仿射变换在初等几何解题中的应用

仿射变换在初等几何解题中的应用
仿射变换在初等几何解题中的应用

仿射变换在初等几何解题中的应用

……

……

摘 要:仿射变换,即平行投影变换,是几何学中的一个重要变换,是从运动变换过渡到射影变换的桥梁.本文将从仿射变换的有关概念入手,了解仿射几何所研究的几何通过仿射变换的不变性质和不变的数量关系以及经过变形后的形状和位置关系,并讨论仿射变换在初等几何中的一些应用.

关键词:仿射变换;仿射不变性;初等几何

Abstract: Affine transformation, namely parallel projection, is an important transformation in geometry. It is the bridge from the motion converting to the projective transformation. This article will start with the concept of affine transform, to understand the geometry of affine geometry research by affine transformation invariant properties and constant relationship between the number after the deformed shape and positional relationship, and discussed some applications of affine transformation in elementary geometry.

Key words :affine transformation ;affine invariance ;elementary geometry

1 仿射变换的基本概念及相关性质

1.1 仿射变换的概念

定义1.1[1] 设同一平面内有n 条直线1a ,2a ,3a ,…n a , 1T ,2T ,3T ,…1-n T 顺次表示1a 到2a ,2a 到3a ,1-n a 到n a 的透视仿射,经过这一串平行射影,使1a 上的点与n a 上的点建立了一一对应,称为1a 到n a 的仿射或仿射变换如图1-1.

T =1-n T 122T T T n ????- ,T 称为1T ,2T ,3T ,… 1-n T 按这个顺序的乘积.

)(A T = 1-n T 122T T T n ????- )(A = 1-n T )(22A T T n '???- =…=n A ,)(B T =n B 等

图1-1

定义1.2 设A ,B ,C 为共线三点,这三点的简比()ABC 定义为下述有向线段的比:

()BC

AC ABC = 其中AC ,BC 是有向线段AC ,BC 的代数长,A ,B 叫基点,C 叫分点.

当C 在A ,B 之间时,()ABC <0;

当C 不在A ,B 之间时,()ABC >0;

当C 与A 重合时,()ABC =0;

当C 与B 重合时,()ABC 不存在.

1.2 仿射变换的性质

(1)仿射变换保持同素性:即仿射变换将点变成点,直线变成直线;

(2)仿射变换保持结合性:即仿射变换保持点与直线的结合关系;

(3)仿射变换将向量变成向量,且保持向量的线性关系v u λ=.

定理1 两条平行直线经仿射变换后仍变为两条平行直线.

推论1 两条相交直线经仿射变换后仍变成两相交直线.

推论2 共点的直线经仿射变换后仍变为共点直线.

定理2 两条平行线段之比是仿射不变量.

推论 一直线上两线段之比是仿射不变量. 1

a 2

a 3a n

a A 'B 'C 'A B C D 'n A n B n C n D A ''B '

'C ''D ''D

定理3两封闭图形(如三角形、平行四边形、椭圆等)面积之比是仿射不变量.

2仿射变换与初等几何的相关联系

从总体上看,高等几何对初等几何具有多方面的指导意义.在此,笔者择要阐述两种,以此说明高等几何对初等几何普遍指导意义[2].

一是学习高等几何能深化对初等几何的认识和理解.几何学是一种研究在相应的变换群下图形保持不变的质和量的科学,射影群、仿射群、正交群所对应的是射影几何、仿射几何、欧氏几何,根据普遍性包含于特殊性的原理可知,射影几何包含于仿射几何包含于欧氏几何,这其中,射影几何内容最少,欧氏几何内容最丰富.不同的几何课程在内容上的侧重点不同,解析几何主要研究图形的性质,将空间几何结构代数化是其本质特征;欧氏几何主要研究整个空间的几何结构,它利用图形的直观形象启发人类的想象思维,从而促使人们不断探索发现图形间的关系与性质;高等几何尤其是其中的射影几何则包含、融合了上述两者的内容.也就是说,学习高等几何能使我们站得更高一些,看得更远一些,能进一步认清几种几何学间的关系,进一步开阔几何学的视野,从而更好地理解和把握初等几何的本质和精髓.

