五年级数学 等差数列求和
5年级奥数等差数列求和

德国著名大科学家高斯(1777~ 1855)出生在一个贫穷的家庭。高斯在还 不会讲话就自己学计算,在三岁时有一 天晚上他看着父亲在算工钱时,还纠正 父亲计算的错误。
长大后他成为当代最杰出的天文学 家、数学家。他在物理的电磁学方面有 一些贡献,现在电磁学的一个单位就是 卡尔·弗里德里希·高斯 用他的名字命名。数学家们则称呼他为 “数学王子”。
44 44 44 44 44 44 44 44 44 两数列之和=(6+38)×9
解:原数列之和=(6+38)×9÷2 =44×9÷2 =198
等差数列的和=(首项+末项)×项数÷2
例:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276
分析:这是一个等差数列;首项=1,末项=276,公差=5
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
原数列之和=(1+276)×56÷2 = 277×28 =7756
练习
1、计算 (1)7+10+13+16+19+22+25+28+31+34+37 (2)7+11+15+19+......+403 (3)9+19+29+39+......+99 (4)1+3+5+7+......+99
练习
1、一串数:1、3、5、7、9、……49。(1)它的第 21项是多少?(2)这串数共有多少个?
五年级:等差数列

专题二:等差数列姓名一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就表示数列的叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。
如果用an第n项,用S表示数列前n项所有数的和,则有以下公式:n通项公式为:an=a1+(n-1)d;前n项求和公式:Sn=n(a1+an)÷2;项数公式:项数=(末项-首项)÷公差+1;所有项总和=(首项+末项)×项数÷2 ;首项=总和×2÷项数-末项;末项=总和×2÷项数-首项。
公差=(末项-首项)÷(项数-1)数列和=(首项+末项)×项数÷2 ;1、一只小虫沿笔直的树干跳着往上行,每跳一次都比上一次升高4厘米。
它从离地面10厘米处开始跳,如果把这一处称为小虫第一次落脚点,那么它的第100个落脚点正好是树梢,这棵树高多少厘米?2、下面的算式是按一定规律排列的,那么,第100个算式的得数是多少?4+2,5+8,6+14,7+20,……3、如果一个等差数列的第5项是19,第8项是61,求它的第11项。
4、在124和245之间插入10个数以后,使它成为一个等差数列。
这10个数中,最小的是几?最大的是几?5、一辆双层公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,那么第几站以后车上坐满乘客?6、(1)2000-3-6-9-…-51-54;(2)(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)。
(3)1+3+5+…+95+97+997、一本书的页码从1~62,共有62页。
小丽在把这本书所有页码数累加起来的时候,发现这本书有一张纸被撕掉了,她把其他页码加起来的和是1858。
问被撕掉的这张纸上的页码是多少?8、盒子里装着写有1,2,3,…,134,135的红色卡片各一张。
等差数列的求和公式

等差数列的求和公式在数学的世界里,等差数列是一个重要且基础的概念。
而其中的求和公式更是解决众多数学问题的有力工具。
今天,咱们就来好好聊聊等差数列的求和公式。
首先,咱们得明白啥是等差数列。
简单说,就是一组数,从第二项开始,每一项与它前一项的差都相等,这个相等的差就叫公差,常用字母“d”表示。
比如 1,3,5,7,9 这组数,公差就是 2。
那等差数列的求和公式是啥呢?一般来说,对于一个首项为\(a_1\),末项为\(a_n\),项数为\(n\),公差为\(d\)的等差数列,它的求和公式就是\(S_n =\frac{n(a_1 + a_n)}{2}\)。
为了更好地理解这个公式,咱们来举个例子。
假设咱们有一个等差数列:2,5,8,11,14。
这里首项\(a_1 = 2\),末项\(a_5 =14\),项数\(n = 5\)。
那根据求和公式,\(S_5 =\frac{5×(2+ 14)}{2} =\frac{5×16}{2} = 40\)。
咱们把这几个数加起来算算,2 + 5 + 8 + 11 + 14,确实等于 40,这就验证了公式的正确性。
那这个公式是咋来的呢?咱们可以这样想。
把这个等差数列正着写一遍:\(a_1\),\(a_2\),\(a_3\),,\(a_{n-2}\),\(a_{n-1}\),\(a_n\)。
然后再倒着写一遍:\(a_n\),\(a_{n-1}\),\(a_{n-2}\),,\(a_3\),\(a_2\),\(a_1\)。
把这两排对应相加,就会得到:\((a_1 + a_n)\),\((a_2 + a_{n-1})\),\((a_3 + a_{n-2})\),,\((a_{n-2} +a_3)\),\((a_{n-1} + a_2)\),\((a_n + a_1)\)。
因为这是个等差数列,所以每一组相加的和都相等,都是\(a_1 +a_n\)。
而这样的组合一共有\(n\)组。
常见等差数列求和公式

