2018秋北师大版七年级上册有理数拔高题及答案
北师大版数学七年级上册单元综合评估训练: 第二章 《有理数及运算》 (含解析答案)

单元综合评估训练:《有理数及其运算》一.选择题1.下列运算正确的是()A.﹣3+5=﹣8 B.﹣1﹣(+1)=0 C.(﹣3)×2=﹣6 D.(﹣3)2=﹣6 2.我国2018年第一季度GDP总值初步核算大约为199000亿元,数据199000用科学记数法表示为()A.1.99×104B.1.99×105C.0.199×105D.19.9×1043.下列各数中,其倒数最小的是()A.﹣B.﹣2 C.D.24.数轴上,到原点距离是8的点表示的数是()A.8和﹣8 B.0和﹣8 C.0和8 D.﹣4和45.下列说法,其中正确的个数是()①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数,A.5个B.4个C.3个D.2个6.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为()A.3 B.2 C.1 D.07.我们约定a⊕b=10a×10b,如2⊕3=102×103=105,那么3⊕8为()A.24 B.1024C.1011D.11108.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n=()m﹣3 43 1nA.1 B.2 C.5 D.79.关于与的说法,哪一项是正确的()A.n取任何数与始终都相等B.只有当n取整数时与相等C.只有当n取偶数时与相等D.只有当n取奇数时与相等10.(﹣8)2019+(﹣8)2018能被下列哪个数整除()A.3 B.5 C.7 D.9二.填空题11.已知b<0<a,且|a|>|b|,化简|b﹣a|﹣|a﹣b|的结果是.12.当时,|3﹣x|=x﹣3.13.|﹣3|﹣÷﹣×(﹣2)2=.14.若a、b互为相反数,c、d互为倒数,则的值为.15.若有理数a,b满足|a+|+b2=0,则a b=.16.如图,在数轴上,点A、B分别表示数1、﹣2x+3,则数轴上表示数﹣x+2的点应落在.(填“点A的左边”、“线段AB上”或“点B的右边”)三.解答题17.计算(1)﹣10﹣(﹣3)+(﹣5)(2)﹣2.5÷×(﹣)(3)(﹣2)2×5﹣(﹣2)3÷4(4)÷(﹣2)﹣×﹣÷418.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|c﹣a|的值.19.某服装店购进10件羊毛衫,实际销售情况如下表所示:(售价超出成本为正,不足记为负)件数(件) 3 2 2 1 2钱数(元)a﹣20 +20 b+40(1)若|2a+20|+(b﹣30)2=0,求a和b的值分别是多少?(2)在(1)的条件下,通过计算求出这家服装店在这次销售中盈利或者亏损多少元?20.高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负)(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?(2)上星期平均每天借出多少册书?星期一星期二星期三星期四星期五+18 ﹣6+15 0 ﹣1221.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.22.a是最大负整数,b是绝对值最小的有理数,c的倒数是c,求a2017+2018b+c2019.23.如图,在一条不完整的数轴上从左到右有点A,B.将线段AB沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A为数轴原点,点B表示的数是4,当点A′恰好是AB的中点时,数轴上点B′表示的数为.(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简回|m|+|n|+|m﹣n|.参考答案一.选择题1.解:∵﹣3+5=2,故选项A错误;∵﹣1﹣(+1)=﹣1﹣1=﹣2,故选项B错误;∵(﹣3)×2=﹣6,故选项C正确;∵(﹣3)2=9,故选项D错误;故选:C.2.解:数据199000用科学记数法表示为1.99×105.故选:B.3.解:﹣的倒数为﹣2,﹣2的倒数为﹣,的倒数为2,2的倒数为,﹣2<﹣<<2.故选:A.4.解:数轴上距离原点是8的点有两个,表示﹣8的点和表示+8的点.故选:A.5.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:D.6.解:∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.故选:B.7.解:根据题中的新定义得:3⊕8=103×108=1011,故选:C.8.解:由题意得竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),整理得m=2,则有2﹣3+4=﹣3+1+n,解得n=5,∴m+n=5+2=7,故选:D.9.解:关于与,只有当n取偶数时与相等.故选:C.10.解:(﹣8)2019+(﹣8)2018=(﹣8)2018×(﹣8+1)=﹣7×(﹣8)2018,∴能被7整除;故选:C.二.填空题(共6小题)11.解:∵b<0<a,且|a|>|b|,∴b﹣a<0,a﹣b>0,则原式=a﹣b﹣a+b=0,故答案为:012.解:由题意可得3﹣x≤0,解得x≥3.故答案为≥3.13.解:|﹣3|﹣÷﹣×(﹣2)2=3﹣=3﹣2﹣3=﹣2,故答案为:﹣2.14.解:根据题意得:a+b=0,cd=1,则原式=0+3=3,故答案为:315.解:∵|a+|+b2=0,∴a=﹣,b=0.∴a b=(﹣)0=1.故答案为:1.16.解:由数轴上的点表示的数右边的总比左边的大,得:﹣2x+3>1,解得x<1;﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.所以数轴上表示数﹣x+2的点在A点的右边;作差,得:﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得:﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,所以数轴上表示数﹣x+2的点在B点的左边.故数轴上表示数﹣x+2的点应落在线段AB上.故答案为:线段AB上.三.解答题(共7小题)17.解:(1)﹣10﹣(﹣3)+(﹣5)=﹣10+3+(﹣5)=﹣12;(2)﹣2.5÷×(﹣)=2.5××=1;(3)(﹣2)2×5﹣(﹣2)3÷4=4×5﹣(﹣8)÷4=20+2=22;(4)÷(﹣2)﹣×﹣÷4=﹣﹣=﹣==﹣=﹣.18.