二是学习高等几何能有效扩充初等几何的研究方法.从实用主义的角度看,数学与应用数学专业的学生或中学数学教师学好高等几何,一方面可扩展几何学的认知范畴,在更高的水准上搞好教学工作,另一方面可用高等几何的理念和观点来指导和反思初等几何的教学内容与研究方法,从而不断改进初等几何的教学方式,优化其研究手段和教学模式,切实提高中学几何的教学质量.

3仿射变换在初等几何解题中的应用

根据仿射变换的性质可知,通过特殊仿射变换可将某些一般图形变为特殊图形,如可将任何三角形变成正三角形,平行四边形变为正方形或长方形,梯形变为等腰梯形或直角梯形.因此,对于一个仅涉及仿射性质的初等几何命题,如果能证明它在特殊图形中成立,则在仿射变换下,这个命题对于相应地一般图形也应成立.

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用.

3.1 平行投影

平行投影是仿射变换中最基本、最简单的一类.因此平行投影变换具有仿射变换中的一切性质.解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量.

例3.1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F .求证:1=++CF

PF BE PE AD PD .

B C

图 3-1 证明 如图3-1,分别沿AB 和AC 方向作平行投影.P →P '、P →P ''由仿射变换保简单比不变得 :

DC DP BD D P AD PD '''==,所以BC P P AD PD '''=, 同理 BC C P BE PE ''=,BC

BP CF PF '=,

所以1''''''=++=++BC

BP BC C P BC P P CF PF BE PE AD PD . 例3.2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真.(梅涅劳斯定理 )[3]

分析 如图3-2,本题要求证明当L 、M 、N 三点共线时,

1-=??NB

AN MA CM LC BL 。其逆命题亦成立. N B A L'(L)

A'C B A M M

N

A'L C

(1) (2)

图 3-2

证明 (1)证明梅涅劳斯定理成立

由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便.

如图3-2 (1),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则1''-=??=??LB

L A LA CL LC BL NB AN MA CM LC BL .即原命题成立. (2)证明逆命题成立,即: 当BC 、CA 、AB 上三点L 、M 、N 满足

1-=??NB AN MA CM LC BL 时,则L 、M 、N 三点共线.

设直线MN 交BC 于L ',如图3-2 (2) ,由已知条件知,

1''-=??NB AN MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线.

3.2 三角形的仿射等价性

任一三角形可以经过平行投影变成正三角形.因此,如果我们要证明一个有

关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立.而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多.

例3.3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC .

D 'C 'D B B'

图 3-3

证明 如图3-3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、E 、F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。

在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '',

由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC .

3.3 四边形仿射性质的应用

3.3.1 证明有关平行四边形仿射性质的实例

任一平行四边形均可以经过特殊平行投影变成正方形,因此,若想证明一个有关平行四边形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明相应命题对正方形成立即可.

例3.4 平行四边形ABCD 的一组邻边上有点E ,F 两个点,

且EF ∥AC .求证:AED ?和CDF ?面积相等[4]

.

C

B

F '

A'B'A D

E

F E'

图 3-4

证明 作仿射变换,使平行四边形ABCD 对应正方形CD B A '',则有E 对应E ',F 对应F ',如图3-4,

在正方形CD B A ''中,由F E ''∥C A ',故

C A F E C B F B B A E B '''='''='''', 因为C B B A '='',所以F B E B ''='',故F C E A '='',

因??

???'=''='∠='∠'=''C B B A B DC B A D F C E A 90',所以F CD D E A '??''?,

又由于两个多边形面积之比为仿射不变量,故有

1=='

?'''???F CD D E A CDF AED S S S S , 所以CDF AED S S ??=. 例3.5 已知在平行四边形ABCD 中,E 为AB 的中点,F 在AD 上,DF AF 2

1=,EF 交AC 于G ,求证:AC AG 51=.

E'A'

'B'

图 3-5

证明 如图3-5,作仿射变换f ,使得,平行四边形ABCD 对应正方形D C B A '''',则由仿射性质可知,点E 、F 、G 分别对应E '、F '、G ',且E '是D A ''的中点,F D F A ''=''2

1. 在正方形D C B A ''''中,取D C ''的中点P ',过B '、D '、P '作F E ''的平行线,分别交C A ''于点H '、M '、N '.由平面几何知识易证,C A G A ''=''5

1,

由于简比是仿射不变量,所以在平行四边形ABCD 中,AC AG 51=.

