本例小结:(1)波及直线与圆锥曲线订交时,常把直线与圆锥曲线方程联立,消去一个变量,获得对于另一变量的一元二次方程,而后用韦达定理求解,这是解决这种问题的一种常用方法.(2)本例命题 1 是课本习题中结论,要修业生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求 |AB| 的值.由学生练习后口答.由焦半径公式得:|AB|=x 1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一起学演板,其余同学练习,教师巡视.证明:可设抛物线方程故抛物线 y2=2px 与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、部署作业1.在抛物线y2=12x 上,乞降焦点的距离等于9 的点的坐标.2.有一正三角形的两个极点在抛物线y2=2px上,另一极点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的表示图,当水面在l 时,拱顶高水面2m,水面宽4m,水降落 11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.成立直角坐标系,设拱桥的抛物线方程为x2=-2py ,可得抛物线4.由抛物线的定义不难证明六、板书设计你曾落的泪,最都会成阳光,照亮脚下的路。

2024年抛物线教学设计抛物线教案

2024年抛物线教学设计抛物线教案

2024年抛物线教学设计抛物线教案一、教学内容本节课选自人教版高中数学选修22第二章“抛物线及其标准方程”,具体内容包括:抛物线的定义、标准方程、简单几何性质以及抛物线在实际问题中的应用。

二、教学目标1. 理解并掌握抛物线的定义,能够熟练推导出抛物线的标准方程。

2. 熟悉抛物线的简单几何性质,能够运用这些性质解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力,激发学生对数学学习的兴趣。

三、教学难点与重点教学难点:抛物线标准方程的推导以及抛物线几何性质的理解。

教学重点:抛物线的定义、标准方程及其简单几何性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、练习本。

五、教学过程1. 实践情景引入利用多媒体课件展示生活中的抛物线实例,如抛物线形拱桥、抛物线运动轨迹等,引导学生观察并思考抛物线的特点。

2. 知识讲解(1)抛物线的定义:以一个定点(焦点)为顶点,到该点的距离等于到一条定直线(准线)的距离的所有点的集合。

(2)抛物线的标准方程:y^2=4ax(开口向右),y^2=4ax(开口向左)。

(3)抛物线的简单几何性质:对称性、顶点、焦点、准线等。

3. 例题讲解(1)求抛物线y^2=8x的焦点和准线。

(2)已知抛物线的焦点为(3,0),求抛物线的标准方程。

4. 随堂练习(1)求抛物线y^2=12x的顶点、焦点和准线。

(2)已知抛物线的顶点为(0,4),求抛物线的标准方程。

5. 小结与巩固六、板书设计1. 抛物线的定义2. 抛物线的标准方程y^2=4ax(开口向右)y^2=4ax(开口向左)3. 抛物线的简单几何性质4. 例题及解答七、作业设计1. 作业题目(1)求抛物线x^2=16y的焦点、顶点和准线。

(2)已知抛物线的焦点为(0,3),求抛物线的标准方程。

2. 答案八、课后反思及拓展延伸1. 探讨抛物线在实际问题中的应用,如建筑设计、运动轨迹等。

2. 引导学生研究抛物线与其他圆锥曲线(如椭圆、双曲线)之间的联系与区别。

人教版高中选修1-1《抛物线及其标准方程》教学设计

人教版高中选修1-1《抛物线及其标准方程》教学设计

人教版高中选修1-1《抛物线及其标准方程》教学设计《人教版高中选修1-1《抛物线及其标准方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程;2.能够利用给定条件求抛物线的标准方程;3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进一步感受坐标法及数形结合的思想。

二、教学重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知问题1.我们已经学习了椭圆以及双曲线,那它们是如何定义的?问题2.刚说的两种定义我们叫做椭圆、双曲线的第一定义,而后又拓展过他们的第二定义,两者的描述中存在相同部分,我们先把这一部分给出来(课件展示)对于比值的不同范围,轨迹不同,那什么时候是椭圆,什么时候是双曲线?探究1:我们知道距离与距离的比值是一个正数,这里讨论了01,唯独还没考虑过e=1的情况,就下来我们就探究一下当e=1时动点形成的轨迹。