解:由数轴可得,a<0<b<c,∴b﹣c<0,a﹣b<0,c﹣a>0,∴|b﹣c|+|a﹣b|﹣|c﹣a|=﹣b+c﹣a+b﹣c+a=0.19.解:(1)因为|2a+20|+(b﹣30)2=0,所以2a+20=0,b﹣30=0,解得a=﹣10,b=30;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.20.解:(1)18﹣(﹣12)=30(册).答:上星期借书最多的一天比借书最少的一天多借出图书30册;(2)18+(﹣6)+15+0+(﹣12)=15(册),15÷5=3(册),100+3=103(册).答:上星期平均每天借出103册书.21.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;故答案为:是;(4)∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.22.解:根据题意得:a=﹣1,b=0,c=±1,当a=﹣1,b=0,c=﹣1,原式=﹣1+0﹣1=﹣2,当a=﹣1,b=0,c=1,原式=﹣1+0+1=0.23.解:(1)∵点B表示的数是4,当点A′恰好是AB的中点时,∴点A′表示的数为2,∴数轴上点B′表示的数为2+4=6.故答案为:6;(2)由题意知点A′在点A右侧,即m<n,则m﹣n<0.又原点在线段A'B之间,则点A'在原点的左侧,即m<0,n<0,|m|+|n|+|m﹣n|=﹣m﹣n﹣m+n=﹣2m.。
(完整word版)七年级上学期数学期末测试卷【拔高】【含答案】

七年级上学期期末测试卷【7】一.选择题(共10小题)1.下列说法正确的是( )A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数2.现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A.②③B.③④C.②③④D.①②③④3.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据算式中的规律,为220的末位数字是( )A.2 B.4 C.6 D.84.一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚5.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.26.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.N C.m+n D.m,n中较大的数7.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.8.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,下列四个等式:①40m+10=43m﹣1;②③④40m+10=43m+1,正确的是()A.①②B.②④C.②③D.③④9.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN 的长度是()A.7cm B.3cm C.7cm或3cm D.5cm10.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向二.填空题(共10小题)11.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.12.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2= .13.一个多项式减去x2+14x﹣6,结果得到2x2﹣x+3,则这个多项式是.14.(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].15.若4x4y n+1与﹣5x m y2的和仍为单项式,则m﹣n= .16.当a取整数时,方程﹣=有正整数解.17.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年岁.18.9点20分,钟表上时针与分针所成的钝角是度.19.已知线段AD=AB,AE=AC,且BC=6,则DE= .20.用度、分、秒表示35.12°=°′″.三.解答题(共10小题)21.化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.22.已知A=3x2﹣ax+6x﹣2,B=﹣3x2+4ax﹣7,若A+B的值不含x项,求a的值.23.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.24.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.25.某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?26.解方程:(1﹣)=﹣x+1.27.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.28.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?29.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.30.如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,OD的方向是;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是;(4)在(1)、(2)、(3)的条件下,∠COE= .七年级上学期期末测试卷【7】参考答案与试题解析一.选择题(共10小题)1.(2016春•普陀区期末)下列说法正确的是()A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数【解答】解:A、有理数包括整数和分数,故此选项正确;B、当a≤0时,﹣a是非负数,故此选项错误;C、π是正数但不是有理数,故此选项错误;D、绝对值等于本身的数有0和正数,故此选项错误;故选:A.2.现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A.②③B.③④C.②③④D.①②③④【解答】解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.3.