高等数学分类整理
高等数学知识点总结

高等数学知识点总结高等数学是数学学科,主要研究数学初等数学之外的概念和应用。
它涵盖了复数数学、矩阵论、泛函分析、概率论、微分几何、组合数学和数值分析等领域。
与传统初等数学相比,高等数学更加注重理论,对其中涉及的数学思想和问题更为细致和深入,主要用于理论研究和解决数学问题。
一、复数数学复数数学是高等数学的核心分支,它是研究数学上使用的复数的数学。
它的内容包括:1、复数的概念和基本性质;2、复数的延伸概念及其应用;3、复数函数的定义,性质和极限;4、复数的导数、积分;5、解析函数及其应用;6、复数的级数展开;7、向量论;8、复数空间。
二、矩阵论矩阵论是一门深入研究数学概念和工具矩阵的分支,它涉及矩阵的性质,行列式、特征分解、特征值、秩和特征向量、数值计算、高次矩阵的复习、对称矩阵、正定矩阵等。
矩阵论的主要内容有:1、矩阵的概念、性质和基本运算;2、行列式及其基本性质;3、特征分解、特征值、秩和特征向量;4、数值计算;5、高次矩阵复习;6、对称矩阵及共轭矩阵;7、正定矩阵及求逆矩阵。
三、泛函分析泛函分析是研究变分原理、复变函数及其应用的分支数学。
它涉及问题,如:变分原理、偏微分方程、复数分析、复变函数的极限、函数的极大化和极小化、复变函数的导数、积分、等值线、极值点、傅里叶变换和特殊函数等。
四、概率论概率论是研究统计的数学学科,主要研究概率的事件的可能性,以及把统计变量(随机变量)描述为分布函数的方法。
主要包括:1、概率概念、判断和计算;2、随机变量和分布;3、期望和条件期望;4、联合分布及独立性;5、多元变量函数和w分位函数;6、统计量和抽样分布;7、定性变量和逻辑回归;8、参数估计;9、假设检验等。
五、微分几何微分几何是在拓扑学、数学分析、线性代数等基础上研究曲面、多维空间、分段定义的函数和变换的分支数学。
它的内容包括:1、基本概念,如:曲面、曲线、切线、正切、切平面、曲率等;2、微分变换;3、多维空间;4、曲线积分;5、内积;6、变分法;7、特殊曲面;8、空间变换等。
江苏省专转本高等数学试题题型分类整理

江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算x →. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( )A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()0xx x f x x ⎧<⎪⎪=⎨>,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分3x = .(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算x . (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分x ⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则0x ⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分)231cos d x x x -+⎰的值为 .(0716)计算定积分x . (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d x ⎰.(0916)求定积分:210⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分40x ⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3⎰ . (1216)计算定积分21⎰.(1316)计算定积分20⎰(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2+∞⎰(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.(1321)设平面图形D 是由曲线x =y =1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,(,)v x y =,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = . (0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数z =,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dyx y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序11d (,)d x x f x y y -+=⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g连续;(2)求)('t g .(0720)计算二重积分d Dx y ,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域. (0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥. (1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线x =y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线y =0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n n u 、(2)∑∞=13n n u ,则下列说法正确的是( ) A.若(1)发散、则(2)必发散 B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n n n α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑B.2121n n n n ∞=++∑C.nn ∞= D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nnn ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑D.1nn ∞=(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑C.1!2n n n ∞=∑D.1n ∞= (二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 .(0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(x x x x f --=展开为x 的幂级数,并写出它的收敛区间.