完整word版,高中数学抛物线教案

合集下载

高中数学选修2抛物线教案

高中数学选修2抛物线教案

高中数学选修2 抛物线教案一、教学内容本节课选自高中数学选修2第三章《圆锥曲线与方程》中的抛物线部分。

具体内容包括:抛物线的定义、标准方程、图形及性质;抛物线焦点、准线、对称轴等相关概念;抛物线在实际问题中的应用。

二、教学目标1. 理解并掌握抛物线的定义、标准方程及图形性质。

2. 学会利用抛物线的性质解决实际问题。

3. 培养学生的几何想象能力和逻辑思维能力。

三、教学难点与重点重点:抛物线的定义、标准方程及图形性质。

难点:抛物线焦点、准线、对称轴等概念的理解及其应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中的抛物线实例,如篮球投篮、卫星通信等,引导学生发现抛物线的特点。

2. 知识讲解(10分钟)(1)抛物线的定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。

(2)抛物线的标准方程:y^2=2px、x^2=2py。

(3)抛物线的图形性质:开口方向、对称轴、顶点、焦点、准线等。

3. 例题讲解(15分钟)(1)求解抛物线y^2=8x的焦点和准线。

(2)已知抛物线x^2=12y,求顶点坐标、对称轴及焦点坐标。

4. 随堂练习(5分钟)(1)求抛物线y^2=4x的焦点和准线。

(2)已知抛物线x^2=6y,求顶点坐标、对称轴及焦点坐标。

5. 课堂小结(5分钟)六、板书设计1. 定义:平面上到一个定点(焦点)的距离等于到一条直线(准线)的距离的点的轨迹。

2. 标准方程:y^2=2px、x^2=2py。

3. 图形性质:开口方向、对称轴、顶点、焦点、准线。

4. 例题及解答。

七、作业设计1. 作业题目:(1)求抛物线x^2=16y的焦点和准线。

(2)已知抛物线y^2=10x,求顶点坐标、对称轴及焦点坐标。

2. 答案:八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了抛物线的定义、标准方程、图形性质等基本概念。

抛物线教案完整篇

抛物线教案完整篇

抛物线教案完整篇引言本教案旨在帮助学生理解和掌握抛物线的基本概念和性质。

通过本教案的研究,学生将能够解决与抛物线相关的问题,并应用抛物线的知识进行实际推理和分析。

教学目标- 理解抛物线的定义和特点- 掌握抛物线的标准方程和顶点形式- 能够绘制给定抛物线的图像- 了解抛物线在实际生活中的应用,并能够应用抛物线解决相关问题教学内容1. 抛物线的定义和特点- 抛物线的定义- 抛物线的焦点和准线- 抛物线的对称性和轴线2. 抛物线的表示形式- 抛物线的标准方程- 抛物线的顶点形式3. 绘制抛物线的图像- 根据给定的方程绘制抛物线的图像- 理解抛物线图像的特点和形状4. 抛物线的应用- 抛物线在物体运动中的应用- 抛物线在桥梁和建筑设计中的应用- 解决与抛物线相关的实际问题教学方法- 讲解:通过课堂讲解介绍抛物线的定义、特点和相关概念。

- 案例分析:通过分析实际案例,引导学生理解抛物线的应用场景。

- 问题解答:提供一系列与抛物线相关的问题,让学生进行思考和解答。

- 实践操作:通过绘制抛物线的图像和解决实际问题,加深学生对抛物线的理解和掌握。

教学评估- 完成课堂练:检查学生对抛物线定义、特点和方程的掌握情况。

- 解决实际问题:要求学生应用抛物线知识解决一些实际问题。

- 课堂讨论:鼓励学生在课堂上主动参与讨论,分享自己的思考和理解。

教学资源- 抛物线的相关课件和教学PPT- 抛物线的绘图工具和实际应用案例教学扩展- 进一步探索抛物线的性质和变形,如离心率和焦点运动轨迹等。

- 探究其他曲线的性质和应用,如椭圆、双曲线等。

总结通过本节课的学习,学生将能够全面理解抛物线的定义、特点和表示形式,掌握绘制和解决抛物线相关问题的方法,并了解抛物线在实际生活中的应用。

这将为他们进一步学习数学和应用数学打下坚实的基础。

抛物线的教学设计MicrosoftWord文档

抛物线的教学设计MicrosoftWord文档

《抛物线及其标准方程》教学设计一、教学内容分析解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,它是通过建立平面直角坐标系,将平面上的点与一个有序实数建立了一一对应的关系,从而体现了形与数的统一与转化。