(2016•朝阳区校级模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )A.2 B.4 C.6 D.8【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴220的末位数字是6.故选C.4.(2004•梅州)一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚【解答】解:根据题意,列式(30+60)﹣(30a+60b)=15(a﹣b),当b<a时,盈利,当b=a时,不赚不赔,当b>a时,亏损,由于不知a,b具体值,所以无法确定.故选D.5.(2014秋•临海市校级期中)若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.2【解答】解:∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,所以(1)和(2)(5)是错误的.故选C.6.(2010春•顺德区校级期末)若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.nC.m+n D.m,n中较大的数【解答】解:∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m﹣y n﹣4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.7.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是() A.B.C.D.【解答】解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.8.(2015秋•鞍山期末)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②③④40m+10=43m+1,其中正确的是( )A.①②B.②④C.②③D.③④【解答】解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.9.(2015秋•端州区期末)已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.10.(2016•邯山区一模)如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.二.填空题(共10小题)11.(2014秋•龙岗区期末)某粮店出售三种品牌的大米,袋上分别标有质量为(25±0。
20182019七年级数学有理数易错及拔高题精选练习

2018-2019 七年级数学有理数易错及拔高题优选练习1.填空:(1)当 a________时,a 与-a 必有一个是负数;(2) 在数轴上,与原点0 相距 5 个单位长度的点所表示的数是________;(3)在数轴上,A 点表示+ 1,与 A 点距离 3 个单位长度的点所表示的数是 ________;(4) 在数轴的原点左边且到原点的距离等于 6 个单位长度的点所表示的数的绝对值是________.解(1)a 为任何有理数; (2) +5;(3) +3;(4) -6.2.用“有”、“没有”填空:在有理数会合里, ________最大的负数, ________最小的正数, ________绝对值最小的有理数.解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)全部的整数 ________负整数;(2)小学里学过的数 ________正数;(3)带有“+”号的数 ________正数;(4)有理数的绝对值 ________正数;(5)若|a| +|b|=0 ,则 a,b________零;(6)比负数大的数 ________正数.解(1) 都不是; (2) 都是; (3) 都是; (4) 都是; (5) 不都是; (6) 都是.4.用“必定”、“不必定”、“必定不”填空:(1) -a________是负数;(2) 当 a>b时, ________有|a| >|b| ;(3)在数轴上的随意两点,距原点较近的点所表示的数 ________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数 ________大于它的相反数;(6)一个数 ________小于或等于它的绝对值;解(1) 必定; (2) 必定; (3) 必定不; (4) 必定; (5) 必定; (6) 不必定.5.把以下各数从小到大,用“<”号连结:并用“>”连结起来.8.填空:(1) 假如- x=-( -11) ,那么x=________;(2)绝对值不大于 4 的负整数是 ________;(3) 绝对值小于 4. 5 而大于 3 的整数是 ________.解(1)11 ;(2) -1,- 2,- 3;(3)4 .9.依据所给的条件列出代数式:(1)a ,b两数之和除a,b两数绝对值之和;(2)a 与 b 的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是 x,分子比分母的相反数大 6;(4)x ,y两数和的相反数乘以x,y两数和的绝对值.10.代数式- |x| 的意义是什么?解代数式- |x| 的意义是:x的相反数的绝对值.11.用适合的符号 ( >、<、≥、≤ ) 填空:(1)若 a 是负数,则 a________-a;(2)若 a 是负数,则- a_______0;(3)假如 a>0,且 |a| >|b| ,那么 a________ b.解(1) >; (2) <; (3) <.12.写出绝对值不大于 2 的整数.解绝对值不大 2 的整数有- 1,1.13.由 |x|=a能推出x=±a吗?解由|x|=a能推出x=±a.如由|x|=3获得x=±3,由|x|=5获得x=±5.14.由 |a|=|b|必定能得出a=b 吗?解必定能得出a=b.如由 |6|=|6|得出6=6,由 | -4|=| -4| 得- 4=-4.15.绝对值小于 5 的偶数是几?答绝对值小于 5 的偶数是2,4.16.用代数式表示:比 a 的相反数大11 的数.解-a-11.17.用语言表达代数式:-a-3.解代数式- a-3用语言表达为:a 与 3 的差的相反数.18.算式- 3+5-7+2-9怎样读?解算式- 3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把以下各式先改写成省略括号的和的形式,再求出各式的值.(1)( -7) -( -4) -( +9) +( +2) -( -5) ;(2)( -5) -( +7) -( -6) +4.