常见等差数列求和公式常见等差数列求和公式是数学中非常重要且常用的公式之一。
它能够帮助我们快速准确地求解等差数列的和,而不需要一个一个地相加。
本文将围绕这一公式展开讨论,探讨其原理和应用。
一、等差数列的定义和性质等差数列是指数列中的任意两个相邻项之差都相等的数列。
换句话说,等差数列中每一项与它前面一项的差都是相同的常数,这个常数称为公差。
等差数列的性质包括:1. 等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等差数列的前n项和公式:Sn = (a1 + an) * n / 2,其中Sn表示前n项的和。
二、等差数列求和公式的推导要理解等差数列求和公式的推导过程,首先需要明确等差数列的通项公式。
通项公式告诉我们,等差数列中的每一项都可以表示为首项与公差的线性函数。
因此,我们可以将等差数列的前n项和表示为一个关于n的二次函数。
假设等差数列的首项为a1,公差为d,前n项和为Sn。
根据等差数列的通项公式,我们可以将等差数列的第n项表示为an = a1 + (n-1)d。
将这个式子代入前n项和的公式中,得到Sn = (a1 + (a1+ (n-1)d)) * n / 2,化简后可得Sn = n(a1 + an) / 2。
三、等差数列求和公式的应用等差数列求和公式在数学中有着广泛的应用。
它可以帮助我们快速计算等差数列的前n项和,从而解决一些实际问题。
以下是一些应用实例:1. 求解等差数列的和:假设有一个等差数列,首项为3,公差为4,求前10项的和。
根据等差数列求和公式,我们可以得到Sn = 10(3 + (3 + 9*4)) / 2 = 270。
2. 求解等差数列中某几项的和:假设有一个等差数列,首项为2,公差为3,求第4项到第8项的和。
根据等差数列求和公式,我们可以得到Sn = 5(2 + (2 + 7*3)) / 2 = 85。
3. 求解等差数列中的未知量:假设有一个等差数列,前n项的和为S,首项为a1,公差为d,求第n项。
等差数列的求和公式

等差数列的求和公式等差数列是数学中一个常见的数列类型,其中相邻的两个数之间差值固定。
求和公式是用来计算该数列中的所有数值之和的公式。
在本文中,我们将介绍等差数列的求和公式以及如何使用它进行计算。
1.等差数列的定义和性质等差数列是指数列中的每一项与它的前一项之差保持相等的数列。
假设等差数列的首项为a,公差为d,则第n项表示为an = a + (n-1)d。
其中n为项数,a为首项,d为公差。
等差数列的性质包括:- 任意两个项之和与其平均数的关系:an + a(1) = an-1 + a(2) = ... = a(1) + an- 等差数列的前n项和与后n项和的关系:S(n) = n/2 * (a(1) + an) - n项和与首项和末项的关系:S(n) = n/2 * (a + an)2.等差数列的求和公式等差数列的求和公式是用来计算该数列中的所有数值之和的公式。
根据等差数列的性质,我们可以得到以下两个求和公式:- 等差数列前n项和的求和公式:Sn = n/2 * (a + an)- 等差数列首项至第n项和的求和公式:Sn = n/2 * (a(1) + an)这两个公式可以根据具体的问题来选择使用,通常情况下我们更常用的是第一个公式。
下面我们将用实例来说明如何使用等差数列的求和公式。
3.求和公式的应用实例假设有一个等差数列,首项为3,公差为5,要求计算该数列的前10项之和以及前15项之和。
根据求和公式Sn = n/2 * (a + an),我们可以计算得到:- 前10项之和:S(10) = 10/2 * (3 + a(10)) = 10/2 * (3 + (10-1)5) =10/2 * (3 + 45) = 10/2 * 48 = 10 * 24 = 240- 前15项之和:S(15) = 15/2 * (3 + a(15)) = 15/2 * (3 + (15-1)5) =15/2 * (3 + 70) = 15/2 * 73 = 15 * 36.5 = 547.5因此,该等差数列的前10项之和为240,前15项之和为547.5。
等差数列求和公式小学

等差数列求和公式小学小学的等差数列求和公式,同学们还有印象吗?如果没有了,请来小编这里瞧瞧。
下面是由小编为大家整理的“等差数列求和公式小学”,仅供参考,欢迎大家阅读。
等差数列求和公式小学等差数列求和公式:Sn=a1*n+[n*(n-1)*d]/2。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差,公差常用字母d表示。
数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
拓展阅读:数列求和公式七个方法数列求和公式七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、特殊数列求和。
推导等差数列的前n项和公式的方法是倒序相加法。
而且这个方法可以类推到一般情况,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。
三角函数什么时候学三角函数是初中数学九年级的内容。
包括正弦、余弦和正切.。
高中时也会学到,比初中讲的更为详细。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
正弦值定义弦值是在直角三角形中,对边的长比上斜边的长的值。
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
正弦sinθ也可以理解为顶角度数为θ的单位等腰三角形与单位等腰直角三角形的面积之比。
sin30°=1╱2,sin45°=√2╱2,sin60°=√3╱2,sin90°=1,sin180°=0,sin0°=0,sin270°=-1cos是cosine的简写,表示余弦函数(邻边比斜边),古代说法,正弦是股与例,古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边.股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。
等差数列求和技巧