圆锥曲线是解析几何的一个重要内容,本章圆锥曲线分为椭圆、双曲线和抛物线三个部分,三部分在圆锥曲线中的地位相同。

本节的主要内容是抛物线的概念和抛物线的标准方程。

抛物线标准方程的推出过程充满了辩证法,处处是数与形之间的对照、翻译和相互转换。

而要得到标准方程,必须适当建立坐标系,抛物线作为“无心”的二次曲线(圆、椭圆、双曲线都是有心的二次曲线),方程对坐标系的依赖关系有其独特的地方。

抛物线标准方程的结构和形式不仅依赖于坐标系的选择,还依赖于焦点和准线间的相互位置关系,这是抛物线标准方程有四种形式而不是两种形式的内在原因(椭圆、双曲线只有两种形式的标准方程)。

因此,对抛物线标准方程的推导是培养辩证唯物主义观点的好素材二、学情分析:“抛物线及其标准方程”一节,这是继椭圆、双曲线之后的又一重要内容,有着广泛的应用,学生已经学习了椭圆、双曲线的定义,经历了根据他们的几何特征,建立适当坐标系的过程,与它们类比,弄清抛物线上的点所满足的几何条件,也可建立适当的坐标系,进而推出标准方程,这一步骤让学生自行完成,提高他们探究问题的能力。

三、教学目标1.知识与技能通过学习掌握抛物线定义和抛物线四种形式标准方程;在此过程中培养学生分析、抽象和概括等逻辑思维能力.领会求抛物线标准方程的步骤,特别是领会建立适当的坐标系的思路.掌握用待定系数法求抛物线标准方程.2.过程与方法采用小组实验和多媒体演示抛物线轨迹生成的动画来引入本节内容,容易吸引学生,调动学生学习的积极性和兴趣。

在讲授抛物线的定义及求标准方程的过程时,采用互动的方法,让学生大胆发言、大胆尝试再进行比较,引导学生准确理解定义和掌握最佳建系方法。

高中抛物线数学教案

高中抛物线数学教案

高中抛物线数学教案
主题:抛物线
一、教学目标:
1. 理解抛物线的定义和性质;
2. 掌握抛物线的标准方程及相关计算方法;
3. 熟练运用抛物线相关知识解决实际问题。

二、教学重点和难点:
重点:抛物线的定义、标准方程及相关性质;
难点:抛物线的几何意义及应用问题的解决。

三、教学过程:
1. 导入新知识(5分钟)
通过展示抛物线的图片和实际应用场景,引导学生了解抛物线的形态和特点。

2. 学习抛物线的定义和性质(15分钟)
讲解抛物线的定义,并介绍抛物线的焦点、顶点、对称轴等性质,让学生理解抛物线的基本概念。

3. 学习抛物线的标准方程(20分钟)
教师讲解抛物线的标准方程及其推导过程,让学生掌握如何根据给定的抛物线特点确定其标准方程。

4. 练习抛物线相关计算(20分钟)
让学生通过练习题目,熟悉抛物线的计算方法,包括焦点、顶点、焦距等的计算。

5. 解决实际问题(15分钟)
通过实际应用问题的讨论与解答,引导学生灵活运用抛物线知识解决实际问题,并培养学生的数学建模能力。

6. 总结和作业布置(5分钟)
对抛物线相关知识进行总结,并布置相关练习作业,巩固学生的学习成果。

四、教学手段:
1. 教师讲解;
2. 课堂练习;
3. 实际应用问题讨论。

五、教学反思:
本节课主要围绕抛物线的定义、标准方程及相关计算展开,注重培养学生的问题解决能力和建模能力。

通过实践与讨论,让学生真正理解抛物线的几何意义和应用价值,为他们的数学学习打下坚实基础。

高三数学《抛物线》教案

高三数学《抛物线》教案

高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的第二节《抛物线》。

详细内容包括:1. 抛物线的定义与标准方程;2. 抛物线的简单几何性质;3. 抛物线的焦点、准线及其应用;4. 实践活动中抛物线的绘制。

二、教学目标1. 让学生掌握抛物线的定义、标准方程及简单几何性质;2. 培养学生运用抛物线的焦点、准线解决实际问题的能力;3. 激发学生学习兴趣,培养空间想象力和逻辑思维能力。