过F点作直线l的垂线,垂足是点K,动点M的轨迹必过KF线段的中点N;过F点作直线l的两条平行线段,长度为|KF|,则端点A、B都是轨迹上的点。

我们用光滑的曲线把这些点连接起来,形成一条曲线,叫做抛物线。

(二)学习新课1.抛物线的定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线。

定点F叫做抛物线的焦点,定直线叫做抛物线的准线来2.抛物线的标准方程问题.回顾建立椭圆、双曲线的标准方程时,经历了哪些步骤?要求抛物线的方程,必须先建立直角坐标系.探究2设焦点F到准线的距离为,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.(1)方案1:以KF所在直线为x轴,以准线为y轴;(2)方案2:以KF所在直线为x轴,以过N点作准线的平行线为y 轴;(3)方案3:以KF所在直线为x轴,以过F点作准线的平行线为y 轴;猜想:三种方案下的抛物线方程谁更简单?初中学过二次函数,那么最简单的二次函数形式是怎样的?y=x2,而它对应的图像过原点,并且顶点就是原点,由此可猜想,方案3所建立的方程应该是最简单的,接下来就以方案3的建系方式来推到方程。

抛物线教学设计抛物线优质教案

抛物线教学设计抛物线优质教案

抛物线教学设计抛物线优质教案一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线》,详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的性质,如顶点、对称轴、焦点、准线等;3. 抛物线在实际问题中的应用。

二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够分析抛物线的性质,如顶点、对称轴、焦点、准线等;3. 学会运用抛物线知识解决实际问题。

三、教学难点与重点1. 教学难点:抛物线的性质及其在实际问题中的应用;2. 教学重点:抛物线的定义、标准方程及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入:利用多媒体展示抛物线在实际生活中的应用,如篮球投篮、抛物线运动等,引导学生观察并思考抛物线的特点。

2. 例题讲解:(1)抛物线的定义及标准方程;(2)抛物线的性质,如顶点、对称轴、焦点、准线等;(3)抛物线在实际问题中的应用。

3. 随堂练习:(1)判断下列图形是否为抛物线,并给出理由;(2)求抛物线 y = 2x^2 + 4x + 3 的顶点、对称轴、焦点和准线;(3)已知抛物线的顶点为(1, 3),过顶点的直线与抛物线相交于点A、B,求线段AB的中点C的坐标。

4. 小组讨论:学生分组讨论,共同解决随堂练习中的问题,教师巡回指导。

六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的性质;3. 例题解答步骤;4. 随堂练习解答。

七、作业设计1. 作业题目:(1)求抛物线 y = x^2 + 4x + 5 的顶点、对称轴、焦点和准线;(2)已知抛物线的焦点为(2, 0),求抛物线的标准方程;(3)抛物线 y = 2x^2 + 4x 3 与直线 y = x + 1 相交于点A、B,求线段AB的中点C的坐标。