(0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12n nn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn -D.1(1)2nn +-(1112)幂级数0nn ∞=的收敛域为_ _ _________. (1212)幂级数1(1)(3)3nn nn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数1n nn ∞=的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y f x y x y f x y x -+⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰ 222211(21)1(2)(2)d(2)24884x x xx x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17211122d d 22arctan (1)12t tt tt t t π+∞∞+∞+===++⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则()500M x x =+500≤≤x ),由150070002M '=+⨯=解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、11d (,)d y y f x y x -⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x xπππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx .图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式322ln )(1ln )3x x C =+=++.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令y u x =,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x-=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x .20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S x x x -=--=⎰; (2)224804d d 16y V y y πππ=+=⎰⎰.24、解:()d d d ()d ()d tt tt D f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;。
大学高数全册知识点整理

大学高等数学知识点整理一 . 数列函数 :1. 类型 :(1) 数列 : * ; *(2) 初等函数 :(3) 分段函数 : * ; * ;*(4) 复合 ( 含) 函数 :(5) 隐式 ( 方程 ):(6) 参式 ( 数一 , 二 ):(7) 变限积分函数 :(8) 级数和函数 ( 数一 , 三 ):2. 特征 ( 几何 ):(1) 单调性与有界性 ( 判别 ); ( 单调定号 )(2) 奇偶性与周期性 ( 应用 ).3. 反函数与直接函数 :二 . 极限性质 :1. 类型 : * ; * ( 含); * ( 含)2. 无穷小与无穷大 ( 注 : 无穷量 ):3. 未定型 :4. 性质 : * 有界性 , * 保号性 , * 归并性三 . 常用结论 :, , ,, , , ,,四 . 必备公式 :1. 等价无穷小 : 当时 ,; ; ;; ; ;;2. 泰勒公式 :(1) ;(2) ;(3) ;(4) ;(5) .五 . 常规方法 :前提 : (1) 准确判断( 其它如 : ); (2) 变量代换 ( 如 : )1. 抓大弃小,2. 无穷小与有界量乘积 ( ) ( 注 : )3. 处理 ( 其它如 : )4. 左右极限 ( 包括):(1) ; (2) ; ; (3) 分段函数 : , ,5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 )6. 洛必达法则(1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与)(2) 幂指型处理 : ( 如 : )(3) 含变限积分 ;(4) 不能用与不便用7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小8. 极限函数 : ( 分段函数 )六 . 非常手段1. 收敛准则 :(1)(2) 双边夹 : * , *(3) 单边挤 : * * *2. 导数定义 ( 洛必达 ?):3. 积分和 : ,4. 中值定理 :5. 级数和 ( 数一三 ):(1) 收敛, ( 如) (2) ,(3) 与同敛散七 . 常见应用 :1. 无穷小比较 ( 等价 , 阶 ): *(1)(2)2. 渐近线 ( 含斜 ):(1)(2) ,( )3. 连续性 : (1) 间断点判别 ( 个数 ); (2) 分段函数连续性 ( 附 : 极限函数 , 连续性 )八 . 上连续函数性质1. 连通性 : ( 注 : , “ 平均” 值 :)2. 介值定理 : ( 附 : 达布定理 )(1) 零点存在定理 : ( 根的个数 );(2) .第二讲 : 导数及应用 ( 一元 )( 含中值定理 )一 . 基本概念 :1. 差商与导数 : ;(1) ( 注 : 连续 ) )(2) 左右导 : ;(3) 可导与连续 ; ( 在处 , 连续不可导 ; 可导 )2. 微分与导数 :(1) 可微可导 ; (2) 比较与的大小比较 ( 图示 );二 . 求导准备 :1. 基本初等函数求导公式 ; ( 注 : )2. 法则 : (1) 四则运算 ; (2) 复合法则 ; (3) 反函数三 . 各类求导 ( 方法步骤 ):1. 定义导 : (1) 与; (2) 分段函数左右导 ; (3)( 注 : , 求 : 及的连续性 )2. 初等导 ( 公式加法则 ):(1) , 求 : ( 图形题 );(2) , 求 : ( 注 : )(3) , 求及 ( 待定系数 )3. 隐式 ( ) 导 :(1) 存在定理 ;(2) 微分法 ( 一阶微分的形式不变性 ).(3) 对数求导法 .4. 参式导 ( 数一 , 二 ) : , 求 :5. 高阶导公式 :; ;;注 : 与泰勒展式 :四 . 各类应用 :1. 斜率与切线 ( 法线 ); ( 区别 : 上点和过点的切线 )2. 物理 : ( 相对 ) 变化率速度 ;3. 曲率 ( 数一二 ): ( 曲率半径 , 曲率中心 , 曲率圆 )4. 边际与弹性 ( 数三 ) : ( 附 : 需求 , 收益 , 成本 , 利润 )五 . 单调性与极值 ( 必求导 )1. 