三、教学难点与重点重点:抛物线的定义、标准方程、简单几何性质及焦点、准线。

难点:抛物线焦点、准线的求解与应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。

五、教学过程1. 引入:通过展示生活中抛物线的实例(如抛物线运动、拱桥等),引出本节课的主题——抛物线。

2. 新课导入:讲解抛物线的定义,引导学生观察抛物线的特点,推导抛物线的标准方程。

3. 知识讲解:(1)抛物线的定义与标准方程;(2)抛物线的简单几何性质;(3)抛物线的焦点、准线及其应用。

4. 例题讲解:(1)求抛物线的标准方程;(2)求抛物线的焦点、准线;(3)抛物线在实际问题中的应用。

5. 随堂练习:针对例题进行变式训练,巩固所学知识。

6. 实践活动:分组讨论,利用学具绘制抛物线,观察抛物线的性质,加深对知识的理解。

六、板书设计1. 定义:抛物线是平面内到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹;2. 标准方程:y^2=2px(p>0);3. 简单几何性质:对称性、开口方向、顶点、渐近线;4. 焦点、准线:F(p,0),x=p;5. 例题与解答。

七、作业设计1. 作业题目:(1)求抛物线y^2=8x的焦点、准线;(2)求抛物线x^2=4y的顶点、对称轴;(3)抛物线y^2=4x与直线y=2x+1相交,求交点坐标。

2. 答案:(1)焦点F(2,0),准线x=2;(2)顶点(0,0),对称轴y轴;(3)交点(2,5)。

抛物线教学设计抛物线优质教案

抛物线教学设计抛物线优质教案

抛物线教学设计抛物线优质教案一、教学内容本节课选自高中数学教材第二册第四章第四节《抛物线》,详细内容包括:1. 抛物线的定义及标准方程;2. 抛物线的性质,如顶点、对称轴、焦点、准线等;3. 抛物线在实际问题中的应用。

二、教学目标1. 理解抛物线的定义,掌握抛物线的标准方程;2. 能够分析抛物线的性质,如顶点、对称轴、焦点、准线等;3. 学会运用抛物线知识解决实际问题。

三、教学难点与重点1. 教学难点:抛物线的性质及其在实际问题中的应用;2. 教学重点:抛物线的定义、标准方程及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器。

五、教学过程1. 实践情景引入:利用多媒体展示抛物线在实际生活中的应用,如篮球投篮、抛物线运动等,引导学生观察并思考抛物线的特点。

2. 例题讲解:(1)抛物线的定义及标准方程;(2)抛物线的性质,如顶点、对称轴、焦点、准线等;(3)抛物线在实际问题中的应用。

3. 随堂练习:(1)判断下列图形是否为抛物线,并给出理由;(2)求抛物线 y = 2x^2 + 4x + 3 的顶点、对称轴、焦点和准线;(3)已知抛物线的顶点为(1, 3),过顶点的直线与抛物线相交于点A、B,求线段AB的中点C的坐标。

4. 小组讨论:学生分组讨论,共同解决随堂练习中的问题,教师巡回指导。

六、板书设计1. 抛物线的定义及标准方程;2. 抛物线的性质;3. 例题解答步骤;4. 随堂练习解答。

七、作业设计1. 作业题目:(1)求抛物线 y = x^2 + 4x + 5 的顶点、对称轴、焦点和准线;(2)已知抛物线的焦点为(2, 0),求抛物线的标准方程;(3)抛物线 y = 2x^2 + 4x 3 与直线 y = x + 1 相交于点A、B,求线段AB的中点C的坐标。

2. 答案:(1)顶点:(2, 9),对称轴:x = 2,焦点:(2, 3),准线:y = 3;(2)抛物线的标准方程:y = 4(x 2)^2;(3)中点C的坐标:(1/2, 7/4)。

高三数学《抛物线》教案

高三数学《抛物线》教案

高三数学《抛物线》教案一、教学内容本节课选自高三数学教材下册第五章《圆锥曲线与方程》中的抛物线部分。

具体内容包括:抛物线的定义、性质、标准方程及其应用。

二、教学目标1. 理解并掌握抛物线的定义、性质和标准方程。

2. 能够运用抛物线的性质解决实际问题,提高数学应用能力。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点重点:抛物线的定义、性质和标准方程。

