转子磁场定向矢量控制与气隙磁场定向矢量控制的区别
异步电机矢量控制可以转子磁链定向

在M-T坐标系上,磁链方程为
Ψms=Lsims+Lmimr Ψts=Lsits+Lmitr Ψmr=Lmims+Lrimr=Ψr Ψtr=Lmits+Lritr=0
(3) (4)
对于笼型转子异步电动机,其转子短路,端
对于矢量控制来说,i*ds类似于直流电动机的励磁 电流If,i*qs类似于直流电动机的电枢电流Ia。相 应地,我们希望类似地写出异步电动机的转矩表
达式为
Te CT r iqs
(1)
Te CT' idsiqs
(2)
式中 Ψr:正弦分布转子磁链空间矢量的峰值。
Ia
解耦
If
Ψa
Ia
Te CT f a CT' I f Ia If
正比关系,如果Ψr保持不变的话。
2.2 转子磁链模型
为了实现转子磁链定向矢量控制,关键是获
得实际转子磁链Ψr的幅值和相位角,坐标变换 需要磁链相位角(φ),转矩计算、转差计算等
需要磁链的幅值。但是转子磁链是电机内部的物 理量,直接测量在技术上困难很多。
在磁链计算模型中,根据所用实测信号的不 同,可以分为电压模型和电流模型两种。
2) 计算转子磁链的电流模型 根据磁链与电流的关系,由电流推算磁链,
称其为电流模型。
电流模型需要实测的电流与转速信号,优 点是:无论转速高低都能适用;但缺点是 都受电动机参数变化的影响。除了转子电 阻受温度和频率的影响有较大的变化外,
磁路的饱和程度也将影响电感Lm、Lr和Ls,
这些影响最终将导致计算出的转子磁链的 幅值和相位角偏离正确值,使磁场定向不 准,使磁链闭环控制性能降低。
6.9转子磁场定向矢量控制设计

6.9转子磁场定向矢量控制设计
6.9 转子磁场定向矢量控制设计
一、异步电机矢量控制基本环节
1、转速调节环节
输入为给定,输出一般为转矩给定或转矩电流的给定。
2、磁链与转矩控制环节
磁链输入为给定或由转速决定的函数,输出为电流或电压量。
磁链选择U为定子相电压;f为定子频率;为主磁通。
例相电压220V额定转速,忽略漏磁通,定子、转子、气隙
磁通都近似为1Wb,所以额定转速以下磁链的给定约为1Wb,额定转速以上电压不变为220V,磁通和转速成反比,即弱磁升速。
转矩调节器输入为转速调节器或给定值,输出电流量或电压量,这两个环节很大程度上决定系统的性能。
3、电流调节环节
电磁转矩和磁场,均受控于电机的定子电流定子电流的控制效果直接影响系统的性能,CSI和VSI都可以运行在电流控制状态下,CSI 本身是电流源方便控制,VSI需要复杂的电流调节器,但是它比CSI有更简单的硬件结构和少的电流谐波应用更为广泛。
电流调节和磁通、转矩调节本质是一样的。
4、磁通和转矩的观测
分为开环和闭环观测。
5、转速观测环节
高性能的调速转速闭环必不可少。
可以采用速度传感器测速,但存在安装、维护、成本、可靠性方面的问题。
无速度传感器的转速闭环控制系统,利用易于测量的量计算出于转速相关量得出转子的速度。
第四章磁场定向控制(FOC)与直接转矩控制(DTC)