判别 ( 驻点):(1) ; ;(2) 分段函数的单调性(3) 零点唯一 ; 驻点唯一 ( 必为极值 , 最值 ).2. 极值点 :(1) 表格 ( 变号 ); ( 由的特点 )(2) 二阶导 ( )注 (1) 与的匹配 ( 图形中包含的信息 );(2) 实例 : 由确定点“ ” 的特点 .(3) 闭域上最值 ( 应用例 : 与定积分几何应用相结合 , 求最优 )3. 不等式证明 ( )(1) 区别 : * 单变量与双变量 ? * 与?(2) 类型 : * ; ** ; *(3) 注意 : 单调性端点值极值凹凸性 . ( 如 : )4. 函数的零点个数 : 单调介值六 . 凹凸与拐点 ( 必求导 !):1. 表格 ; ( )2. 应用 : (1) 泰勒估计 ; (2) 单调 ; (3) 凹凸 .七 . 罗尔定理与辅助函数 : ( 注 : 最值点必为驻点 )1. 结论 :2. 辅助函数构造实例 :(1)(2)(3)(4) ;3. 有个零点有个零点4. 特例 : 证明的常规方法 : 令有个零点 ( 待定 )5. 注 : 含时 , 分家 !( 柯西定理 )6. 附 ( 达布定理 ): 在可导 , , , 使 :八 . 拉格朗日中值定理1. 结论 : ; ( )2. 估计 :九 . 泰勒公式 ( 连接之间的桥梁 )1. 结论 : ;2. 应用 : 在已知或值时进行积分估计十 . 积分中值定理 ( 附 : 广义 ): [ 注 : 有定积分 ( 不含变限 ) 条件时使用 ]第三讲 : 一元积分学一 . 基本概念 :1. 原函数:(1) ; (2) ; (3)注 (1) ( 连续不一定可导 );(2) ( 连续 )2. 不定积分性质 :(1) ;(2) ;二 . 不定积分常规方法1. 熟悉基本积分公式2. 基本方法 : 拆 ( 线性性 )3. 凑微法 ( 基础 ): 要求巧 , 简 , 活 ( )如 :4. 变量代换 :(1) 常用 ( 三角代换 , 根式代换 , 倒代换 ):(2) 作用与引伸 ( 化简 ):5. 分部积分 ( 巧用 ):(1) 含需求导的被积函数 ( 如);(2)“ 反对幂三指”:(3) 特别 : (* 已知的原函数为; * 已知)6. 特例 : (1) ; (2) 快速法 ; (3)三 . 定积分 :1. 概念性质 :(1) 积分和式 ( 可积的必要条件 : 有界 , 充分条件 : 连续 )(2) 几何意义 ( 面积 , 对称性 , 周期性 , 积分中值 )* ; *(3) 附 : , )(4) 定积分与变限积分 , 反常积分的区别联系与侧重2: 变限积分的处理 ( 重点 )(1) 可积连续 , 连续可导(2) ; ;(3) 由函数参与的求导 , 极限 , 极值 , 积分 ( 方程 ) 问题3. 公式 : ( 在上必须连续 !)注 : (1) 分段积分 , 对称性 ( 奇偶 ), 周期性(2) 有理式 , 三角式 , 根式(3) 含的方程 .4. 变量代换 :(1) ,(2) ( 如 : )(3) ,(4) ; ,(5) ,5. 分部积分(1) 准备时“ 凑常数”(2) 已知或时 , 求6. 附 : 三角函数系的正交性 :四 . 反常积分 :1. 类型 : (1) ( 连续 )(2) : ( 在处为无穷间断 )2. 敛散 ;3. 计算 : 积分法公式极限 ( 可换元与分部 )4. 特例 : (1) ; (2)五 . 应用 : ( 柱体侧面积除外 )1. 面积 ,(1) (2) ;(3) ; (4) 侧面积 :2. 体积 :(1) ; (2)(3) 与3. 弧长 :(1)(2)(3) :4. 物理 ( 数一 , 二 ) 功 , 引力 , 水压力 , 质心 ,5. 平均值 ( 中值定理 ):(1) ;(2) , ( 以为周期 : ) 第四讲 : 微分方程一 . 基本概念1. 常识 : 通解 , 初值问题与特解 ( 注 : 应用题中的隐含条件 )2. 变换方程 :(1) 令( 如欧拉方程 )(2) 令( 如伯努利方程 )3. 建立方程 ( 应用题 ) 的能力二 . 一阶方程 :1. 形式 : (1) ; (2) ; (3)2. 变量分离型 :(1) 解法 :(2)“ 偏” 微分方程 : ;3. 一阶线性 ( 重点 ):(1) 解法 ( 积分因子法 ):(2) 变化 : ;(3) 推广 : 伯努利 ( 数一 )4. 齐次方程 :(1) 解法 :(2) 特例 :5. 全微分方程 ( 数一 ): 且6. 一阶差分方程 ( 数三 ):三 . 二阶降阶方程1. :2. : 令3. : 令四 . 高阶线性方程 :1. 通解结构 :(1) 齐次解 :(2) 非齐次特解 :2. 常系数方程 :(1) 特征方程与特征根 :(2) 非齐次特解形式确定 : 待定系数 ; ( 附 : 的算子法 )(3) 由已知解反求方程 .3. 欧拉方程 ( 数一 ): , 令五 . 应用 ( 注意初始条件 ):1. 几何应用 ( 斜率 , 弧长 , 曲率 , 面积 , 体积 );注 : 切线和法线的截距2. 积分等式变方程 ( 含变限积分 );可设3. 导数定义立方程 :含双变量条件的方程4. 变化率 ( 速度 )5.6. 路径无关得方程 ( 数一 ):7. 级数与方程 :(1) 幂级数求和 ; (2) 方程的幂级数解法 :8. 弹性问题 ( 数三 )第五讲 : 多元微分与二重积分一 . 二元微分学概念1. 极限 , 连续 , 单变量连续 , 偏导 , 全微分 , 偏导连续 ( 必要条件与充分条件 ),(1)(2)(3) ( 判别可微性 )注 : 点处的偏导数与全微分的极限定义 :2. 特例 :(1) : 点处可导不连续 ;(2) : 点处连续可导不可微 ;二 . 偏导数与全微分的计算 :1. 显函数一 , 二阶偏导 :注 : (1) 型 ; (2) ; (3) 含变限积分2. 复合函数的一 , 二阶偏导 ( 重点 ):熟练掌握记号的准确使用3. 隐函数 ( 由方程或方程组确定 ):(1) 形式 : * ; * ( 存在定理 )(2) 微分法 ( 熟练掌握一阶微分的形式不变性 ): ( 要求 : 二阶导 )(3) 注 : 与的及时代入(4) 会变换方程 .三 . 二元极值 ( 定义 ?);1. 二元极值 ( 显式或隐式 ):(1) 必要条件 ( 驻点 );(2) 充分条件 ( 判别 )2. 条件极值 ( 拉格朗日乘数法 ) ( 注 : 应用 )(1) 目标函数与约束条件 : , ( 或 : 多条件 )(2) 求解步骤 : , 求驻点即可 .3. 有界闭域上最值 ( 重点 ).(1)(2) 实例 : 距离问题四 . 二重积分计算 :1. 概念与性质(“ 积” 前工作 ):(1) ,(2) 对称性 ( 熟练掌握 ): * 域轴对称 ; * 奇偶对称 ; * 字母轮换对称 ; * 重心坐标 ;(3)“ 分块” 积分 : * ; * 分片定义 ; * 奇偶2. 计算 ( 化二次积分 ):(1) 直角坐标与极坐标选择 ( 转换 ): 以“ ” 为主 ;(2) 交换积分次序 ( 熟练掌握 ).3. 极坐标使用 ( 转换 ):附 : ; ;双纽线4. 