3.3.2 证明有关梯形仿射性质的实例

任一梯形均可以经过平行投影变成等腰梯形,若想证明一个有关梯形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明相应命题对等腰梯形成立即可.

例3.6 在梯形ABCD 中,BC AD //,E ,F 分别为上、下底边的中点.AC 、BC 交于G ,BA 、CD 交于M ,证明:F G E 、、、M 共线[5]. 分析 此题为点共线的问题,考虑梯形的上底和下底平行,考虑是否能由特殊的等腰梯形来转化,进一步考虑是否能在一个等腰三角形中截取?

证明 任作一个等腰三角形C B M ''',因为任意两个三角形是仿射等价的,所以一定存在唯一的一个仿射变换T ,使T(△C B M ''')=△MBC ,其中M '→M ,B '→B ,C '→C ,在B M ''上取一点A ',使(A B M ''')=(MBA ).过A '作D A ''//C B ''与C M ''交于D '.

M B A C D G E

F M`

B`A`C`D`

G`E`F`

图 3-6

连D B ''、C A '',F M ''容易证明,在等腰梯形中,两底中点,两对角线交点,

两腰交点,这四点共线,即F G E M '''',,,共线.

根据以上作法,仿射变换保同素性和结合性。所以,A '→A .又因为(D C A ''')=(ACD )所以D '→D .所以由F G E M '''',,,共线可知F G E M ,,,共线.

类似的,我们可以得到另一个结论:

若四边形两组对边的交点的连线与四边形的一条对角线平行,那么,另一条对角线的延长线平分上述的连线.

3.4 仿射变换在椭圆中的应用

圆和椭圆都是初等几何中常见的图形,圆比椭圆更特殊,它有很多很好的性质,与圆有关的定理举不胜举,但椭圆则不然,因其本身的定义要比圆复杂,椭圆的性质和定理就很少,解决一个与椭圆有关的问题要比解决一个与圆有关的相应的问题困难得多.在初等几何中,有很多有关椭圆的问题,只能通过解析几何的方法来解决,这就给我们解题带来了不少麻烦.因此,我们自然期望有一种方法,使得处理有关椭圆的问题和处理有关圆问题一样容易,而由仿射变换性质可知,椭圆通过适当的仿射变换可变成圆.

例3.7 证明椭圆的外切三角形C B A '''的顶点与对边上的切点连线交于一点. 分析 此题是关于线共点的问题,由于椭圆的一般性以及三角形的一般性,用初等几何比较难入手,但可以用仿射几何的方法进行转化,变成特殊的圆以及正三角形来加以研究[6].

A`A

B K

C 1B 1

B`C 1`

B 1`A 1`A 1`K`

图 3-7

证明 由于容易证到一个正三角形ABC ,其内切圆在对边上的切点与顶点连

线交于一点K ,可以用仿射变换方法.因对于△ABC 与△C B A '''存在唯一的一个仿射变换Φ,使A →A ',B →B ',C →C '(如图3-7).

由于仿射变换保持结合性不变,△ABC 的内切圆与各边切点分别为1A ,1B ,1

C 由于仿射变换是一一变换,切点仍应变为切点.所以1A →1A ',1B →1B ',1C →1

C ',K →K '.所以由111,,CC BB AA 共点K ,可知A A ''1,B B ''1,C C ''1共点K '.

例3.8 求椭圆的面积.

分析 椭圆是一个二次曲线,用初等几何和微积分的知识进行推导比较烦琐.考虑到圆经过仿射变换对应一个椭圆,所以椭圆也可以通过一个适当的仿射变换对应成一个圆[7].

解 在直角坐标系下,椭圆

12

2

22=+b y a x 经过仿射变换

??