(4-4)
在形式上与直流电动机的特性十分相似,即如 果设法保持异步电动机的转子磁链恒定,则电机的 转矩就和转子电流I2成正比。控制转子电流就能控 制电机的转矩。
矢量控制的提出(1)
基于这种想法,提出了一种所谓以转子磁链定向 (FOC-Field Orientated Control)的矢量变换控制 方法,简称矢量控制。 它是利用在第二章中所介绍的坐标变换的办法, 把电机的三相电流、电压、磁链,经过坐标变换 变到以转子磁链定向的M、T二相坐标系上。 这个二相坐标系的M轴(磁化轴)沿着转子磁链 的方向,而另一个T轴与M轴相差90°,和力矩电 流的方向相重合。
如转子磁链 2M 保持不变,即 p 2M 0 ,则
i 2M 0
i1M 2M / L m 或 2M L mi1M
(4-10)
说明:在转子磁链保持不变的情况下,转子磁链全 部由定子磁化电流所决定,与转子电流无关。
转矩电流分量 转子电流全部是转矩电流分量。 由(4-7)式可以求得定子电流的转矩分量:
异步电机的转矩
从产生电磁转矩的角度来看,异步电动机的转矩
T CT m I 2 cos 2
(4-3)
它是气隙磁场 m 和转子电流的有功分量 I 2 cos 2 相互作用而产生的。 即使气隙磁场保持恒定,电机的转矩不但与转 子电流I2的大小有关,而且还取决于转子电流的 功率因数角 2 。
m Lm (i1 i 2 )
L2 两边同乘 得: Lm
L2 m L2 (i1 i L ) (L 2l Lm )(i1 i 2 ) Lm L 2li1 Lmi1 L 2i 2 L2li1 2
(4-18) (4-19) (4-20) (4-21)
轨道交通牵引逆变器的控制策略应用

摘要地铁主传动系统由牵引逆变器、微机控制驱动装置、牵引电动机等部件组成,牵引逆变器的控制策略是主传动系统的重要组成之一。
首先,本文说明了牵引逆变器控制的现状,指出了目前地铁牵引逆变器主要采用VVVF的两电平逆变器。
牵引逆变器的控制方法有滑差频率控制、转子磁场定向的旋转矢量控制和直接转矩控制等控制方法。
其次,在三种控制方法中,轨道交通机车中应用最广泛的是矢量控制,本文将以阿尔斯通机车为依托,具体分析矢量控制在轨道交通机车中应用。
关键词:地铁,电力牵引,逆变器控制,矢量控制ABSTRACTThe devices of the main driver system in subway mainly consist of traction inverter driver ,equipment with micro-computer control and traction motor. Traction inverter control strategy is one of the important component of the main drive system.Firstly,this paper reports the development and actuality of main traction inverter driver,indicates the traction inverter in Chinese metro is two-level inverter of VVVF,The control methods,including control of frequency slope,roto field-oriented vector control and direct torque control,is applied to main drive system.Secondly, in the three control methods, the best far-ranging device in Chinese metro is vector control. this paper reports the appliance of the vector control in shanghai alasm metro.Key words: metro,electric traction,inverter control,vector control目录1 绪论 (1)1.1地铁发展的背景和发展概况 (1)1.2地铁车辆牵引传动系统的发展 (2)1.3本文的研究意义和主要研究内容 (3)2粘着技术 (5)3轨道交通牵引逆变器力矩控制方法的比较 (7)3.1滑差控制(滑差频率-电流控制) (7)3.2转子磁场定向的旋转矢量控制 (8)3.3直接转矩控制 (9)3.4三种主要控制的比较 (9)4逆变器控制在阿尔斯通轨道机车中的应用 (11)4.1 轨道交通机车对牵引系统控制的要求 (13)4.2 轨道交通牵引电机的特点 (13)4.3矢量控制在轨道交通机车中的应用 (16)4.4轨道交通矢量控制的仿真试验波形 (22)4.5采用矢量控制方式的轨道交通机车在实际运行中的应用 (30)4.6矢量控制在轨道交通机车中遇到的问题以及解决办法 (34)5 结论 (36)参考文献 (37)1 绪论作为城市公共交通系统的一个重要组成部分,在我国国家标准《城市公共交通常用名词术语》中,将城市轨道交通定义为“通常以电能为动力,采取轮轨运转方式的快速大运量公共交通之总称。
转矩控制、矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。
如皮带运输机提升机等机械负载2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。
例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证Φm不变,只要U1/f1始终为一定值即可。
这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。
3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。
它既可以控制电机的转速,也可以控制电机的扭矩。
矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
第四章磁场定向控制(FOC)与直接转矩控制(DTC)