特例 :(1) 单变量 : 或(2) 利用重心求积分 : 要求 : 题型, 且已知的面积与重心5. 无界域上的反常二重积分 ( 数三 )五 : 一类积分的应用 ( ):1. “ 尺寸”: (1) ; (2) 曲面面积 ( 除柱体侧面 );2. 质量 , 重心 ( 形心 ), 转动惯量 ;3. 为三重积分 , 格林公式 , 曲面投影作准备 .第六讲 : 无穷级数 ( 数一 , 三 )一 . 级数概念1. 定义 : (1) , (2) ; (3) ( 如)注 : (1) ; (2) ( 或); (3)“ 伸缩” 级数 : 收敛收敛 .2. 性质 : (1) 收敛的必要条件 : ;(2) 加括号后发散 , 则原级数必发散 ( 交错级数的讨论 );(3) ;二 . 正项级数1. 正项级数 : (1) 定义 : ; (2) 特征 : ; (3) 收敛( 有界 )2. 标准级数 : (1) , (2) , (3)3. 审敛方法 : ( 注 : , )(1) 比较法 ( 原理 ): ( 估计 ), 如;(2) 比值与根值 : * * ( 应用 : 幂级数收敛半径计算 )三 . 交错级数 ( 含一般项 ): ( )1. “ 审” 前考察 : (1) (2) ; (3) 绝对 ( 条件 ) 收敛 ?注 : 若, 则发散2. 标准级数 : (1) ; (2) ; (3)3. 莱布尼兹审敛法 ( 收敛 ?)(1) 前提 : 发散 ; (2) 条件 : ; (3) 结论 : 条件收敛 .4. 补充方法 :(1) 加括号后发散 , 则原级数必发散 ; (2) .5. 注意事项 : 对比; ; ; 之间的敛散关系四 . 幂级数 :1. 常见形式 :(1) , (2) , (3)2. 阿贝尔定理 :(1) 结论 : 敛; 散(2) 注 : 当条件收敛时3. 收敛半径 , 区间 , 收敛域 ( 求和前的准备 )注 (1) 与同收敛半径(2) 与之间的转换4. 幂级数展开法 :(1) 前提 : 熟记公式 ( 双向 , 标明敛域 );;(2) 分解 : ( 注 : 中心移动 ) ( 特别 : )(3) 考察导函数 :(4) 考察原函数 :5. 幂级数求和法 ( 注 : * 先求收敛域 , * 变量替换 ):(1)(2) ,( 注意首项变化 )(3) ,(4) 的微分方程(5) 应用 : .6. 方程的幂级数解法7. 经济应用 ( 数三 ):(1) 复利 : ; (2) 现值 :五 . 傅里叶级数 ( 数一 ): ( )1. 傅氏级数 ( 三角级数 ):2. 充分条件 ( 收敛定理 ):(1) 由( 和函数 )(2)3. 系数公式 :4. 题型 : ( 注 : )(1) 且( 分段表示 )(2) 或(3) 正弦或余弦*(4) ( )*5.6. 附产品 :第七讲 : 向量 , 偏导应用与方向导 ( 数一 )一 . 向量基本运算1. ; ( 平行)2. ; ( 单位向量 ( 方向余弦 ) )3. ; ( 投影 : ; 垂直 : ; 夹角 : )4. ; ( 法向 : ; 面积 : )二 . 平面与直线1. 平面(1) 特征 ( 基本量 ):(2) 方程 ( 点法式 ):(3) 其它 : * 截距式; * 三点式2. 直线(1) 特征 ( 基本量 ):(2) 方程 ( 点向式 ):(3) 一般方程 ( 交面式 ):(4) 其它 : * 二点式 ; * 参数式 ;( 附 : 线段的参数表示 :)3. 实用方法 :(1) 平面束方程 :(2) 距离公式 : 如点到平面的距离(3) 对称问题 ;(4) 投影问题 .三 . 曲面与空间曲线 ( 准备 )1. 曲面(1) 形式: 或; ( 注 : 柱面)(2) 法向( 或) 2. 曲线(1) 形式, 或;(2) 切向 : ( 或)3. 应用(1) 交线 , 投影柱面与投影曲线 ;(2) 旋转面计算 : 参式曲线绕坐标轴旋转 ;(3) 锥面计算 .四 . 常用二次曲面1. 圆柱面 :2. 球面 :变形 : , ,,3. 锥面 :变形 : ,4. 抛物面 : ,变形 : ,5. 双曲面 :6. 马鞍面 : , 或五 . 偏导几何应用1. 曲面(1) 法向 : , 注 :(2) 切平面与法线 :2. 曲线(1) 切向 :(2) 切线与法平面3. 综合 : ,六 . 方向导与梯度 ( 重点 )1. 方向导 ( 方向斜率 ):(1) 定义 ( 条件 ):(2) 计算 ( 充分条件 : 可微 ):附 :(3) 附 :2. 梯度 ( 取得最大斜率值的方向 ) :(1) 计算 :;(2) 结论;取为最大变化率方向 ;为最大方向导数值 .第八讲 : 三重积分与线面积分 ( 数一 )一 . 三重积分 ( )1. 域的特征 ( 不涉及复杂空间域 ):(1) 对称性 ( 重点 ): 含 : 关于坐标面 ; 关于变量 ; 关于重心(2) 投影法 :(3) 截面法 :(4) 其它 : 长方体 , 四面体 , 椭球2. 的特征 :(1) 单变量, (2) , (3) , (4)3. 选择最适合方法 :(1)“ 积” 前 : * ; * 利用对称性 ( 重点 )(2) 截面法 ( 旋转体 ): ( 细腰或中空 , , )(3) 投影法 ( 直柱体 ):(4) 球坐标 ( 球或锥体 ): ,(5) 重心法 ( ):4. 应用问题 :(1) 同第一类积分 : 质量 , 质心 , 转动惯量 , 引力(2) 公式二 . 第一类线积分 ( )1. “ 积” 前准备 :(1) ; (2) 对称性 ; (3) 代入“ ” 表达式2. 计算公式 :3. 补充说明 :(1) 重心法 : ;(2) 与第二类互换 :4. 应用范围(1) 第一类积分(2) 柱体侧面积三 . 第一类面积分 ( )1. “ 积” 前工作 ( 重点 ):(1) ; ( 代入)(2) 对称性 ( 如 : 字母轮换 , 重心 )(3) 分片2. 计算公式 :(1)(2) 与第二类互换 :四 : 第二类曲线积分 (1): ( 其中有向 )1. 直接计算 : ,常见 (1) 水平线与垂直线 ; (2)2. Green 公式 :(1) ;(2) : * 换路径 ; * 围路径(3) ( 但内有奇点 ) ( 变形 )3. 推广 ( 路径无关性 ):(1) ( 微分方程 ) ( 道路变形原理 )(2) 与路径无关 ( 待定 ): 微分方程 .4. 应用功 ( 环流量 ): ( 有向, , ) 五 . 第二类曲面积分 :1. 定义 : , 或( 其中含侧 )2. 计算 :(1) 定向投影 ( 单项 ): , 其中( 特别 : 水平面 ); 注 : 垂直侧面 , 双层分隔(2) 合一投影 ( 多项 , 单层 ):(3) 化第一类 ( 不投影 ):3. 公式及其应用 :(1) 散度计算 :(2) 公式 : 封闭外侧 , 内无奇点(3) 注 : * 补充“ 盖” 平面 : ; * 封闭曲面变形( 含奇点 )4. 通量与积分 :( 有向, , )六 : 第二类曲线积分 (2):1. 参数式曲线: 直接计算 ( 代入 )注 (1) 当时 , 可任选路径 ; (2) 功 ( 环流量 ):2. Stokes 公式 : ( 要求 : 为交面式 ( 有向 ), 所张曲面含侧 )(1) 旋度计算 :(2) 交面式 ( 一般含平面 ) 封闭曲线 : 同侧法向或;(3)Stokes 公式 ( 选择 ):( ) 化为; ( ) 化为; ( ) 化为高数重点知识总结1、基本初等函数:反函数 (y=arctanx) ,对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( ) ,三角函数 (y=sinx) ,常数函数 (y=c)2、分段函数不是初等函数。
