基于MATLAB的异步电机转子磁场定向矢量控制系统仿真

合集下载

运动控制系统课程设计异步电机矢量控制Matlab仿真实验

运动控制系统课程设计异步电机矢量控制Matlab仿真实验

目录1 异步电动机矢量控制原理 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换(3/2变换) (4)2.3 旋转变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 MATLAB系统仿真系统设计 (8)4.3 PI调节器设计 (9)5 仿真结果 (10)5.1 电机定子侧的电流仿真结果 (10)5.2 电机输出转矩仿真结果 (11)心得体会 (13)参考文献 (14)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。

所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。

其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流i A 、i B 、i C ,通过3/2变换可以等效成两相静止正交坐标系上的交流i sα和i sβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流i sm 和i st 。

图1-1 异步电动机矢量变换及等效直流电动机模型在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。

m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。

三相异步电动机按转子磁链定向的矢量控制系统仿真

三相异步电动机按转子磁链定向的矢量控制系统仿真

摘要本文对三相异步电动机按转子磁链定向的矢量控制系统进行了计算机仿真研究,运用Matlab/Simulink和SimPowerSystem工具箱及面向系统电气原理结构图的仿真方法,实现了带转矩内环的转速、磁链闭环矢量控制系统的建模与仿真;重点介绍了调速系统的建模和调节器参数的设置,给出了矢量交流调速系统的仿真模型和仿真结果非常接近实际情况,说明了仿真模型的正确性。

关键词:异步电动机;交流调速;矢量控制目录摘要 01概述 (1)2总系统设计 (2)3子系统设计 (6)3.1 转速控制器 (6)3.2 定向控制器 (6)4三相异步电动机磁场定向矢量控制系统仿真 (8)4.1参数给定 (8)4.2系统仿真 (10)总结 (12)参考文献 (13)附录 (14)1概述交流调速技术在工业领域的各个方面应用很广,对于提高电力传动系统的性能有着重要的意义,由于电力传动系统的复杂性和被控对象的特殊性,使得对它的建模与仿真一直是研究的热点。

对其仿真研究不能像控制系统那样可用各环节简化传递函数来表示,这样会有很多重要环节被忽略,完全体现不了交流调速系统的整体结构和各个环节点上的信号状态。

对电气传动系统的建模仿真力求达到与实际系统相一致,Matlab提供的Simulink中的电力系统工具箱(SimPowerSystems)能很好地满足这一要求。

以往对电气传动系统的仿真研究主要集中在电机的建模和仿真,最近,许多对复杂电力传动系统的建模仿真方法已提出,主要有运用仿真工具箱对电力传动系统建模仿真和将电力传动系统的功能单元模块化的仿真建模。

由于三相异步电动机是一个多变量、强耦合非线性系统,存在着高性能上难以控制的问题。

矢量控制技术有按转子磁链定向和按定子磁链定向的控制等策略。

按转子磁链定向矢量控制给出了交流电动机的基本解耦控制方法。

在设计调速系统过程中,利用Matlab按转子磁链定向矢量控制的交流调速系统仿真,正确的应用坐标变换模块是建立转子磁链模型的基础。

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。

该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。

Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。

本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。

文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。

详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。

文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。

通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。

本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。

二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。

其基本原理基于电磁感应和电磁力作用。

异步电机主要包括定子(静止部分)和转子(旋转部分)。

定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。

当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。

这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。

这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。

异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。

异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。

基于Matlab_Simulink的异步电机矢量控制系统仿真

基于Matlab_Simulink的异步电机矢量控制系统仿真

L ss Ls = - Ms - Ms L rr Lr = - Mr - Mr
- Ms L ss - Ms - Mr L rr - Mr
- Ms - Ms L ss - Mr - Mr L rr
R1 和 R2 分别为定、 转子每相绕组的电阻。 磁链方程: 用 ψ s 和 ψ r 分别表示定子磁链和转子磁链的 i s 和 i r 分别表示定子电流和转子电流的 列矩阵, 列矩阵, 则磁链方程可写为:
* 电流的 给 定 信 号 ism 和 电 枢 电 流 的 给 定 信 号 * ist * , i* i* 经过 Park 变换得到 i A 、 与交流异步 B 、 C , * *
{
U B = r2 i B + p ψ B
( 1)
式中
iB 、 i C 通过电流滞环调节 电机的反馈电流信号 i A 、 uB , uC , 器后得到了交流异步电机的输入电压 u A , 监测三相异步电动机的转速, 即可输出交流异步 电机调速所需的三项变频电流。 根据模块化建 模的思想, 将控制系统分割为各个功能独立的子 其中主要包括: 交流异步电机本体模块、 矢 模块, 量控制模块、 帕克变换模块、 电流滞环控制模块、 速度控制模块。通过这些功能模块的有机整合,
Simulation of Asynchronous Motor Vector Control System based on Matlab / Simulink
Jia Rui, Kang Jinping
( North China Electric Power University, Beijing 102206 , China) Abstract: In this paper, the mathematical model of the asynchronous motor was analyzed based on ABC coordinate system. A common and simple dynamic simulation model of asynchronous motor was given using Matlab / Simulink, and the model was applied to asynchronous motor vector control system. Based upon rotor flux orientation, the simulation model of the asynchronous motor vector control system was constructed. When using this model , one only needed to transfer it to the workspace and input proper motor parameters, it is demonstrated that the model has quick rewith flexible, convenient , intuitive and a series of advantages. Through the simulation of the asynchronous mosponse, tor vector control system, it is verified that this model was correct and effective. Key words: ABC coordinate system; asynchronous motor; vector control ; Matlab ; simulation