解(1)( -7) -( -4) -( +9) +( +2) -( -5)=-7-4+9+2-5=-5;(2)( -5) -( +7) -( -6) +4=5-7+6-4=8.20.计算以下各题:(2)5 -| -5|=10 ;21.用适合的符号 ( >、<、≥、≤ ) 填空:(1)若 b 为负数,则 a+b________a;(2)若 a>0,b<0,则 a-b________0;(3)若 a 为负数,则 3-a________3.解(1) >; (2) ≥; (3) ≥.22.若 a 为有理数,求 a 的相反数与 a 的绝对值的和.解-a+|a|= -a+a=0.23.若 |a|=4 ,|b|=2 ,且 |a +b|=a +b,求a-b的值.解由|a|=4 ,得 a=±4;由 |b|=2 ,得b=±2.当a=4,b=2 时, a-b=2;当a=4,b=-2时, a-b=6;当a=-4,b=2 时, a-b=-6;当a=-4,b=-2时, a-b=-2.24.列式并计算:-7与-15的绝对值的和.解| -7| +| -15|=7 +15=22.25.用简易方法计算:26.用“都”、“不都”、“都不”填空:(1)假如 ab≠0,那么 a,b________为零;(2)假如 ab>0,且 a+b>0,那么 a,b________为正数;(3)假如 ab<0,且 a+b<0,那么 a,b________为负数;(4)假如 ab=0,且 a+b=0,那么 a,b________为零.解(1) 不都; (2) 不都; (3) 都; (4) 不都.27.填空:(3)a ,b为有理数,则- ab 是_________;(4)a ,b互为相反数,则 (a +b)a是________.解(1) 负数; (2) 正数; (3) 负数; (4) 正数.28.填空:(1) 假如四个有理数相乘,积为负数,那么负因数个数是________;解(1)3 ;(2)b >0.29.用简易方法计算:解30.比较 4a 和- 4a 的大小:解由于 4a 是正数,- 4a 是负数.而正数大于负数,因此 4a>- 4a.31.计算以下各题:(5) -15×12÷6×5.解=-48÷( -4)=12;(5)-15×12÷6×5解由于 |a|=|b|,因此a=b.=1+1+1=3.34.以下表达能否正确?若不正确,更正过来.(1)平方等于 16 的数是 ( ±4)2 ;(2)( -2)3 的相反数是- 23;解(1) 正确; (2) 正确; (3) 正确.35.计算以下各题;(1)-0. 752;(2)2 ×32.解36.已知 n 为自然数,用“必定”、“不必定”或“必定不”填空:(1)( -1)n +2________是负数;(2)( -1)2n +1________是负数;(3)( -1)n +( -1)n +1________是零.解(1) 必定不; (2) 不必定; (3) 必定不.37.以下各题中的横线地方填写的内容能否正确?若不正确,更正过来.(1)有理数 a 的四次幂是正数,那么 a 的奇数次幂是负数;(2)有理数 a 与它的立方相等,那么a=1;(3)有理数 a 的平方与它的立方相等,那么a=0;(4)若|a|=3 ,那么 a3=9;(5)若 x2=9,且 x<0,那么 x3=27.38.用“必定”、“不必定”或“必定不”填空:(1)有理数的平方 ________是正数;(2)一个负数的偶次幂 ________大于这个数的相反数;(3)小于 1 的数的平方 ________小于原数;(4)一个数的立方 ________小于它的平方.解(1) 必定; (2) 必定; (3) 必定; (4) 必定不.39.计算以下各题:(1)( -3×2)3 +3×23;(2) -24-( -2)4 ;(3) -2÷( -4)2 ;解(1)( -3×2)3 +3×23=-3×23+3×23=0;(2) -24-( -2)4=0;40.用科学记数法记出以下各数:(1)314000000 ;(2)0. 000034.解(1)314000000=3 . 14×106;(2)0 . 000034=3. 4×10-4.41.判断并改错 ( 只变动横线上的部分 ) :(1)用四舍五入获得的近似数0.0130 有 4个有效数字.(2)用四舍五入法,把 0. 63048 精准到千分位的近似数是 0. 63.(3)由四舍五入获得的近似数 3.70 和 3. 7是同样的.(4)由四舍五入获得的近似数 4.7 万,它精准到十分位.42.改错 ( 只变动横线上的部分 ) :(1)已知 5. 0362=25. 36,那么 50. 362=253. 6,0. 050362=0. 02536;(2)已知 7. 4273=409. 7,那么 74. 273=4097,0. 074273=0. 04097;(3)已知 3. 412=11 . 63,那么 (34 . 1)2=116300;(4) 近似数 2. 40×104 精准到百分位,它的有效数字是2,4;(5)已知 5. 4953=165. 9,x3=0 . 0001659,则 x=0. 5495.有理数·错解诊疗练习答案1.(1) 不等于0 的有理数; (2) +5,- 5;(3) -2,+ 4;(4)6 .2.(1) 没有; (2) 没有; (3) 有.3.(1) 不都是; (2) 不都是; (3) 不都是; (4) 不都是; (5) 都是; (6) 不都是.原解错在没有注意“ 0”这个特别数 ( 除(1) 、(5) 两小题外 ) .4.(1) 不必定; (2) 不必定; (3) 不必定; (4) 不必定; (5) 不必定; (6) 必定.上边 5,6,7 题的原解错在没有掌握有理数特别是负数大小的比较.8.(1) -11;(2) -1,- 2,- 3,- 4;(3)4 ,- 4.10.x绝对值的相反数.11.(1) <; (2) >; (3) >.12.- 2,- 1,0,1,2.13.不必定能推出x=±a,比如,若 |x|= -2.则x 值不存在.14.不必定能得出a=b,如 |4|=| -4| ,但4≠- 4.15.- 2,- 4,0,2,4.16.- a+11.17.a的相反数与 3 的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1) 原式 =-7+4-9+2+5=-5;(2)原式 =-5-7+6+4=-2.21.<;>;>.22.当 a≥0时,- a+|a|=0 ,当a<0时,- a+|a|= -2a.23.由 |a +b|=a +b 知 a+b≥0,依据这一条件,得a=4,b=2,因此a-b=2;a=4,b=-2,因此 a-b=6.24.- 7+| -15|= -7+15=8.26.(1) 都不; (2) 都; (3) 不都; (4) 都.27.