???='='y b a y x

x 0001≠=?b

a 于是,椭圆的对应图形为圆 222a y x =+

如图3-8,椭圆内的三角形△OAB :O (0,0),A (a ,0),B (0,b ),经过以上的仿射变换,△OAB 的对应图形△B A O '',其中A 与A '重合,B ' ( 0,a ),由于两个封闭图形的面积之比为仿射不变量,

B A O S S OAB S S ''?=?圆椭圆 即

因此,所给的椭圆的面积为ab π. 图 3-8

22

2121a a a b S π=椭圆x

y A O B A ' B '

4利用仿射不变性解初等几何问题的步骤

以上内容是对仿射变换在初等几何应用的简单总结,有些题不仅仅只有一种或两种做法,也许还有很多其他的做法,但是应用仿射变换解决起来更简捷、方便[8].从例题中我们可以总结得出应用仿射变换中的仿射不变性质与仿射不变量解题的步骤可概括如下:

①判断求解的问题是否能利用仿射不变性质,仿射不变量求解,一般及到点共直线,直线共点,线段比,面积比等一类问题皆可应用仿射变换解题.

②选择合适的仿射变换,找出所给图形的合适的仿射图形.

③在仿射图形中求证,写出具体的仿射变换及解题过程.

④最后我们需要注意的是,所考虑的问题都必须是仿射性质的问题,否则这种方法就不适用了.如有关线段长度,直线垂直,直线夹角大小的问题属于非仿射性质,自然就不能使用平行投影的方法解决.

参考文献:

(略)

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

矩阵的初等变换及其应用

线性代数 第一次讨论课 1.导语 2.讨论内容目录 3.正文 4.个人总结

导语: 矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。 讨论内容目录 矩阵的初等变换及其应用 1.两个矩阵的等价 2.两个矩阵的乘积 3.将矩阵化为行阶梯型、行最简形、标准型 4.求矩阵的秩 5.求可逆矩阵的逆矩阵 6.求线性方程组的解 7.判断向量组的线性相关性 8.求向量组的秩与极大无关组 9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值) 10.二次型化为标准形 正文 一、矩阵的等价 1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A

与B 行等价;若矩阵A 经过一系列初等列变换化为B 矩阵,则称A 与B 列等价;若矩阵A 经过一系列初等变换化为B 矩阵,则称A 与B 等价(相抵)。 2.矩阵的等价变换形式主要有如下几种: 1)矩阵的i 行(列)与j 行(列)的位置互换; 2)用一个非零常数k 乘矩阵的第i 行(列)的每个元; 3)将矩阵的第j 行(列)的所有元得k 倍加到第i 行(列)的对应元上去; 即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。 3. 矩阵等价具有下列性质 (1)反身性 任一矩阵A 与自身等价; (2)对称性 若A 与B 等价,则B 与A 等价; (3)传递性 若A 与B 等价,B 与C 等价,则A 与C 等价; 注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。 下面举例说明矩阵等价及等价变换: 13640824100412204128--?? ?- ? ?-- ?-?? 13 r r +???→

初中几何变换——平移

初中数学几何变换之 平移 一、知识梳理 1、平移基本要素:平移方向 平移距离 。 2、基本性质: (1)对应点所连的线 段平行且相等 (2)对应线段平行且相等 (3)对应角相等 3、应用: 平行四边形存在性等 二、常考题型 类型一:平移性质 1、如图,矩形OABC 的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 (用含n 的代数式表示) 第1题 第2题 2、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半 轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( ) 3、如图①,在平面直角坐标系中,已知点A (2,0),点B (0,4),点E (0,1),如图②,将△AEO 沿x 轴向左平移得到△A ′E ′O ′,连接A ′B 、BE ′。 (1)设AA ′=m (m >0),试用含m 的式子表示2 2 BE B A 、、+,并求出使2 2 BE B A 、、+取得最小值时点E ′的坐标; (2)当A ′B+BE ′取得最小值时,求点E ′的坐标。

类型二:综合应用 1、在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移ADP ?,使点D 移动到点C ,得到BCQ ?,过点Q 作QH BD ⊥于H ,连接AH ,PH 。 (1)若点P 在线段CD 上,如图1。 ①依题意补全图1; ②判断AH 与PH 的数量关系与位置关系并加以证明; (2)若点P 在线段CD 的延长线上,且152AHQ ∠=?,正方形ABCD 的边长为1,请写出求DP 长的思路。(可以不写出计算结果) 图1 备用图

矩阵的初等变换在线性代数中的应用[文献综述]