2.计算确定法 最简单的是对反电势进行积分,由电压方程可 得:
d m u1 (R 1 pL1l )i1 dt
(4-23)
也就是:
m (u1 (R 1 pL1l )i1 )dt
(4-24) (4-25)
m (u1 (R1 pL1l )i1 )dt
Lm L2 Lm L2
p 2 M 1 2 M
L
L L1 L2 m / L2
(4-17)
电机模型(2)
图4-2 MT坐标系下转子磁场定向控制的异步电机模型
说明:
转子的磁链只决定于定子电流的磁化分量iM1,而 电机的转矩只与转子磁链及定子电流的转矩分量 iT1有关。 (4-10)、(4-12)、(4-14) 在M轴的磁化分量和T轴上的转矩分量之间已解 耦且相互独立,因此,电机转矩的控制就可以通 过分别对定子电流在M、T轴上的分量的独立控 制来实现,其情况和直流电机完全相似。 但是若控制iM1使磁通保持恒定,则通过控制iT1可 以实现对转矩的瞬时控制,从而使异步电动机具 有如同直流电机那样的控制特性。
第四章 磁场定向 控制(FOC)与直接转矩控制(DTC)
4.1 4.2 4.3 4.4 4.5 4.6
矢量控制思想的提出 矢量控制的基本原理 异步电动机矢量控制的实现 转差矢量控制方法 直接转矩控制的原理 直接转矩控制的实现
4.1 矢量控制思想的提出 现代自动控制系统和机电一体化产品普遍要求动 作灵活、行动快速、定位精确,对传动、伺服系 统的动态特性有很高的要求。 任何一个机电传动、伺服系统,在工作中都要服 从运动的基本方程式:
将 i 2 与 i 2 代入上式有: 1 2 (L mi1 r T2 2 ) T2 p 1
永磁同步电机及转子磁场定向矢量控制

12 伺服系统概述
船舶电力推进领域 推进电机是船舶综合电力系统的重要组成部分、永磁同步推进电 机具有体积小、重量轻、效率高、噪声低、易于实现集中遥控、可靠 性高、可维护性好等优点,是船舶推进电机的理想选择。
12 伺服系统概述
3. 永磁同步电机的数学模型
3.1 在静止坐标系下的数学模型
电机的数学模型中含有时变参数,给分析和计算带来困难。为了简 化永磁同步电机的数学模型,首先对电机做如下假设: 1)忽略铁心饱和; 2)忽略电机绕组漏感; 3)转子上没有阻尼绕组; 4)永磁材料的电导率为零; 5)不计涡流和磁滞损耗; 6) 定子相绕组的感应电动势波为正弦型的,定子绕组的电流在气 隙中只产生正弦分布的磁势,忽略磁场的高次谐波。
12 伺服系统概述
为了使得永磁同步电动机具有正弦波感应电动势波形,其转子磁钢形 状呈抛物线状,使其气隙中产生的磁通密度尽量呈正弦分布。定子电枢采 用短距分布式绕组,能最大限度地消除谐波磁动势。
图1-2 旋转磁动势波形图
12 伺服系统概述
2. 永磁同步电机的优势与应用
2.1 永磁同步电动机的优势
我国电动机保有量大,消耗电能大,设备老化,效率较低。永 磁同步电动机(PMSM)具有体积小、效率高、功率因数高、起动力矩 大、力能指标好、温升低等特点。
12 伺服系统概述
三相永磁同步电机在定子静止三相坐标系下的电压方程为:
式中: uA、uB、uC——定子相电压; r ——定子绕组每相电阻; iA、iB、iC——定子相电流。 由永磁同步电机的电磁关系可知,其磁链方程和电压方程是一组变系 数微分方程,微分方程的系数随着定转子的相对位置变化而变化,是时间 的函数。
12 伺服系统概述
5. PMSM的矢量控制
现代电机控制技术复习题