基于MATLAB的异步电动机直接矢量控制系统的建模和仿真资料

基于MATLAB的异步电动机直接矢量控制系统的建模和仿真资料

基于MATLAB的异步电动机直接矢量控制系统的建模和仿真***(江南大学物联网工程学院,江苏无锡214036)摘要:本文从异步电动机的数学模型着手介绍一种基于matlab/simulink的异步电动机仿真模型,使用时只需要输入不同的电机参数即可。

在此基础上设计一个典型的直接矢量控制系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。

关键字:MA TLAB/SIMULINK;异步电机;矢量控制;仿真Modeling and Simulation of induction motor vector controlsystem Based on vector controlLuxiao(School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract:A simulation model of asynchronous motor is established based on MATLAB/SIMULATION according to its dynamic math-ematic model,the model can be conveniently used by inputting proper motor parameters,which is used in a typical direct vector system designed in this paper. Then the running situation of the vector control system is simulated and studied by using MATLAB/SIMULINK.Key words:MA TLAB/SIMULINK; asynchronous motor; vector control; simulation引言:异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。

基于转子磁场定向异步电机矢量控制-电机及其系统分析与仿真

基于转子磁场定向异步电机矢量控制-电机及其系统分析与仿真

基于转子磁场定向异步电机矢量控制在20世纪60年代以前,全世界电气传动系统中高性能调速传动都采用直流电动机,而绝大多数不变速传动则使用交流电机。

使得交流电机的应用受到很大限制。

1971年德国学者Blaschke F提出了交流电动机的磁场定向控制原理,应用坐标变换将三相系统等效为两相系统,再经过按磁场定向的同步旋转变换实现了定子电流励磁分量与转矩分量之间的解耦,从而达到对交流电机的磁链和电流分别控制的目的,为异步电机的调速奠定了基础。

磁耦合是机电能量转换的必要条件,电流与磁通的乘积产生转矩,转速与磁通的乘积得到感应电动势。

无论是直流电动机,还是交流电动机均如此。

交、直流电动机结构和工作原理的不同,使得表达式差异很大。

1 三相异步电机非线性数学模型在研究异步电机数学模型时,作如下的假设(1)忽略空间谐波,三相绕组对称,产生的磁动势沿气隙按正弦规律分布。

(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。

(3)忽略铁心损耗。

(4)不考虑频率变化和温度变化对绕组电阻的影响。

无论异步电动机转子是绕线型还是笼型的,都可以等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数相等。

异步电动机三相绕组可以是Y连接,也可以是Δ连接。

若三相绕组为Δ连接,可先用Δ—Y变换,等效为Y 连接。

然后,按Y连接进行分析和设计。

三相异步电机的物理模型如下图1所示,定子三相绕组轴线A、B、C在空间是固定的,转子绕组轴线a、b、c随转子以角转速w旋转。

图1 三相异步电动机的物理模型异步电动机的动态模型由磁链方程、电压方程、转矩方程和运动方程组成。

其中磁链方程和转矩方程为代数方程,电压方程和运动方程为微分方程。

1.1 磁链方程异步电动机每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可用下式表示:A AA ABAC Aa Ab Ac A B BA BB BC Ba Bb Bc B C CA CB CC Ca Cb Cc C a aA aB aC aa ab ac a b bA bB bC ba bb bc b c cAcBcCcacbcc c L L L L L L i L L L L L L i L L L L L L i L L L L L L i L L L L L L i L L L L L L i ψψψψψψ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(1) 式中,,,,,A B C a b c i i i i i i 是定子和转子相电流的瞬时值;,,,,,A B C a b c ψψψψψψ是各相绕组的全磁链。

异步电机矢量控制Matlab仿真实验(矢量控制部分).

异步电机矢量控制Matlab仿真实验(矢量控制部分).

学号:课程设计题目异步电机矢量控制Matlab仿真实验(矢量控制部分)学院专业班级姓名指导教师2015 年 1 月7 日目录1 设计任务及要求 (1)2 异步电动机按转子磁链定向的矢量控制系统基本原理 (1)2.1异步电动机矢量控制的基本思想 (1)2.2异步电动机矢量控制系统具体分析 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换 (4)2.3 静止两相——旋转正交变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 异步电动机矢量控制MA TLAB系统仿真系统设计 (8)4.3 PI调节器设计 (10)5 仿真结果 (11)5.1 电机定子侧的电流仿真结果 (11)5.2 电机输出转矩仿真结果 (12)5.3 电机的转子速度及转子磁链仿真结果 (12)心得体会 (14)参考文献 (15)摘要异步电动机具有非线性、强耦合、多变量的性质,要获得高动态性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律。