(1) 正数、负数或零; (2) 正数、负数或零;(3)正数、负数或零; (4)0 .28.(1)3或1;(2)b≠0.30.当 a>0时, 4a>- 4a;当a=0 时, 4a=-4a;当a<0时, 4a<- 4a.(5) -150.32.当 b≠0时,由 |a|=|b|得a=b 或 a=-b,33.由 ab>0得 a>0且 b>0,或 a<0且 b<0,求得原式值为 3 或- 1.34.(1) 平方等于 16 的数是± 4;(2)( -2)3 的相反数是 23;(3)(-5)100 .36.(1) 不必定; (2) 必定; (3) 必定.37.(1) 负数或正数; (2)a= -1,0,1;(3)a=0 ,1;(4)a3 =± 27;(5)x3 =- 27.38.(1) 不必定; (2) 不必定; (3) 不必定; (4) 不必定.40.(1)3 . 14×108;(2)3 . 4×10-5 .41.(1) 有 3 个有效数字; (2)0 . 630;(3) 不同样; (4) 千位.42.(1)2536 ,0. 002536;(2)409700 ,0. 0004097;(3)341 ;(4) 百位,有效数字2,4,0;(5)0 . 05495.。
七年级数学上册有理数练习题(含答案)

七年级数学上册有理数练习题(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列不是有理数的是( )A .227B .3.14C .πD . 3.1415926-2.下列说法正确的是( )A .所有的整数都是正数B .非负数就是正数C .0既不是正数,也不是负数D .正数和负数统称为有理数3.在+8.3,﹣4,﹣0.8,15-,0,90中,分数共有( ) A .1个 B .2个 C .3个 D .4个4.在数 8-,0,5,π,0.01-,1322 中,属于非负整数的有( ) A .2 个 B .3 个 C .4 个 D .5 个5.如果温度上升1℃记作1+℃,那么温度下降5℃,应记作( )A .5+℃B .5-℃C .6+℃D .6-℃6.在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有( )A .4 个B .5 个C .6 个D .7 个二、填空题7.若○中填入最小的正整数,℃中填入最小的非负数,□中填入大于﹣3且小于3的整数的个数,则(○+℃)×□=___.8.某居民的身份证如图所示,则该居民的出生年份是__.9.下列各数:()21-,12,0.2,其中有理数有______个. 10.______和______统称为有理数:有理数可分为:______数,______数和______. 11.把下列各数填入相应的集合中:+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%,π,﹣0.2020020002…(每相邻两个2之间0的个数逐次加1).正分数集合:{ …};正整数集合:{ …};整数集合:{ …};有理数集合:{ …}. 12.在 18%,112,4.5,17-,0,227,π2,56- 中,整数是____;正分数是____;有理数有____个. 13.2018年10月26日,全世界最长的跨海大桥--港珠澳大桥正式通车,其全长为55__(填单位).三、解答题14.将下列各数填入相应的圈内: 12-,7+, 2.8+,90-, 3.5-,193,0,4.15.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4. (1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }(4)负数集合:{ }(5)正整数集合:{ }(6)负分数集合:{ }16.已知正数x 的两个不等的平方根分别是214a -和2a +,1b +的立方根为-3;c(1)求x和b的值;(2)式子a b c-+的值=;(3是数(填“有理”或“无理”).17.下列六个数中:﹣2.5,132,0,+5,﹣4,12-.(1)整数有个;负分数有个;既不是正数也不是负数的是.(2)把所有数据分别在数轴上表示出来.参考答案:1.C【分析】根据有理数的定义,有理数包括分数和整数,据此分析即可.【详解】227,3.14, 3.1415926-都是分数,是有理数;π是无限不循环的小数,不是有理数;故选C.【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.2.C【分析】根据正数和负数的定义解答即可.【详解】解:A.整数包含正整数、0、负整数,错误;B.非负数就是0和正数,错误;C.0既不是正数,也不是负数,正确;D.零、正有理数和负有理数统称为有理数,错误.故选:C.【点睛】本题考查的是正数和负数的定义,熟知相关性质是解题的关键.3.C【分析】根据分数定义,把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数,分数分为正分数与负分数,对各数进行一一区分即可.【详解】解:分数有+8.3,﹣0.8,15 -,分数共有3个.故选:C.【点睛】本题考查分数,掌握分数定义是解题关键.4.A【分析】非负整数即为正整数与0,找出即可.【详解】解:在数8-,0,5,π,0.01-,1322中,属于非负整数的有0,5,共2个故选A.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.5.B【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可;【详解】如果温度上升1℃记作+1℃,即初始温度为0℃,那么温度下降5℃记作-5℃,故选:B .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负;6.C【分析】根据有理数的定义,即可求解.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:在数 15,7.35-,0,45-,0.303,117,0.101001000(每两个 1 中依次多一个 0)中,有理数有15,7.35-,0,45-,0.303,117,共6个 故选C .【点睛】本题考查了有理数的定义,掌握有理数的定义是解题的关键.7.5【分析】最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个,然后根据算式计算即可.【详解】由题意可知:最小的正整数为1,最小的非负数为0,大于﹣3且小于3的整数的个数为5个; ○代表1,℃代表0,□代表5;则原式=(1+0)×5=5,故答案为:5【点睛】本题考查正整数、非负数等的概念,解决本题的关键是对有理数的分类要清晰明了. 