矩阵的初等变换及其应用
矩阵的初等变换及其应用

3.矩阵的初等变换的应用
3.1求矩阵的秩
求矩阵秩的方法很多,一般有定义法、初等变换法、相关公式法、综合法、但当矩阵的具体元素为已知时,一般采用初等变换法即求非零行(列)的个数。
定义3.1.1 矩阵 中非零子式的最高阶数 称为矩阵 的秩.亦即, 中存在不为0的 阶子式,而所有 阶子式(若有的话)均为0,这时矩阵 的秩记作 (或 或秩 )
定义3.5.1 设 是一个 阶方阵,如果存在一个数 及一个 维非零列向量 ,使得
即
成立,则称数 为方阵 的一个特征值,非零列向量 称为方阵 的对应于(或属于)特征值 的特征向量.
定义3.5.2 行列式 (或 )称为矩阵 的特征多项式(注:特征多项式是 的 次多项式.) 是矩阵 的特征方程,具体形式为:
总之,矩阵初等变换是线性代数中一种重要的计算手段,我们可以利用矩阵初等变换求矩阵的秩,求逆矩阵,求矩阵方程等各种计算实例。随着科学技术的不断发展,矩阵的应用已经深入到了自然,社会,工程,经济等各个领域,而且人工智能、手机通讯和一般的算法设计和阐发等,矩阵在其应用中是通讯优化。我们不能局限于书本的学习,要理论联系实际,更好的运用理论知识解决实际遇到的问题。
时,子块 就化为 ,使得 。此时,若令 ,则 化为标准形
例8 化二次型 为标准形。
解:二次型矩阵为
实施初等变换
这样,经坐标变换 ,其中
二次型化为标准形
注:二次型可以用多种方法化标准形,其标准形不唯一。
总 结
在解决代数方面的一些题目时,运用矩阵的初等变换可以使问题简单化,比如在化二次型为标准型时,除了可以用初等变换法,还可以用正交变换法和配方法来计算,相比较初等变换更为简单,易于计算,好理解。矩阵的初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处,一旦掌握了矩阵的运算,我们分析和解决方程组的能力将会大大增强。
矩阵的初等变换及其应用

在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。
在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。
作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。
本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。
关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组ABSTRACTMatrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matrix, It can abstract the matrix representation, then matrix calculated results. As the foundation and core of the matrix, the elementary transformation matrix and its application is very important, it can conversion a variety of complex matrix into a matrix form we need, then the calculation becomes more simple.This paper summarizes the application of linear algebra, elementary number theory, communications, and economic, biological heredity.Key words:Matrix; Elementary transformation; standard; inverse matrix; standard; rank; equations;1矩阵及其初等变换的概念 (1)2矩阵初等变换的应用 (1)2.1在线性代数中的应用 (2)2.1.1 将矩阵化简为阶梯型和等价标准型 (2)2.1.2矩阵的分块和分块矩阵的初等变换 (3)2.1.3求伴随矩阵和逆矩阵 (4)2.1.4求矩阵的秩,向量组的秩 (5)2.1.5求矩阵的特征值和特征向量 (6)2.1.6 解线性方程组 (7)2.1.7求解矩阵方程 (8)2.1.8化二次型为标准型 (9)2.1.9判断向量组的线性相关性,求其极大线性无关组 (11)2.2在数论中的应用 (11)2.3在通信中的应用 (13)2.4在经济方面的应用 (14)2.5在生物遗传方面的应用 (15)总结 (18)致谢 (19)参考文献 (20)矩阵的初等变换及其应用在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为对这些矩阵的转化过程,除方程组之外,还有很多方面的问题也都涉及矩阵的概念及其应用,这些问题的研究常常转化为对矩阵的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的。
矩阵的初等变换及其应用