等差数列求和技巧在数学中,等差数列是指数列中任意两个相邻数之间的差值保持恒定的数列。
求解等差数列的和是数学中常见的问题之一。
本文将介绍几种常用的等差数列求和技巧,帮助读者更好地理解和应用这一概念。
一、等差数列求和公式对于一个等差数列,我们可以使用求和公式来计算其总和。
假设等差数列的首项为a,公差为d,共有n项,则等差数列的求和公式可以表示为:Sn = (n/2)(2a + (n-1)d)其中,Sn表示等差数列的和。
二、等差数列求和通用步骤下面是一般情况下求解等差数列和的通用步骤:1. 确定数列的首项a、公差d以及项数n。
2. 使用求和公式Sn = (n/2)(2a + (n-1)d)计算出总和Sn。
三、等差数列求和技巧除了以上的通用步骤外,我们还可以运用一些技巧来简化等差数列求和的计算过程。
1. 利用对称性对于等差数列来说,如果其项数为奇数,那么数列的中间项与首项和末项的和是相等的。
我们可以直接使用这个性质来求和,而不需要使用求和公式。
例如:1 + 3 + 5 + 7 + 9 = (1 + 9) + (3 + 7) + 5 = 10 + 10 + 5 = 252. 利用求和公式的性质我们可以对等差数列进行逆序求和,并与原始的求和公式相加,从而得到每一项的和。
例如:1 +2 +3 + ... + n = n(n+1)/2n + (n-1) + (n-2) + ... + 1 = n(n+1)/2将两个等式相加,得到:2(1 + 2 + 3 + ... + n) = n(n+1)得出等差数列的和为:1 +2 +3 + ... + n = n(n+1)/23. 利用倍数关系如果一个等差数列的公差为1,那么该等差数列的和可以简化为项数n的平方。
例如:1 +2 +3 + ... + n = n(n+1)/2 = n^2/2 + n/2 ≈ n^2/2 (当n足够大时)四、实例演算为了更好地理解和掌握等差数列求和技巧,下面我们以几个实例来进行演算。
五年级等差数列题型及解题方法

五年级等差数列题型及解题方法一、等差数列的基本概念1. 定义等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母d表示。
例如数列1,3,5,7,9,·s,公差d = 2。
2. 通项公式a_n=a_1+(n 1)d,其中a_n表示第n项的数值,a_1表示首项,n表示项数,d表示公差。
例如:已知一个等差数列a_1=3,d = 2,求第5项a_5。
解析:根据通项公式a_n=a_1+(n 1)d,将a_1=3,n = 5,d = 2代入公式,得到a_5=3+(5 1)×2=3 + 8=11。
3. 求和公式S_n=frac{n(a_1+a_n)}{2}或S_n=na_1+(n(n 1))/(2)d例如:求等差数列1,3,5,·s,99的和。
解析:方法一:首先求项数n,根据通项公式a_n=a_1+(n 1)d,这里a_1=1,d = 2,a_n=99。
由99 = 1+(n 1)×2,99=1 + 2n-2,2n=100,解得n = 50。
再根据求和公式S_n=frac{n(a_1+a_n)}{2},将n = 50,a_1=1,a_n=99代入,得到S_50=(50×(1 + 99))/(2)=2500。
方法二:直接用S_n=na_1+(n(n 1))/(2)d,n = 50,a_1=1,d = 2,则S_50=50×1+(50×(50 1))/(2)×2=50+50×49=2500。
二、常见题型及解题方法1. 求项数题目:在等差数列3,7,11,·s,43中,项数是多少?解析:已知a_1=3,d = 4,a_n=43。
根据通项公式a_n=a_1+(n 1)d,则43=3+(n 1)×4。
首先展开式子得到43=3 + 4n-4,即43 = 4n-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选讲1 等差数列求和
一、知识要点
若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项;数列中,项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】有一个数列:4,10,16,22…,52.这个数列共有多少项?
练习1:
1.等差数列中,首项=1.末项=39,公差=
2.这个等差数列共有多少项?
2.有一个等差数列:2, 5,8,11…,101.这个等差数列共有多少项?
3.已知等差数列11, 16,21, 26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3, 7,11, 15,……,这个等差数列的第100项是多少?
练习2:
1.一等差数列,首项=3.公差=
2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
【例题3】有这样一个数列:1, 2, 3, 4,…,99,100。
请求出这个数列所有项的和。
练习3:
计算下面各题。
(1)1+2+3+…+49+50 (2)6+7+8+…+74+75
(3)100+99+98+…+61+60
【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200 (3)9+18+27+36+…+261+270
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
练习5:
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)
三、课后作业
1、张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,做了30天刚好做完,则这批零件一共有多少个?
2、在一次同学聚会中,一共到了45位同学和2位老师,每位同学或老师都要和其他所有人握一次手,那么一共握手了几次?
3、新星幼儿园304个小朋友围成若干个圆圈(一圈套一圈)做游戏,已知最里面的圈有24人,最外面的圈有52人,如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?。