毕业论文文献综述 信息与计算科学 矩阵的初等变换在线性代数中的应用 一、前言部分 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 矩阵的初等变换起源于解线性方程组,是线性代数的一个基本概念,也是研究矩阵的一个非常重要的工具。矩阵作为线性代数中最基本的一个概念,在数学的各方面的有重要的意义。最基本的应用当然是在线性方程方面。但是,矩阵的意义其实可以说就是线性代数的意义,因为线性代数的每一个概念都与矩阵有着密切关系。而线性代数是整个高等数学的基础之一,可以应用到整个数学的方方面面,而其本身在物理学、生物学、经济学、密码学等方面发挥着重要作用。[1] 矩阵的初等变换在处理线性代数的有关问题时具有一定的独特作用。文章就详细地总结了矩阵的初等换在求逆矩阵、求矩阵的秩、求过渡矩阵、求向量组的秩及向量组的极大线性无关组、解方程组、化二次型为标准型以及求标准正交基等问题中的应用。本文就讨论应用矩阵初等变换的一些性质解决有限维向量空间中这些问题。[2] 二、主题部分 2.1矩阵和线性代数的概念介绍 2.1.1 线性代数的概念介绍

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析 专题7:几何三大变换相关问题 授课老师:黄立宗 典型例题选讲: 例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对 应点A′落在线段BC上,再打开得到折痕EF. (1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的 条件下,利用图4证明四边形AEA′F是菱形. 例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE ①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示); (2)如图2,若AB= BC=kAC,AD =ED=kAE 则线段BD与CE的数量关系为,∠BMC= (用α表示); (3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示). 例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1) 求抛物线的解析式; (2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D

的坐标; (3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应). 例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式; (2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式; (3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线 OP与该抛物线交点的个数。 巩固练习 1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0). (1)结合坐标系用坐标填空. 点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称

中考数学专题 几何三大变换问题之对称

2004-2013年浙江11市中考数学选择填空解答压轴题分类解析汇编 专题13:几何三大变换问题之对称 一、选择题 1.(2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】 A.108°B.144°C.126°D.129° 【答案】C。 【考点】矩形的性质,折叠对称的性质。 【分析】展开如图:五角星的每个角的度数是: 0 180 36 5 。 ∵∠COD=3600÷10=360,∠ODC=360÷2=180, ∴∠OCD=1800-360-180=1260。故选C。 2.(2004年浙江湖州3分)小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是【】 A. B. C. D. 【答案】D。 【考点】剪纸问题,折叠对称的性质,正方形的性质。 【分析】按照图中的顺序向右下对折,向左下对折,从上方角剪去一个等腰直角三角形,展开得:剪去的为一正方形,且顶点在原正方形的对角线上。故选D。 3.(2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】

A.向右平移7格 B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 C.绕AB的中点旋转1800,再以AB为对称轴作轴对称 D.以AB为对称轴作轴对称,再向右平移7格 【答案】D。 【考点】轴对称和平移变换。 【分析】观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格。故选D。 4.(2008年浙江台州4分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移, 我们把这样的图形变换叫做滑动对称变换 .......在自然界和日常生活中,大量地存在这种图形变换(如图1).结 合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 ......过程中,两个对应三角形(如图2)的对应点所具有的性质是【】 A.对应点连线与对称轴垂直B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分D.对应点连线互相平行 【答案】B。 【考点】新定义,轴对称变换和平移变换的性质。 【分析】观察图形,因为进行了平移,所以有垂直的一定不正确,A、C是错误的; 对应点连线是不可能平行的,D是错误的; 由对应点的位置关系可得:对应点连线被对称轴平分。故选B。 5.(2011年浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,

初等变换与初等矩阵

2.3 初等变换与初等矩阵 授课题目 2.3 初等变换与初等矩阵 授课时数:4课时 教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵 教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵 教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵 教学过程: 用初等变换化简矩阵A B B A 的性质来探讨通过为,的性质,这是研究矩阵的重要手段。为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。 一.初等变换与初等矩阵 1. 初等变换 (1)定义 定义1 矩阵的初等行(列)变换是指下列三种变换: 1)换法变换:交换矩阵某两行(列)的位置; 2)倍法变换:用一个非零数乘矩阵的某一行(列); 3)消法变换:把矩阵的某一行(列)的k 倍加到另一行(列)上去,k 为任意数。 矩阵的初等行变换和初等列变换统称为初等变换。 (2)记法 分别用)]([)],([],,[k j i k i j i +表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。或者行变换用i j i i j R R ,kR ,R kR ?+, 列变换用i j i i j C C ,kC ,C kC ?+ 例1 [][] ???? ? ??--??→?????? ??---???→?????? ??--=+-+131123302001121123302101121121322101)1(13)2(12A . 2. 初等矩阵 (1)初等矩阵的定义