2. 答案:(1)顶点:(2, 9),对称轴:x = 2,焦点:(2, 3),准线:y = 3;(2)抛物线的标准方程:y = 4(x 2)^2;(3)中点C的坐标:(1/2, 7/4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师提问:推导过程中有何疑 形成良好的解题
答,从而突破本节课的难点(教 识,发挥团队精
师用几何画板演示 P 是影响抛 物线形状变化的量)
神,真正促进学 生的思维发展。
通过类比前两种圆锥曲线, 推出抛物线的其它三种标准方 程。 再次体现在求解 曲线的方程时建 系的重要性。 类比的学习 方法 对比四种标准方程,回答问题: (1)P 的几何意义是什么? 形成四种方程间
人教版抛物线及其标准方程教学设计
课题:抛物线及其标准方程 科目: 数学 提供者: 教学对象: 高二年级 单位: 四中分校 课时: 1 课时
一、教学内容分析: 解析几何是通过建立直角坐标系,用代数方法解决几何问题的学科。它主 要研究两个问题:(1)已知曲线求方程;(2)根据方程研究曲线的性质。而椭 圆、双曲线、抛物线是重要的圆锥曲线,是学生掌握解析几何的关键,是领 会解析法的重要途径,是数形结合的重要知识点。
培养学生认
例 3 体会数学的应用价值。 真思考,善于总 学生总结: 1. 知识小结: 本节小结 思想方法小结 帮助学生总 1.进一步熟悉教材; 结知识方法,便 结完善的 良好 学习品质。
查找资料,了解抛物线的性质 于系统掌握 作业 及用途。 2.教材 P73 习题 2.4A 组 1,3 进一步巩固 本节所学知识方 法 七、教学评价设计 评价一: 新课程一个鲜明的特点是:讲背景、讲数学、讲应用。本节课,从实例 引入最后又回到实例中解决问题,注重数学的实际背景和应用的拓展资源, 让学生能感受抛物线在刻画现实世界和解决实际问题中的重要作用,能很好 地让学生体会到“数学是自然的,亲切的,是有用的” 。 评价二:
展示抛物线的几何画 法 (几何画板) 教师画图
学生边看边完成学案探究一 物线形成直观的 学生总结抛物线的定义 印象,帮助学生 理解抛物线的定 义。 通过同学的质 对概念的理解:点 F 不在直 疑,加深对概念 线 l 上(学生提出问题) 的理解,养成严
抛物线的定义 谨的思维习惯。 学生自己完成推导过程 小组交流,相互解决问题。 概念深化 惑? 推导抛物线的标准 学生: (1)建系的问题 方程 (2)P 的引入 问题再交还给学生讨论解 流,相互解决问 题,增强合作意 通过相互交 思路。 让学生体会解 决问题的方法,
二、教学目标 1. 知识目标:
掌握抛物线的定义、抛物线的标准方程及其推导过程; 能熟练地由抛物线的标准方程写出它的焦点坐标、准线方程; 会求抛物线的标准方程。 2.能力目标:培养探索、发现、分析、解决问题的能力。
三、学习者特征分析教学目标: 1、本节课在圆锥曲线中的地位:椭圆、双曲线和抛物线三部分在圆锥曲 线中的地位相同。本章对抛物线的安排篇幅不多,并非其不重要,主要是因 为学生对于椭圆、 双曲线的基本知识和研究方法已经熟悉了, 教材精简介绍, 学生是完全可以接受的。本课是第一课时,它是学习抛物线的性质及其应用
五、教学重点及难点 教学重点:抛物线的定义及其标准方程。 教学难点:抛物线标准方程的推导。 六、教学过程 教师活动 情境设置 学生活动 学生举例 设计意图 通过介绍
大家对抛物线有哪些认 识? 教师出示幻灯片 (太阳灶,卫星天线) 概念形成
有关抛物线的实 物,引起学生的 兴趣,激发学习 的欲望 通过几何画板作 图,让学生对抛
(2) 如何将抛物线方程的特 的对比,加深对 点与位置特征统一起来? 知识的理解,形 成完善的知识结 构体系。 培养学生观 察、分析、类比、 抽象概括的能 力。 巩固练习 例1 例2 学生独立快速完成例 1,熟悉 基础知识。 巩固所学知 识,规范解题步
学生板演例 2,进一步体会待定 骤。
例3
系数法求抛物线的标准方程。
的基础。 2、通过几何画板,观察、发现和认识抛物线。 师生利用课件,结合教具共同作与一个定点的距离等于它到定直线的距 离的动点的轨迹(图形)——媒体课件为依托,课件可增强课堂教学的直观性、趣味性,促进学 生积极思维,能够在动态演示过程中化解教学难点,突出教学重点。教学中 采用实验探索、类比法、图表法。 实验探索:通过几何画板演示,观察得出动点的轨迹是一条抛物线。 类比法:由椭圆和双曲线的定义、标准方程的求法,类比得出抛物线的 定义、标准方程。类比法使得学生对于教材容易接受,可减轻学生负担。 图表法:将抛物线定义、图象、标准方程、焦点坐标、准线方程列表, 让学生填充表格,通过表格可以将它们对比,发现异同点,寻找规律,全面 掌握所学知识。
本节课堂教学设计及课堂教学环节,基于我们学校倡导的“导、学、议、 练、结” 五字教学模式,表现出教师良好的数学课堂驾驭能力,具体表现 在: (1)设计有价值的问题——创设一种问题情景,引导学生积极思考,发 展学生的个性特点和创造性。 (2)善于观察和捕捉学生复杂多变的数学思维,突发而至的解题灵感, 丰富多彩的小组讨论,欲说还休的神态表情,使学生在相互讨论、纠错、解 疑的过程中解决问题。 (3)不仅是一个头脑清晰的讲授者,还是一个反应敏捷的倾听者,让学 生有说话权利,重视学生的内心世界,使学生敢于表达自己的见解。 (4)尊重学生在学习活动中的主体地位,引导启发学生的思维参与到有 效的学习中。 八、板书设计 一.概念形成 抛物线的定义 点 F 不在直线 l 上 二.抛物线的标准方程 四.本节小结 五。作业 教材 P73 习题 2.4A 组 1,3 三.巩固练习
相关文档
最新文档