高等数学知识点汇总

高等数学知识点汇总高等数学知识点汇总1. 集合:集合是一组具有特定意义的对象的总称。
集合可以根据不同条件被分类,如有界集合、无界集合、空集合、子集、伯努利子集、近似集合等。
2. 函数:函数是一种特殊的数学关系,它用于表示一个自变量和它的函数值之间的对应关系。
如果一个函数的自变量和因变量是多元的,那么就称这个函数为多元函数。
3. 微积分:微积分是数学中的一个重要分支,它研究数量之间的变化。
它主要有两个重要的概念:·微分学,它是用极限的思想去研究函数之间的变化·积分学,它是用定积分的思想去求解函数之间的面积4. 相似几何:相似几何是一种特殊的几何图形,它指的是两个图形之间存在着唯一的比例,即它们之间的长度比例,面积比例是相等的。
5. 概率统计:概率统计是数学中的一个重要分支,它主要研究随机事件的发生概率。
它设计了几种概率分布,如二项分布、泊松分布、正态分布、贝叶斯分布等。
6. 数列:数列是由一些有特宁顺序排列的数字或元素组成的序列。
数列分为等差数列、等比数列、定点数列和其他特殊数列。
7. 极限:极限是数学中的一个重要概念,它用来描述一个变量在不变的情况下,它的初始值或最终值无限接近但又不等于某一特定值。
8. 椭圆:椭圆是一种曲线,可以通过椭圆方程来表示。
它具有两个焦点和一个长轴和短轴,这两个轴是椭圆的解释。
它在物理学中用来计算椭圆偏心率和圆周率。
9. 向量:向量是指一个数量,它有大小和方向。
它可以用来表示几何形状的位置或运动,也可以用来描述物理量,如力、速度和加速度。
10. 四元数:四元数又称复数,它是一种用来表示复平面上变量之间关系的数学形式,一个四元数由实部和虚部组成,它们与实数的加减乘除运算类似。
《高等数学》笔记-知识归纳整理

- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。
2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。
(即使实际问题故意义的取值范围)。
如时光、长度、分量必须大等于0 。
❖对于数学式子表达的函数,如果给出了取值范围就不必再求。
否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。
1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。
高等数学分类

高等数学分类1、通常认为,高等数学分为微积分学,较深入的代数学、几何学以及它们之间的交叉内容。
主要内容包括极限、微积分、空间解析几何与线性代数、级数、常微分方程。
2、广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
如何学好高等数学1、对于微积分来说,这块更需要的是精确的理解定义,例如极限的定义,什么是任意"给定”,什么是“存在”(存在的这个又与什么有关),这些都将为后续学习连续性以及其他的数学课程打下一个很好的基础。
2、对于线性代数来说,要记忆的东西偏多,但是其很多概念的直观理解都是来源于解析几何的,可以去看《线性代数的几何意义》,例如矩阵与向量乘积的意义。
3、总的来说,上面两条是要多理解定义和了解其相关的背景,这样更易掌握定义,定义是学习数学最基本的东西。
4、对于做题来说,首先就是要会分析问题,常用的方法是综合法,其次要掌握一些数学思想,如方程思想。
高等数学名词解释1、高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
2、广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
3、通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。
高等数学都学什么1、高等数学主要内容包括:极限、微积分、空间解析几何、向量代数、级数、常微分方程等。
2、高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡,。
高等数学重要知识点总结

高等数学重要知识点总结高等数学重要知识点总结在平凡的学习生活中,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。
想要一份整理好的知识点吗?以下是小编整理的高等数学重要知识点总结,仅供参考,欢迎大家阅读。
高等数学重要知识点总结1高考数学解答题部分主要考查七大主干知识:第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
近十年江苏省专转本高等数学试题分类整理

江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2xx f x x x ⎧∈-⎪=⎨-∈⎪⎩是()A.有界函数B.奇函数C.偶函数D.周期函数(0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是()A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+=(二)极限(0402)当0→x 时,x x sin 2-是关于x 的()A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭() A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x n sin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b a C.0,1=-=b a D.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==(1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小 D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sin x x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0B.2C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a =. (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin)(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导 B.