异步电动机的物理模型是一个高阶、非线性、强耦合的多变量系统,需要用一组非线性方程组来描述,所以控制起来极为不便。

异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。

如果把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。

矢量控制系统是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。

本文研究了按转子磁链定向矢量控制系统的电流闭环控制的设计方法。

并用MATLAB进行仿真。

关键词:异步电动机矢量控制电流闭环 MATLAB仿真异步电机矢量控制Matlab 仿真实验(矢量控制部分)1 设计任务及要求异步电动机额定数据:三相20050 2.21430r/min,14.6,0.877, 1.47s r V Hz kW N m R R ∙=Ω=Ω,,, 2015.0,2,8.160,,142.165m kg J n mH L L L mH L p m s r s ∙=====采用二相静止坐标系(α-β)下异步电机数学模型,利用MATLAB/SIMULINK 完成异步电机的矢量控制系统仿真实验。

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。

仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。

本文主要研究异步电机在矢量控制下的仿真。

使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。

关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。

1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。

1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。

1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。

2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科技论坛基于MATLAB 的异步电机转子磁场定向矢量控制系统仿真
常伟
(华北电力大学电气学院,北京100043)
1概述
异步电机是一个高阶、非线性、强藕合的多变量系统,数学模型比较
复杂。

本文利用M ATLAB /Simulink 软件对异步电动机转子磁场定向控
制系统动态过程建立仿真模型,并对控制方案进行仿真研究。

按转子磁
场定向的矢量控制系统是已经获得实际应用的高性能调速系统,控制思
想是在转子磁场定向的基础上,经过一系列的坐标变换,实现将三相异步
电机像直流电机一样对磁场和转矩的解耦控制,注重转矩与转子磁链的
解耦,实行连续控制,可获得较宽的调速范围,使异步电机的动静态性能
有很大提高,所以,异步电机矢量控制技术已被广泛应用于高性能异步
电机调速系统中。

2异步电机的数学模型
对于笼型异步电机,转子侧电压为零,根据文献[1]可以建立异步电
机在α-β静止坐标系下的数学模型以同步角速度旋转的两相直流旋
转坐标d 、q 之间的变换,可以推导出异步电机在d 、q 坐标系上的数学模
型的电压方程:
式中U sd ,U sq 为定子电压在同步坐标系上分量,R s ,R r 为定子电阻和
转子电阻,,为定子磁链在同步坐标系上的分量,,为转子
磁链在同步坐标系上的分量,,分别为同步角速度和转差角速度,
P 为微分算子。

磁链方程:
式中,L s ,L r ,L m 分别为定子电感,转子电感和互感。

,为定
子电流在同步坐标系上的分量,为转子电流在同步坐标系上
的分量。

转矩方程:
T e 表示为电机的电磁转矩,p 为电机极对数。

根据上面公式,可以得到下列关系式
异步电机矢量控制系统的模型:
图1为矢量控制系统的原理图。

图中转速调节器ASR 的输出是转
矩调节器的给定转矩。

磁链调节器用于控制电机转子磁链,并设置
了电流变换和磁链观测环节,转矩调节器ATR 和磁链调节器的输
出分别是定子电流的转矩分量和励磁分量。

和,电流滞环控制PWM 逆变器控制电机定子三相电流。

图2是在M atlab/Simulink 环境下建立的异步电机转子磁场定向矢量控制系统仿真模型[3]。

3仿真结果根据建立的异步电机矢量控制模型做仿真分析,实验参数为:极对数p=2,定子电阻r 1=0.075,定子绕组漏电感=0.72mH ,转子电阻r2=0.231,转子绕组漏电感=0.72mH ,互感L m =36mH ,恒负载转矩为T m =30Nm ,结果如下:从图3可以看出转速上升的速度比较快,且超调量比较小,输出转速出与转速给定指令基本相同,电机的跟随性好,说明建立矢量控制方法是正确的。

4结论本文采用M atlab/Simulink 系统仿真工具,对异步电机转子磁场定向的矢量控制系统进行了建模仿真。

按转子磁链定向,实现了定子电流
励磁分量和转矩分量的解耦,使系统具有良好的调速性能。

仿真试验证明该矢量控制系统可以大范围地调速,具有很好的跟随性能,动态性能良好。

因此,该系统在工业应用领域中具有很好的应用前景。

参考文献:
[1]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.[2]尔桂花.运动控制系统[M].北京:清华大学出版社,2004.[3]洪乃刚.电力电子和电力拖动系统的MATLAB 仿真[M].北京:机械工业出版社。

摘要:异步电动机的模型特点是一多变量、强耦合的非线性系统。

本文根据异步电机理论,建立了异步电动机的数学模型,给出了异步电动机转子磁场矢量控制系统基本结构和矢量控制系统仿真模型,仿真结果证明了所建电机模型的正确性。

关键词:异步电机;矢量控制;磁场定向;磁链
作者简介:常伟(1980-),男,工程师,华北电力大学在职研究生,首钢动力厂供电技术员。

ÁÁL ÁÁ
L 88··。

相关文档
最新文档