8.1978【分析】由身份证号码第7—10位数字表示的是年份,即可得出结论.【详解】解:由身份证号码第710-位数字表示的是出生年份,得该居民出生年份是1978.故答案为:1978.【点睛】本题考查了数学常识,了牢记身份证号码18位数字的意义是解题的关键.9.3【分析】根据有理数的定义即可求解.【详解】解:根据有理数的定义知:2(1)-,12,0.2,是有理数,故答案为:3.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解题的关键.10.整数分数正有理负有理零【分析】根据有理数的分类及定义即可判定.【详解】解:整数和分数统称为有理数,有理数可分为正有理数和负有理数和0;故答案为:整数、分数、正有理、负有理、零【点睛】本题主要考查了有理数的定义及分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题11.见解析【分析】直接根据有理数的分类进行解答即可.【详解】解:正分数集合:{0.75,245,9%…};正整数集合:{+6,+8…};整数集合:{+6,﹣3,0,+8…};有理数集合:{+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%…}.故答案为:0.75,245,9%;+6,+8;+6,﹣3,0,+8;+6,0.75,﹣3,0,﹣1.2,+8,245,﹣13,9%.【点睛】本题考查的是有理数和绝对值,掌握正分数、正整数、整数、有理数的概念是解决此题关键.12.17-,018%,112,4.5,2277【分析】根据有理数的定义与分类求解即可.【详解】解:在18%,112,4.5,17-,0,227,π2,56-中,整数是17-,0,正分数是18%,112,4.5,227;有理数有7个.故答案为:17-,0;18%,112,4.5,227;7.【点睛】本题考查了有理数的分类,掌握有理数的分类与定义是解题的关键.有理数是整数(正整数、0、负整数)和分数的统称.13.千米【分析】根据长度单位的认识即可求解.【详解】解:2018年10月26日,全世界最长的跨海大桥-港珠澳大桥正式通车,其全长为55千米.故答案为:千米.【点睛】考查了数学常识,关键是熟悉长度单位.14.见解析【分析】根据有理数的分类填写即可.有理数是整数(正整数、0、负整数)和分数的统称.【详解】解:如图【点睛】本题考查了有理数的分类,掌握有理数的定义与分类是解题的关键.15.(1)37+,0.8,12,17%,0.4(2)-2,12,0(3)37+,0.8,-2.1,375-,17%,0.4(4)-2,-2.1,3 75 -(5)12(6)-2.1,3 75 -【分析】根据有理数的定义及分类解答.(1)解:正数集合:{ 37+,0.8,12,17%,0.4 } (2)整数集合:{ -2,12,0 }(3)分数集合:{ 37+,0.8, -2.1,375-,17%,0.4 } (4)负数集合:{ -2, -2.1,375- } (5)正整数集合:{ 12 }(6)负分数集合:{ -2.1,375- } 【点睛】本题考查有理数及其分类,是基础考点,掌握相关知识是解题关键.16.(1)36x =,28b =-;(2)34;(3)有理【分析】(1)根据平方根性质,得()2421a a -=+-,通过求解一元一次方程,得a 的值,根据乘方的性质,计算得x ;根据立方根的性质,得()31327b +=-=-,通过求解方程即可得到答案;(2)结合题意,根据算术平方根、实数大小比较的性质,得2c =;再根据代数式的性质计算,即可得到答案;(3)结合题意,根据算术平方根和实数分类的性质分析,即可得到答案.【详解】(1)根据题意,得()2421a a -=+-℃4a =℃()2236x a =+=℃1b +的立方根为-3℃()31327b +=-=-℃28b =-;(2)℃c ,即23<<℃2c =℃()428234a b c -+=--+=故答案为:34;(34==故答案为:有理.【点睛】本题考查了平方根、立方根、一元一次方程、乘方、算术平方根、代数式、实数的知识;解题的关键是熟练掌握平方根、立方根、一元一次方程、代数式、实数分类的性质,从而完成求解.17.(1)3,2,0(2)见解析【分析】(1)根据有理数的分类进行分类即可;(2)根据数轴的定义,将数据表示在数轴即可.(1)解:整数有0,+5,﹣4共3个,负分数有﹣2.5,﹣12共2个,既不是正数也不是负数的是0.故答案为:3,2,0;(2)解:如图,【点睛】本题考查了有理数的分类和数轴表示数,解题的关键是掌握有理数的分类和用数轴表示数的方法.。
2018年秋(河南)北师大版七年级上册数学习题课件:2.6 有理数的加减混合运算第3课时 有理数的加减混合运

5.(5分)下表为张先生家的一张存折的一部分,从表中可知,截至2018年 3月2日,此张存折还结余______4_8_0_0______元.
日期 20171020 20171220
20180302
摘要 现存 现取
现存
存入(+)/支出(-) +5800 -2000
+1000
余额 5800
操作柜员 aklj aklj
3.(5分)某运动员先后参加了10次百米竞赛,成绩的变化情况如下表(第 一次成绩为10.8秒):
请问这位运动员跑10次百米竞赛的平均成绩为( A ) A.10.81秒 B.10.82秒 C.10.83秒 D.10.84秒 4.(5分)一天早晨的气温是-5 ℃,中午又上升了10 ℃,夜间又下降了8 ℃,则夜间的气温是____-__3____℃.
有理数加减混合运算的应用 1.(5分)(温县期中)小明近期几次数学测试成绩如下:第一次88分,第二 次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分,那 么小明第四次的测试成绩是( C ) A.93分 B.78分 C.94分 D.84分 2.(5分)某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了 5.3米,到下午6:00水位又下降了0.9米,下午6:00水位应为( B ) A.76米 B.84.8米 C.85.8米 D.86.6米
北师版
第二章 有理数及其运算
2.6 有理数的加减混合运算
第3课时 有理数的加减混合运算的应用
利用有理数加减混合运算解决“水位变化”等实际问题,首先要理解在 “水位的变化”图表下面标明的“注”或“注意”的含义:正号表示水位 比前一天__上__升_____, 负号表示水位比前一天 ____下__降____ ,参考对象是 ____前__一__天_______的水位.