难点:抛物线标准方程的推导及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器。

五、教学过程1. 导入:通过展示生活中的抛物线实例,如拱桥、篮球抛物线等,引导学生思考抛物线的性质和用途。

2. 基本概念:(1)抛物线的定义:介绍抛物线的起源,引导学生理解抛物线的定义。

(2)抛物线的性质:通过动画演示,让学生观察抛物线的对称性、顶点、焦点等性质。

(3)抛物线的标准方程:引导学生根据性质推导出抛物线的标准方程。

3. 例题讲解:(1)求抛物线的标准方程。

(2)已知抛物线上一点,求该点处的切线方程。

4. 随堂练习:(1)判断下列图形是否为抛物线。

(2)求下列抛物线的标准方程。

5. 应用拓展:(1)抛物线在实际问题中的应用。

(2)抛物线与圆、直线等图形的位置关系。

六、板书设计1. 定义、性质、标准方程。

2. 例题解答步骤。

3. 课后作业及答案。

七、作业设计1. 作业题目:(1)求下列抛物线的标准方程:① y²=4x;② x²=4y;③ y²=8x;④ x²=8y。

(2)已知抛物线y²=4x上一点(1,2),求该点处的切线方程。

2. 答案:(1)① y²=4x,焦点(1,0),顶点(0,0);② x²=4y,焦点(0,1),顶点(0,0);③ y²=8x,焦点(2,0),顶点(0,0);④ x²=8y,焦点(0,2),顶点(0,0)。

高中数学《抛物线》 教学设计

高中数学《抛物线》 教学设计

抛物线(第1课时)教案一、教学内容分析本节课是人教版《普通高中课程标准实验教科书•数学选修2-1》第二章“圆锥曲线与方程”的起始课.解析几何的教学,一方面,应从几何角度关注图形,认识图形的几何特征;另一方面,要建立代数方程,用代数工具研究几何性质.在这一章的教学中,我们在引入代数工具研究圆锥曲线之前,让学生首先充分认识图形,尽可能充分地感受并发现几何特征,进而体会解析几何数形结合、几何与代数并重的特点.考虑到抛物线的形状学生比较熟悉,其代数方程形式也相对简单,我们将抛物线作为研究的第一种圆锥曲线.本节课是抛物线的第1课时,也是圆锥曲线这一章的起始课,主要内容是借助几何绘图软件,探索抛物线的轨迹,引出抛物线的定义,直观感受、发现抛物线的几何特征.在这个过程中,学生学习和运用轨迹交点法,提升作图能力,感悟解决问题的策略.我们将在第2,3课时建立坐标系求抛物线的方程、研究性质、完善并证明第一节课发现的几何特征.二、学生情况分析学生在初中阶段学习过一些特殊的轨迹,有一定的作图能力;初步了解几何绘图软件Geogebra,能根据需要进行简单操作.另外,授课班级的学生具有较强的求知欲,思维活跃,能积极参与数学活动和交流讨论.三、教学目标设置根据教学内容,以及学生现有的认知水平和能力,我把本节课的教学目标确定为以下三个方面:1.了解抛物线的定义,感知抛物线的几何特征;2.运用轨迹交点法,经历探索抛物线轨迹的过程,提高作图能力和分析问题、解决问题的能力;3.通过合作学习,感受数学探索的快乐.本节课的教学重难点是:依据抛物线的定义画出轨迹.四、教学策略分析本节课以探究合作为主要的学习方式,教学过程分为“复习旧知,提炼作图方法”,“应用方法,合作探索轨迹”,“明确定义,感知几何特征”,“交流总结,提出思考问题”四个环节.为了突破难点,落实重点,采取了以下措施:首先,让学生使用几何绘图软件Geogebra 画出“到两定点距离相等的点的轨迹”,并总结出利用轨迹交点法得到轨迹的基本步骤.其次,在此基础上,再让学生利用软件,用不同方法得出抛物线的完整轨迹.随即,让学生在纸上作出抛物线草图,进一步加深对抛物线的直观认识.最后,让学生分享从中发现的抛物线的几何特征,也为后续课程的学习打好基础.本节课的效果评价以当堂反馈为主,学生通过上台展示分享,体现探索的成果;每位学生在纸上作出抛物线的草图,落实本节课的教学要求.教师还将通过思考题继续激发学生的探究热情.五、教学过程环节一:复习旧知,提炼作图方法预设形式预案设计意图【复习】回顾有关轨迹的问题:(1)平面内,到一个定点的距离等于定长的点的轨迹是什么?(答:以定点为圆心,定长为半径的圆)(2)平面内,到一条定直线的距离等于定长的点的轨迹是什么?(答:平行于这条直线,并和已知直线距离为定长的两条直线)(3)平面内,到两个定点距离相等的点的轨迹是什么?(答:两个定点连线的垂直平分线)【活动一】请利用图形计算器,探索:平面内,到两个定点的距离相等的点的轨迹.1,以A为圆心,r为半径作圆2,以B为圆心,r为半径作圆3,作出两圆交点,即为所求轨迹上的点4,改变r的值,形成轨迹【总结方法】利用轨迹交点法得到轨迹的步骤:当知道轨迹上的点满足的两个条件时,可以采用这样的方法得到轨迹:第一步,作出满足一个条件的点的轨迹教师提问和展示,学生口答.学生在图形计算器上探索,并分享得到轨迹的过程.学生能顺畅回答.教师可适当规范表述.若学生通过找到两点直接连线得轨迹,则提示其思考如何得到更多的点,来验证轨迹是一条直线.通过回顾已认识的一些轨迹,引出要探索的新问题,也为后面问题的解决奠定基础.通过活动一,让学生在操作中学习如何利用轨迹交点法得到轨迹.为后续探索作准备.【活动二】探索:平面内,到一个定点和一条定直线距离相等的点的轨迹是什么?(如图)Fl预案一:圆与平行线的交点1,作出与定直线平行,且距离为r的两条直线.2,作出以定点为圆心,以r为半径的圆.3,平行线与圆的交点就是所求轨迹上的点.4,改变r的值,追踪点的位置变化,得到轨迹.预案二:中垂线与垂线的交点1.在定直线上任找一点H,以H为垂足作定直线的垂线2.作定点和点H连线的垂直平分线3.垂线和垂直平分线的交点即为所求轨迹上的点4.改变H的位置,追踪点的位置变化,得到轨迹【定义】平面内,与一个定点F和一条定直线l(F l )距离相等的点的轨迹,叫做抛物线.其中点F叫做抛物线的焦点,直线l叫做抛物线的准线.辨析:若定点在定直线上时,则所求轨迹(轨迹为:过定点的已知直线的垂线)不是抛物线【活动三】在纸上画出已知焦点和准线的抛物线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的几何性质教案一、要点归纳 1.抛物线的概念平面内与一定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线。