定义2 由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵 ij j i n P j i I =???? ? ?? ? ????? ??? ? ? ????→?行行 1101111011] ,[ [] )(1111)(,k D i k I i j i n =? ???????? ?? ????→?行 [] )(1111)(k T j i k I ij k itj n =? ???? ????? ? ????→?行行 列i 列j

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

初中几何变换思想之翻折

初中几何变换思想之翻 折 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考汇编几何变换之翻折 1.(2016山东省枣庄市)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是( ) A .3 B .4 C . D .10 2.(2015常州)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( ) A .338cm 2 B .8cm 2 C .33 16cm 2 D .16cm 2 3.(2016江苏省淮安市)如图,在Rt△ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 . 4.(2014年湖北天门学业3分)如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 ▲ . 5.(2014年四川凉山5分)如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 ▲ . 6.(2014年江苏盐城12分)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF . 小军的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD +PE =CF . 小俊的证明思路是:如图2,过点P 作PG ⊥CF ,垂足为G ,可以证得:PD =GF ,PE =CG ,则PD +PE =CF . 【变式探究】如图3,当点P 在BC 延长线上时,其余条件不变,求证:PD ﹣PE =CF ; 请运用上述解答中所积累的经验和方法完成下列两题:

矩阵的初等变换及应用的总结

矩阵的初等变换及应用 内容摘要: 矩阵是线性代数的重要研究对象。矩阵初等变换是线性代 数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。 一矩阵的概念 定义:由于m x n 个数aij (i=1 , 2,….,m; j=1 , 2,…., n)排成的m行n列的数表,称为m行n列,简称m x n矩阵 二矩阵初等变换的概念 定义:矩阵的初等行变换与初等列变换,统称为初等变换 1. 初等行变换 矩阵的下列三种变换称为矩阵的初等行变换: ⑴交换矩阵的两行佼换一两行,记作.); (2) 以一个非零的数 '乘矩阵的某一行(第.行乘数卜,记作…); (3) 把矩阵的某一行的,倍加到另一行(第一行乘 '加到.行, 记为). 1.初等列变换 把上述中“行”变为“列”即得矩阵的初等列变换 3,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B 矩阵之间的等价关系具有下列基本性质:

⑴反身性; (2) 对称性若小丄,,则; (3) 传递性若丄丄,/,则」. 三矩阵初等变换的应用 1.利用初等变换化矩阵为标准形 定理:任意一个m x n矩阵A,总可以经过初等变换把它化为标准形 ■ 4■ ■ 1 F行二0 ■ ■ < 泓1 2. 利用初等变换求逆矩阵 求n阶方阵的逆矩阵:即对n x 2n矩阵(A| E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A A(-1) 即(A|E)经过初等变换得到(E|AA(-1)) 这种计算格式也可以用来判断A是否可逆,当我们将A化 为行阶梯形矩阵时, 若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

(完整版)初中几何变换——平移

初中数学几何变换之平移 一、知识梳理。1、平移基本要素:平移方向平移距离 2、基本性质:段平行且相等(1)对应点所连的线2)对应线段平行且相等(3)对应角相等( 3、应用:平行四边形存在性等 二、常考题型类型一:平移性质 、如图,矩形OABC的两条边在坐标轴上,OA=11,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示) 2题第1第题 2、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) 3、如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。 2、2、2、2、BEA?ABEB?B取的式子表示),试用含(′)设(1AA=mm >0m,并求出使得最小值时点E′的坐标;