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
【精选】北师大版数学七年级上册有理数(提升篇)(Word版含解析)

一、初一数学有理数解答题压轴题精选(难)1.列方程解应用题如图,在数轴上的点A表示-佥点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度/秒,乙的平均速度为1单位长度/秒.请问:I --- 1 ---- 1 -- ----- 1 ---- 1 --- 1 --- 1 --- 1 --- 1 ---- 1 --- 1_& ------ L>.-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6(1)_____________________________ 两只蜗牛相向而行,经过_____________ 秒相遇,此时对应点上的数是_____________________ •(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3; 2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有(2 - /?y = 5 - (- 4),解得y = J.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过X秒相遇,依题意有(2 ≠ Ih = 5 - ( _ 4),解得X =S.-4+2X3= - 4 + 6=2.答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过X秒相遇,根据等呈:关系:两只蜗牛的速度和X时间=5 -- 4),列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差 X时间=5 - ( _ 4),列岀方程求解即可.2.数轴上从左到右有A, B, C三个点,点C对应的数是10, AB = BC = 20.(1)_____________________ 点A对应的数是____________ ,点B对应的数是.(2)动点P从A岀发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________ ,点Q对应的数是__________ :②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)- 30: - 1028(2) 4t-30, t - 10; t 的值为 4 或3【解析】【解答】解:(1) T AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C 左侧,.∙.点B对应的数为10 - 20= - 10,点A对应的数为-10 - 20= - 30.故答案为:-30:・10・(2)①当运动时间为t秒时,点P对应的数是4t-30,点Q对应的数是t - 10.故答案为:4t - 30: t - 10・②依题意,得:It-IO- (4t-30) I=&・•・ 20∙3t = 8 或 3t-20=8,28解得:t=4或t= 3 .28.∙.t的值为4或三.【分析】(1)由AB, BC的长度结合点C对应的数及点A, B, C的位置关系,可得出点 A, B对应的数:(2)①由点P, Q的岀发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数:②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论・3.如图,点A. B都在数轴上,0为原点.B 0八-5 -4 -3 -2 -I 6I 2 3(1)点B表示的数是________ :(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是(3〉若点A、B分別以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点0 不动,t秒后,A、B、0三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【答案】(1)-4(2) 0(3)解:①当点0是线段AB的中点时,OB=OA4—3t=2+tt=0.5②当点B是线段OA的中点时,OA = 2 OB2+t=2(3t-4)t=2③当点A是线段OB的中点时,OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5, 2或8.【解析】【解答】(1)点B表示的数是-4:(2) 2秒后点B表示的数是0 :【分析】(1)根据数轴上所表示的数的特点即可直接得岀答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论:(3)找出t秒后点A、B表示的数,分①点0为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得岀结论。
北师大版七年级数学上月考预测拔高试题.docx

马鸣风萧萧初中数学试卷马鸣风萧萧月考预测拔高试题1、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是 ____________2、下图为某周上海股市的股指变化折线统计图:股指+60+50+40+30+20+10一二三四五星期以 1900点为原点(1)用正数表示比前一天上涨,负数表示比前一天下跌,完成下表:星期一二三四五股指变化(点)(2)本周五股指与上周五相比有何变化?变化值是多少?3、水库管理人员为掌握水库蓄水情况,需要观测水库水位变化,下表是一周内水位高低的变化情况,用正数表示水位比前一天上升数,用负数表示水位比前一天下降数.星期一二三四五六七水位变化(米)0.12-0.02-0.13-0.20-0.08-0.020.32 问水库的水位在本周内是上升还是下降,幅度是多少米?这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少?马鸣风萧萧4、已知 A, B 在数轴上分别表示数a, b.( 1)对照数轴填写下表:(2)若 A, B 两点间的距离记为 d ,试问 d 与 a, b 有何数量关系?(3)在数轴上找到所有符合条件的整数点P,使它到 5 和 -5 的距离之和为 10,并求出所有这些整数的和.(4)若数轴上点 C表示的数为 x,当点 C 在什么位置时,① |x+1| 的值最小?② |x+1|+|x-2| 的值最小?5、若 x 的相反数是3, y 的绝对值是5,则 x-y 的值为 ________6、如图,哪一个是左边正方体的展开图()D.A.B.C.7、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是__________8、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是______2mm.马鸣风萧萧.9、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数( F)、棱数( E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:( 1)根据上面多面体模型,完成表格中的空格:多面体顶点数( V)面数( F)棱数( E)四面体 4 4长方体8 6 12正八面体8 12正十二面体 20 12 30你发现顶点数(V)、面数( F)、棱数( E)之间存在的关系式是.( 2)一个多面体的面数比顶点数大8,且有 30 条棱,则这个多面体的面数是.( 3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24 个顶点,每个顶点处都有 3 条棱,设该多面体外表三角形的个数为x 个,八边形的个数为y 个,求 x+y 的值.10、3.14π = 绝对值最小的数是在有理数中最大的负整数是,最小的正整数是,最小的非负整数是,最小的非负数马鸣风萧萧是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学 第1章 有理数 拔高及易错题精选参考答案一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( B )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( C )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( D )A. 22)(a a -=B. 22a a =C. 33)(a a -=D.)