定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。

2.抛物线的性质:抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)y pxp =>22(0)y px p =->22(0)x py p =>22(0)x pyp =->图形焦点坐标 (,0)2p (,0)2p -(0,)2p(0,)2p -准线方程 2p x =-2p x =2p y =-2p y =范围 0x ≥0x ≤0y ≥ 0y ≤对称性 x 轴x 轴y 轴y 轴顶点 (0,0) (0,0)(0,0)(0,0)离心率 1e =1e =1e =1e =焦半径 02x pPF +=02x pPF -=02y pPF +=02y pPF -=焦点弦公式)(21x x p AB ++=)(21x x p AB +-=)(21y y p AB ++=)(21y y p AB +-=3.12124.焦点弦:过抛物线22y px =(0)p >焦点F 的弦AB ,若1122(,),(,)A x y B x y ,则(1)||AF =x 1+2p ,(定义) (2)12x x =42p ,12y y =-p 2.(韦达定理)(3) 弦长)(21x x p AB ++=,p x x x x =≥+21212,即当x 1=x 2时,弦长最短为2p ,此时弦即为通径。

(4) 若AB 的倾斜角为θ,则AB =θ2sin 2p(焦点弦公式与韦达定理) 5. 直线与抛物线相交所得弦长公式2121221||1|1|AB k x x y y k=+-=+- 6.点P(x 0,y 0)和抛物线22y px =(0)p >的位置关系 (1)点P(x 0,y 0)在抛物线22y px =(0)p >内⇔y 20<2px 0o Fxyloxy F l xyoF l(2)点P(x 0,y 0)在抛物线22y px =(0)p >上⇔y 20=2px 0 (3)点P(x 0,y 0)在抛物线22y px =(0)p >外⇔y 20>2px 07.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件. 二、例题分析 [例1] 给定抛物线,设A ()(),P 是抛物线上的一点,且,试求的最小值。