连续且可导 C.不连续也不可导 D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为.(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a =.(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a =. 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线x e x y -=相切,则切点的坐标是( ) A.()1,1 B.()1,1- C.()0,1- D.()0,1 (0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( )A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim()x f x x f x x f x x ∆→+∆--∆'=∆ D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--=.(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d y x . (1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan =,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x . (1208)设函数()22221xy x x x e =⋅+++,则=)0()7(y ________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( )A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx ==.(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=-. (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ. (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -= D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为. (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1x x e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( ) A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( )A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的 (1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b a B.1,3-=-=b a C.3,1-=-=b a D.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根.(1122)证明:当0>x 时,x x201120102011≥+. (1203)设232152)(xx x f -=,则函数)(x f ( )A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d xx e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰. (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461 B.C x ++463 C.C x ++8121 D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2SD.S 2 (0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x xπ-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰.(0616)计算220cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为.(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为.(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为. (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x x C.2cos 2x x D.4sin 2x x (0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42- D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'=.(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x -(1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞. (1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为. (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( ) A.(2,5,4)B.(2,5,4)-- C.(2,5,4)- D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为. (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k =.(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________. (1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为.(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yx y x u arctan ),(=,22(,)lnv x y x y =+,则下列等式成立的是( )A.y v x u ∂∂=∂∂ B.x v x u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.yvy u ∂∂=∂∂(0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z =.