(2′取得最小值时,求点′A)当B+BEE′的坐标。 类型二:综合应用 DPCDC1ABCDBD不重合),连在射线、是一条对角线,点、在正方形上(与点中, BCQ?BDQH?ADP?HDAPCQ,连接移动到点,过点,平移,得到于,使点作接AHPH。,1 (1) P CD。在线段若点上,如图①1;依题意补全图②AHPH的数量关系与位置关系并加以证明;判断与?AHQ?152?1ABCDCD(2)P,请写出求的边长为若点,正方形在线段的延长线上,且DP长的思路。(可以不写出计算结果) A BB A CD P DC 1 图备用图 “”.2等邻边四边形、类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做 1 )概念理解(”.“ABCD1ABCD请写出你如图是,在四边形中,添加一个条件使得四边形等邻边四边形. 添加的一个条件 2 )问题探究(.”①“她的猜想正确吗?请说明小红猜想:对角线互相平分的是菱形等邻边四边形理由。ABCRt△ AB=2BC=1=90°②2Rt△ABC∠ABC并将,,如图小红画了一个,其中,,.AABCABCBB∠ABC△小红要是平移后的'','沿'',连结的平分线'方向平移得到“”BBABCA'的长)?等邻边四边形',应平移多少距离(即线段'是四边形 3 )应用拓展(BD==90°ACBAD+∠BCDABCD3“”AB=AD∠为对,如图,,等邻边四边形,中,. BDBCCDAB AC=.!的数量关系,角线,试探究错误未找到引用源。,

中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题 轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。 一. 有关三角形的轴对称性问题 1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF . 2. 如图,在Rt △ABC 中,∠C=900 ,∠B=300 , BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。 F D C E A B

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。 二. 有关四边形的轴对称性问题 3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】 A.4种 B.5种 C.6种 D.7种 【答案】B。 【考点】利用旋转的轴对称设计图案。 【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:

初中几何变换-翻折

初中数学几何变换之 轴对称 一、知识梳理 1、轴对称基本要素:对称轴。 2、基本性质: (1)对应线段、对应角相等 (2)对应点所连线段被对称轴垂直平分 (3)对称轴上的点到对应点的距离相等 (4)对称轴两侧的几何图形全等 3、应用 翻折问题、最值问题等 二、常考题型 类型一:轴对称性质 1、如图,在平行四边形ABCD 中,13=AB ,4=AD ,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________. 第1题 第2题 第3题

2、如图,矩形中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE 与CD相交于点O,且OE=OD,则AP的长为__________. 3、如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为。 4、如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F CD时,CF 的值为。 FD 5、如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是。 第4题第5题第6题 6、如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF 折叠,使点A落在BC边上的点D的位置,且,则CE的长是。 7、如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE,则tan∠EHG = .

几何三大变换(习题及答案)

几何三大变换(习题) ?例题示范 例1:如图,四边形ABCD 是边长为9 的正方形纸片,将该纸片折叠,使点B 落在CD 边上的点B′处,点A 的对应点为A′,折痕为MN.若B′C=3,则AM 的长为. 【思路分析】 要求AM 的长,设AM=x,则MD=9-x. 思路一:考虑利用折叠为全等变换转条件,得AM=A′M=x, A′B′=AB=9.观察图形,∠A′=∠D=90°,△MA′B′和△MDB′都是 直角三角形,MB′是其公共斜边,则MB′可分别在两个直角三角形中借助勾股定理表达,列方程. 思路一思路二 思路二:MN 是对称轴,考虑利用对称轴上的点到对应点的距离相等转条件,得MB=MB′.观察图形,∠A=∠D=90°,MB,MB′ 可分别放到Rt△ABM 和Rt△DB′M 中借助勾股定理表达,列方程. 例2:如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD 的面积为24,则AC 的长为. 【思路分析】 已知四边形ABCD 的面积,要求AC 的长,考虑借助AC 表达四 边形ABCD 的面积.四边形ABCD 为不规则四边形,考虑割补法或转化法求面积.分析题目中条件AB=AD,存在等线段共端点的 结构,且隐含∠B+∠D=180°,故考虑通过构造旋转解决问题,可把△ABC 绕点A 逆时针旋转90°.