解:设()() 则∴∵,∴(1)当时,,此时当时,(2)当时,,此时当时,[例2] 过抛物线的焦点作倾斜角为的直线,设交抛物线于A 、B 两点,求。

解:当时,直线AB 的方程为由得A ()、B (,) ∴当时,直线AB 的方程为由得设A ()、B (),则∴[例3] 过抛物线的准线与对称轴的交点作直线,交抛物线于M 、N 两点,问直线的倾斜角多大时,以线段MN 为直径的圆经过抛物线的焦点?解:抛物线的准线与对称轴的交点为(),设直线MN 的方程为由得∵直线与抛物线交于M、N两点∴即,,设M(,),N(),抛物线焦点为F(1,0)∵以线段MN为直径的圆经过抛物线的焦点∴MF⊥NF ∴即又,,且、同号∴解得∴即直线的倾斜角为或时,以线段MN为直径的圆经过抛物线的焦点。

[例4] 过抛物线的焦点F的直线与抛物线交于A、B两点,求的值。

解:如图所示,设A()、B(),AB的方程为由得∴又∵,∴∴∴又[例5] 如图,已知直线:交抛物线于A、B两点,试在抛物线AOB这段曲线上求一点P,使的面积最大,并求这个最大面积。

解:由解得A(4,4)、B(1,),知,所以直线AB的方程为设P()为抛物线AOB这条曲线上一点,为P点到直线AB的距离∵∴∴从而当时,因此,当点P 坐标为时,[例6] 已知直线与曲线在第一象限有公共点,求的取值范围。

解:如图,易知抛物线与轴交于A (0,1)、B (0,3)直线恒过C (),由图象及抛物线的延伸趋势可知 当大于零且小于BC 的斜率时满足题意而,故。

[例7] 设抛物线的焦点为F ,经过点F 的直径交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC//轴,证明:直线AC 经过原点O 。

证:因为抛物线的焦点坐标为F ()所以经过点F 的直线AB 的方程为代入抛物线方程得0设A ()、B (),则∵ BC//轴,且点C 在准线上 ∴ 点C 的坐标为故直线OC 的斜率为即也是OA 的斜率,所以直线AC 经过原点O [例8] 如果抛物线上总有关于直线对称的相异两点,试求的范围。

解:设抛物线上关于对称的相异两点坐标为A ()、B ()∵ 两点都在抛物线上 ∴(1)-(2),得 ∵ (A 、B 两点相异)∴(3)(3)代入(2),得∵ ,且相异 ∴∴ ∴的取值范围是()三、课堂练习1.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A .3/16B .3/8C .16/3D .8/32.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是( )A .632+B .21C .21218+D .214.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .17/16B .15/16C .7/8D .05.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线有 条. 6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形7.抛物线以y 轴为准线,且过点(,)(0)M a b a ≠,证明:不论M 点在坐标平面内的位置如何变化,抛物线顶点的轨迹的离心率是定值.8. 已知抛物线22(0)y px p =>,过动点(,0)M a 且斜率为1的直线l 与该抛物线交于不同两点,A B ,||2AB p ≤,(1)求a 取值范围; (2)若线段AB 垂直平分线交x 轴于点N ,求NAB ∆面积的最大值练习答案:1. A2. B3. D4. B5. 有且仅有两条6. ②③⑤7. 设抛物线的焦点F 的坐标为00(,)x y ,根据抛物线的定义可知,点(,)M a b 到点00(,)F x y 的距离等于点M 到y 轴的距离,则22020)()(a b y a x =-+-①又设抛物线顶点A 的坐标为(,)x y ,∵A 为线段OF 的中点,则002,x x y y ==,代入①得222(2)()x a y b a -+-=, 即抛物线的顶点的轨迹方程为:1)(4)2(2222=-+-a b y a a x ,∵0a ≠,∴抛物线顶点的轨迹是椭圆,其中长半轴长为||a ,短半轴长为2||a ,则半焦距22||3||()|2a c a a =-=,所以它的离心率23||23==a ae 为定值. 8. (1)由题知l 的方程为y x a =-,设1122(,),(,)A x y B x y , 由22y px y x a⎧=⎨=-⎩,得2220y py ap --=, ∴2480p ap ∆=+>,得2p a >-, ∵12122,2y y p y y ap +==-,∴2212()48y y p ap -=+,21221||1|2(2)2AB y y p ap p k=+-=+≤,得4p a ≤-,∴a 取值范围{|}24p pa a -<≤-.(2)AB 的中点(,)p a p +,∴线段AB 垂直平分线方程:2y x p a =-++, ∴(2,0)N p a +,22121||2222NAB S MN y y p p ap ∆=-=+,当4pa =-时NAB ∆22.。

相关文档
最新文档