(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln=在点(2,2)处的全微分d z 为( ) A.11d d 22x y -+ B.11d d 22x y + C.11d d 22x y - D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂=. (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z===.(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y x y xf z ,=,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y x B.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD.0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰ C.21(,)d d D f x y x y ⎰⎰ D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰.(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分1101d (,)d y y f x y x +⎰⎰交换积分次序后得 ( ) A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤ C.{}(,)01,10x y x x y ≤≤-≤≤ D.{}(,)12,01x y x y x ≤≤≤≤- (1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰ D.sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰(1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n n u 必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n n n B.∑∞=+11n n n C.∑∞=-+1)1(1n n n D.∑∞=-1)1(n n n(0906)设α为非零常数,则数项级数∑∞=+12n n n α() A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)n n n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为. (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为.(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为. (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为.(1106)若x x f +=21)(的幂级数展开式为0()n n n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+nC.(1)2n n- D.1(1)2nn +- (1112)幂级数01nn x n ∞=+∑的收敛域为___________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为. 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y ==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为. (1311)微分方程d d y x yx x+=的通解为. (二)二阶线性微分方程(0406)微分方程232x y y y xe '''-+=的特解*y 的形式应为( ) A.xAxe 2 B.x e B Ax 2)(+C.xeAx 22 D.x e B Ax x 2)(+(0712)设x x e C e C y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为. (0806)微分方程321y y y '''++=的通解为( )A.1221++=--x x e c e c yB.21221++=--x xe c e c y C.1221++=-x x e c e c yD.21221++=-xx ec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案20XX 年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e .8、32241-+==-z y x .9、!n .10、C x +4arcsin 41. 11、12201d (,)d d (,)d yy y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x ex ,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂. 19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得:0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ),由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.20XX 年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2.8、1-e .9、2π.10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='. 15、解:原式22tan tan sec d (sec 1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos z x f x ∂'=⋅∂,()21212cos 22cos zx f y y x f x y∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---i j kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x =,x e q x =,而1d 1x x e x-⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+=⎪⎝⎭⎰. 