(33a a --=6. -52表示( D )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数7. -42+ (-4) 2的值是( B )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( A )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( A )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( D )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( C )A. 464010⨯B. 56410⨯C. 66410⨯.D. 6410⨯7. 12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( B )0 A8-4GF E D C BA A. 万位 B. 十万位 C. 百万位 D. 千位二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 0 .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 1或-5 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 -2 ;表示原点的是点 C .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 -4.5或8.5 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 23 .5. 如果x 2=9,那么x 3= ±27 .6. 如果2-=-x ,则x = ±2 .7. 化简:|π-4|+|3-π|= 1 .8. 绝对值小于2.5的所有非负整数的和为 0 ,积为 0 .9. 使25++-x x 值最小的所有符合条件的整数x 有 -2,-1,0,1,2,3,4,5, .10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = -1 . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 2或-4 .12. 已知()0422=-++y x ,求x y 的值为 16 .13. 近似数2.40×104精确到 百 位,它的有效数字是 2,4,0 . 14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 7 . 15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = 502 ;(2) 1+3+5+7+…+(2n -1)= n 2 .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 50 个单位. 三、解答题(共82分)1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-解:原式=(371012-)+(37153)+(414-)+(375-)+(2115)+(49-)=[(371012-)+(375-)+(37153)]+[(414-)+(49-)+(2115)]=-9+9 =0(2)10.12512(16)(2)2-⨯⨯-⨯-解:原式=[-0.125×(-16) ]×[12×(25-)] =2× (-30) =-60(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-解:原式=[(7111-)×51+716×51]+[(31137-)÷5+(31112)÷5]=[(7111-+716)×51]+[(31137-+31112)÷5]=[(-5)×51]+[(-25)÷5]=-1+(-5) =-6 (4)+-+-+-31412131121 (9991)10001-解:原式=1-21+21-31+31-41+…+9991-10001 =1-10001=1000999 2. (5分)计算1-3+5-7+9-11+…+97-99.解:原式=(1-3)+(5-7)+(9-11)+…+(97-99)=-2 × 250(提示:1~100其中奇数和偶数各50个,50个奇数分成25组)=-2×25 =-50.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?解:∵点A 和原点的距离为2,∴点A 对应的数是±2.当点A 对应的数是2时,则点B 对应的数是2+1=3或2-1=1;当点A 对应的数是-2时,则点B 对应的数是-2+1=-1或-2-1=-3.4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.解:∵21()|13|02x y ++-=∴x +21=0,1-3y=0∴x =21-,y=31∴x y *=xyyx +=31213121⨯-+-=6161--=15. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.解:∵()0212=-++b a∴a+1=0,b -2=0 ∴a =-1,b=2∴(a+b )2016+ a 2017=(-1+2)2016+(-1)2017=1+(-1)=0.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.解:∵a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5∴a +b=0, cd=1,x =±5∴x 2-(a +b +cd )+(a +b ) 2016+(-cd ) 20170b ac =(±5)2-(0+1)+0 2016+(-1) 2017 =25-1+0+(-1) =237. (6分)已知│a│=4,│b│=3,且a>b ,求a 、b 的值. 解:∵|a|=4,|b|=3∴a=±4,b=±3 ∵a >b ∴a=4,b=±3.8. (6分)已知│a│=2,│b│=5,且ab<0,求a +b 的值.解:∵|a|=2,|b|=5∴a=±2,b=±5 ∵ab<0∴a=2,b=-5或a=-2,b=5.∴a +b =2+(-5) =-3或a +b =(-2)+5=3.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x ,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;(2)设中间的数为x ,则十字框中的五个数的和为:(x-10)+(x+10)+(x-2)+(x+2)+x=5x ,所以五个数的和为 5 x ; (3) 假设能够框出满足条件的五个数,设中间的数为x ,由(2)得 5x =2010,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010.10. (6分)已知有理数a ,b ,c 在数轴上的对应点如图所示,化简:a b b c c a -+---.解:由图示知:c <0<b <a , ∴a -b >0,b -c >0,c -a <0,∴|a -b|=a -b ,|b -c|=b -c ,|c -a|=-(c -a ) =,∴|a -b|+|b -c|-|c -a|=a -b+b -c -(a -c ) =a -b+b -c -a+c= 0.12. (6分)如果有理数a 、b 满足0)1(22=-+-b ab , 试求+++++++)2)(2(1)1)(1(11b a b a ab ……()()201720171++b a 的值. 解:∵0)1(22=-+-b ab∴ab -2=0,1-b=0 ∴a=2,b=1 ∴+++++++)2)(2(1)1)(1(11b a b a ab ……()()201720171++b a=211⨯+321⨯+431⨯+…+201920181⨯ =1-21+21-31+31-41+…+20181-20191=1-20191 = 2019201813. (6分)已知abc |abc|=1,求|a|a +|b|b +|c|c 的值.解:由abc|abc|=1,可得a ,b ,c 三个都为正数或a ,b ,c 中只有一个为正数. ①当a ,b ,c 三个都为正数,则有:|a|a ,|b|b ,|c|c 三个都为1 ,可得:|a|a +|b|b +|c|c=3;②当a ,b ,c 中只有一个为正数,则有:|a|a ,|b|b ,|c|c中有一个为1,其余两个都为-1,可得|a|a +|b|b +|c|c =-1.综上可得,|a|a +|b|b +|c|c 的值为3或-1.14. (6分)已知c b a 、、均为非零的有理数,且1-=++cc b b a a ,求abcabc 的值.解:由|a|a +|b|b +|c|c =-1,可得a ,b ,c 中有一个为正数两个为负数,则abcabc =-1.。