1

?巩固练习 1.如图,将边长为2 的等边三角形ABC 沿BC 方向平移1 个单 位得到△DEF,则四边形ABFD 的周长为. 第1 题图第2 题图 2.如图,已知△ABC 的面积为8,将△ABC 沿BC 方向平移到 △A′B′C′的位置,使点B′和点 C 重合,连接AC′,交A′C 于点D,则△CAC′的面积为. 3.如图,在6 4 的方格纸中,格点三角形甲经过旋转后得到格点 三角形乙,则其旋转中心是() A.格点M B.格点N C.格点P D.格点Q 第3 题图第4 题图 4.如图,已知OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转75°,点 E 的 对应点N 恰好落在OA 上,则OC 的值为.CD 5.如图,E 是正方形ABCD 内一点,连接 AE,BE,CE,将△ABE 绕点B 顺时针 旋转90°至△CBE′的位置.若AE=1, BE=2,CE=3,则∠BE′C= . 6.如图,在□ABCD 中,∠A=70°,将该 平行四边形折叠,使点C,D 分别落 在点E,F 处,折痕为MN.若点E, F 均在直线AB 上,则∠AMF= .

分块矩阵的初等变换及其应用[含论文、综述、开题-可编辑]

设计 (20 届)分块矩阵的初等变换及其应用 所在学院 专业班级信息与计算科学 学生姓名学号 指导教师职称 完成日期年月

摘要:本文介绍了矩阵,分块矩阵的一些基本概念,同时也介绍了分块矩阵的初等变换,分块矩阵的初等变换在一些问题中的相关应用,如利用分块矩阵的初等变换计算矩阵的行列式,求矩阵的逆,在秩问题中的应用,在相似问题中的应用以及在其他方面的应用,用22 分块矩阵的初等变换证明实对称矩阵的正定性。并根据各种的应用给出了大量的例题,充分体现了分块矩阵的初等变换在代数学中所具有一定的优越性。 关键词:分块矩阵;初等变换;行列式;矩阵的逆;应用

Elementary block matrix transform and its application Abstract:This article introduces some basic concepts of the matrix and partitioned matrix,also introduces the elementary transformation of partitioned matrix and the related application in some problems. For example, using the elementary transformation of partitioned matrix to compute matrix's determinant or get the inverse of a matrix. Also it introduces the application of partitioned matrix in some rank problems, similar problems and other problems, using the 22 elementary transformation of partitioned matrix to prove the definiteness of symmetric matrix. According to different kinds of application, it lists a lot of examples, which fully indicate the superiority of partitioned matrix's elementary transformation in algebra. Key words:partitioned matrices; elementary transformation; determinant; the inverse of a matrix; Application

【整理】中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解) 几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形 之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同 样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样, 和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形, 大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关 系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地 从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图 形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究. 解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基 本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力. 1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请 说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方 形的性质。 专题:压轴题。 分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. 解答:(1)证明:在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)解:(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG, ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG,

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

矩阵的初等变换及应用的总结

… 矩阵的初等变换及应用 内容摘要: 矩阵是线性代数的重要研究对象。矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。 一矩阵的概念 定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵 二矩阵初等变换的概念 定义:矩阵的初等行变换与初等列变换,统称为初等变换 ! 1.初等行变换 矩阵的下列三种变换称为矩阵的初等行变换: (1) 交换矩阵的两行(交换两行,记作); (2) 以一个非零的数乘矩阵的某一行(第行乘数,记作 ); (3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为). 1.初等列变换 把上述中“行”变为“列”即得矩阵的初等列变换 3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B —

矩阵之间的等价关系具有下列基本性质: (1) 反身性; (2) 对称性若,则; (3) 传递性若,,则. 三矩阵初等变换的应用 1.\ 2.利用初等变换化矩阵为标准形 定理:任意一个m× n矩阵A,总可以经过初等变换把它化为标准形 3.利用初等变换求逆矩阵 求n阶方阵的逆矩阵:即对n×2n矩阵(A|E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1) 即(A|E)经过初等变换得到(E|A^(-1)) :

这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时, 若其中的非零行的个数等于n时,则A可逆,否则A不可逆。 设矩阵可逆,则求解矩阵方程等价于求矩阵 , 为此,可采用类似初等行变换求矩阵的逆的方法,构造矩 阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即 . 这样就给出了用初等行变换求解矩阵方程的方法. 》 同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即 . 3.利用矩阵初等变换求矩阵的秩 矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.

相关文档
最新文档