把初始条件1x ye ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减,故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.20XX 年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1.11、(sin cos )xy e y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . 14、解:2211d 12d 21t t y y t t t x x t -'+==='+,2222d 1d d 122d 41t y x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来yOS1x12y x=图1222202cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程;令y u x =,则d d d d y u u x x x =+,代入得:2d d ux u x=-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u =+,故ln xy x C=+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以010(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故 20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x ∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰;(2)()()224804d 8d 16y V y y y y πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰; (1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.20XX 年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln .8、1.9、π2. 10、23.11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+; 将0=x ,0=y 代入解得:d 1d x x yy x=='==.在方程''x ye e y y x y -⋅=+⋅两边再次对x 求导得:()2'2x y y e e y e y y x y '''''-⋅-⋅=+⋅将0=x ,0=y ,01x y ='=代入解得:2200d 2d x x yy x==''==-.15、解:原式()()222d d x x x xe x e e x ---⎡⎤-=--⎣⎦⎰⎰积进去22d x x x e xe x ---+⎰导出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
双重积分2
专题一、计算双重积分2题目类型1、计算二重积分2
1.1选定坐标系和积分次序进行计算2
1.2需分块(区域)计算2
a)被积函数含有绝对值符号4
b)被积函数含有最值符号5
c)被积函数是分段给出的5
d)被积函数为取整函数5
e)被积函数为符号函数5
f)积分区域上下和左右边界曲线均由两个不同的函数表示5
g)确定二重积分正符号有时需适当地划分积分区域进行估算5
题目类型2、变换积分次序5
2.1 直接要求变换积分次序3
2.2 隐性需要变换积分次序(原次序积不出)3
题目类型3、证明题(实质是从一边算起)6专题二、对称性6专题三、极坐标6专题四、证明题6
双重积分
专题一、计算双重积分 题目类型1、计算二重积分
1.1选定坐标系和积分次序进行计算
P299[95-2]计算二重积分
2
D
x
ydxdy ⎰⎰其中D 是由曲线围成:22:1,0,1D x y y y -===。
[97-4] D:是以点O(0,0), A(1,2)和B(2,1)为顶点的三角形,求
D
xdxdy ⎰⎰。
1.2计算前需交换次序
(1)交换积分次序是二重积分最关键的技巧 (2)交换积分次序是二重积分最重要的题型
1.2.1直接要求变换积分次序
基本步骤
a) 根据积分上、下限画出积分区域D 的草图,不可漏掉部分,要绝对正确
b) 变换前,检查或调整上下限顺序,化为标准的二次积分。
标准的二次积分下限必须小于上限必
须小于上限。
c) 若是极坐标,d ρ前不可漏掉ρ。
d) 交换积分次序
[01-1]交换积分的次序:
11
2
(,)y
dy f x y --=⎰
⎰
例:交换积分次序I=
2sin 0
(,)x
dx f x y dy π
=⎰
⎰
1.2.2 隐性需要变换积分次序(原次序积不出)
2
x e dx ±⎰,/y x
e dx ⎰,cos x dx x ⎰
,sin x
dx x
⎰,sin k x dx ⎰,cos k x dx ⎰(2)k ≥,sin y dx x ⎰,1dx lnx ⎰因原
函数不是初等函数,故先积x 积不出来。
变换次序后,可消去不良部分,得出结果。
[90-1]
2
2
2
y x
dx e dy =⎰
⎰
[88-3.4] 66
cos y
x
I dy dx x
ππ
=
=⎰
⎰ [88-1.2]
2
4
2
1
2
22x
x
x
dx dx dx y
y
ππ+=⎰
⎰
[92-1.2]
1121112
2
4
y y x
x
y
dy dx dy dx +=⎰
⎰⎰
[070201(8)] [010101(3)] [880307] [950103(2)] [040102(10)] [040202(12)] [060202(11)] [06010208] [070201(8)] [090201(04)]
1.2需分块(区域)计算 a) 被积函数含有绝对值符号
(1) 为去掉绝对值所以分块
(2) 分块的原则区域不相交,每个子区域上被积函数取值不变号 (3) 常用被积函数中绝对值等于0的曲线将积分区域分成两部分
[MP241总7.1(1)] cos(),D
x y d σ+⎰⎰D 由,0,2
y x y x π
===
所围成。
b)被积函数含有最值符号
c)被积函数是分段给出的
d)被积函数为取整函数
e)被积函数为符号函数
f)积分区域上下和左右边界曲线均由两个不同的函数表示
g)确定二重积分正符号有时需适当地划分积分区域进行估算
题目类型2、变换积分次序
内容见专题一、1.2项。
题目类型3、证明题(实质是从一边算起)
专题二、对称性
首先确认积分域全部或其部分是否具有对称性,再考察(,)
的对称性。
z f x y
专题三、极坐标
专题四、证明题。