《现代电机控制技术》复习题1.试述磁共能的意义,磁能和磁共能有什么关系?2.试解释以磁能和磁共能表示的电磁转矩公式的物理意义。
3.试以“磁场”和“Bli ”的观点,阐述电磁转矩生成的原因和实质。
4.任意波形的定子电流通入相绕组后能否产生基波磁动势?为什么?5.试论述三相感应电动机各磁链矢量σψs 、g ψ、s ψ、σψr 、和r ψ的物理含义,指出它们之间的联系和区别,并写出相应的磁链方程。
6.为什么可以采用空间矢量理论来分析电动机的动态控制问题?矢量控制的含义是什么?7.为什么在转子磁场作用下,转子笼型绕组会具有换向器绕组的特性?8.什么是磁场定向?为什么在基于转子磁场的矢量控制中,一定要先将MT 轴系沿转子磁场方向进行磁场定向?9.什么是换向器变换?MT 轴系沿转子磁场定向后,为什么通过换向器变换可将转子绕组最终变换为换向器绕组?10.试论述电动机参数变化对直接和间接磁场定向的影响。
11.试论述定子电流3种控制模式的优缺点。
12.基于气隙磁场定向和基于定子磁场定向的矢量控制与基于转子磁场定向的矢量控制比较,有什么本质的不同?13.PMSM 的磁场定向指的是什么?为什么PMSM 的转子磁场定向相对三相感应电动机的转子磁场定向要容易得多?14.对于面装式PMSM ,是怎样将其变换为一台等效的直流电动机的?15.试论述弱磁控制的基本原理和控制方式。
16.为什么说PMSM矢量控制是一种自控式的控制方式?矢量控制会不会发生失步现象?为什么?17.试将PMSM与本相感应电动机的转子磁场定向的矢量控制进行比较性分析。
并指出两者存在差异的根本原因是什么?18.试论述谐波转矩产生的原因,并分析其对低速性能的影响。
19.试论述直接转矩控制的基本原理。
20.除了定子磁链和转矩会计外,滞环比较控制是否还利用了电动机数学模型,这有什么好处?21.电动机转速大小对直接转矩控制有什么影响?为什么?22.为什么直接转矩控制是一种非线性控制?为什么通常选择滞环比较控制方式?这种控制方式有什么优点和不足?23.直接转矩控制能否改变三相感应电动机固有的非线性机械特性?为什么?24.试分析滞环比较控制中转矩脉动的原因,您能提出哪些有效的解决方法?25.在直接转矩控制原理上,PMSM与三相感应电动机有什么共同之处?又有什么差别?26.电动机转速变化对直接转矩控制有什么影响?27.直接转矩控制是非线性的,根本原因是什么?28.直接转矩控制中能够引起转矩脉脉动的因素有哪些?为什么低速时容易引起转矩脉动和产生冲击电流?如何解决?29.在模型参考自适应系统中,自适应律起什么作用?它的物理含义是什么?30.试论述由模型参考自适应系统估计转子磁链和转速的优点和不足?31.扩展的卡尔曼滤与自适应观测器有什么相同之处,又有什么不同?扩展的卡尔曼滤波中增益矩阵起什么作用?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 气隙磁场定向控制方案。
气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。
如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。
因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。
2. 定子磁场定向控制方案。
定子磁场定向的控制方法,是将旋转坐标的M轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。
如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。
定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。
然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。
因此,需要设计一个解耦器,对电流进行解耦。
3. 转子磁场定向控制方案。
转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。
若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。
当转子磁通恒定时,电磁转矩与定子电流的T轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。
因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。
可由电压方程M轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。
下面对它们进行简要的总结和比较:
气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。
同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。
定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占端电压的大部分,致使反电动势测量误差较大,导致定子磁通观测不准,影响系统性能。
定子磁场定向的矢量控制系统适用于大范围弱磁运行的情况。
转子磁场定向的控制方案,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时问常数的影响较大,降低了系统性能。
但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。