矩阵的初等变换及其应用线性代数第一次讨论课1.导语2.讨论内容目录3.正文4.个人总结导语:矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。
它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。
矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。
本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。
讨论内容目录矩阵的初等变换及其应用1.两个矩阵的等价2.两个矩阵的乘积3.将矩阵化为行阶梯型、行最简形、标准型4.求矩阵的秩5.求可逆矩阵的逆矩阵6.求线性方程组的解7.判断向量组的线性相关性8.求向量组的秩与极大无关组9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)10.二次型化为标准形正文一、矩阵的等价1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A与B行等价;若矩阵A经过一系列初等列变换化为B矩阵,则称A与B列等价;若矩阵A经过一系列初等变换化为B矩阵,则称A与B等价(相抵)。
2.矩阵的等价变换形式主要有如下几种:1)矩阵的i行(列)与j行(列)的位置互换;2)用一个非零常数k乘矩阵的第i行(列)的每个元;3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去;即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。
3.矩阵等价具有下列性质(1)反身性任一矩阵A与自身等价;(2)对称性若A与B等价,则B与A等价;(3)传递性若A与B等价,B与C等价,则A与C等价;注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。
下面举例说明矩阵等价及等价变换:13640824100412204128--?? ?- ? ?-- ?-??13r r +→43213131414331222136413640824100824100412204122041280 412813641364082410082410000300030060000r rr r r r r rr r r r B ++-++-----???? ? ?-- ? ????→???→---- ? ?-------- ? ?→= ? ? ? ?????1231213121310341813601030013001300001000100000000r r r r r r r r r C -------???? ?-- ? ?→→= ?显然,根据矩阵等价的定义,以上变换过程中的每一个矩阵均为等价的,每个步骤都是等价转换。
矩阵初等变换及其应用毕业论文

矩阵初等变换及其应用毕业论文矩阵初等变换及其应用毕业论文摘 要:初等变换是高等代数和线性代数学习过程中非常重要的,使用非常广泛的一种工具。
本文列举了矩阵初等变换的几种应用,包括求矩阵的秩、判断矩阵是否可逆及求逆矩阵、判断线性方程组解的状况、求解线性方程组的一般解及基础解系、证向量的线性相关性及求向量的极大无关组、求向量空间两个基的过渡矩阵、化二次型为标准形。
并用具体例子说明矩阵初等变换在以上几种应用中是如何运用的。
关键词:矩阵 初等变换 初等矩阵在代数的学习过程中,我发现矩阵的初等变换有许多应用,几乎贯穿着始终。
本文将对矩阵的初等变换进行介绍并以具体例子说明矩阵初等变换的七种应用。
虽然这些计算格式有不少类似之处,但是也指出由于这些计算格式有不同的原理,所以它们的应用也有一些明显的区别。
定义1:矩阵的行(列)初等变换是指对一个矩阵施行的下列变换: (1)交换矩阵的两行(列)(交换第i ,j 两行(列),记作()ij ij r c );(2)用一个不等于零的数乘矩阵的某一行(列)即用一个不等于零的数乘矩阵的某一行(列)的每一个元素(用数k 乘以第i 行(列),记作()(())i i r k c k ;(3)用某一个数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一个元素再加到另一行(列)的对应元素上(第i 行(列)k 倍加到第j 行(列),记作()(())ij ij r k c k 。
初等行、列变换统称为初等变换。
定义2:对单位矩阵I 仅施以一次初等变换后得到的矩阵称为相应的初等矩阵,分别记为第1、2、3类行(列)初等矩阵为()ij ij R C ,()(())i i R k C k ,()(())ij ij R k C k ,有ij R =ij C =10111⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ()i R k =()i C k =1k1⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭()ij R k =()ij C k =11j 11i k⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭行行 初等变换与初等矩阵之间有下列基本性质。
线性代数课件 矩阵的初等变换

第i列
第 j列
11
(2) 以数 k 0 乘某行或某列,得初等倍乘矩阵。
以数k 0乘单位矩阵的第i行( ri k ),得初等 矩阵E ( i ( k )).
1 1 E ( i ( k )) k 1 1
标准形矩阵
特点:左上角为一个单 位矩阵,其他位置上的元素全 都为 0 .
9
二、初等矩阵
矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵. 1 0 0 r 4r 1 0 4 1 3 例如 E 0 1 0 ~ 0 1 0 0 0 1 0 0 1 三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2. 以数 k 0 乘某行或某列; 3. 以数 k 乘某行(列)加到另一行(列)上去.
3
定义3 如果矩阵 A 经有限次初等变换变成 矩阵 B, 就称矩阵 A 与 B 等价,记作A ~ B.
等价关系的性质:
(1)自反性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
4
行阶梯形矩阵:
特点: (1)可划出一 条阶梯线,线的 下方全为零; (2)每个台阶 只有一行,
对应的元素上去(第 j 行的 k 倍加到第 i 定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj 逆变换 ri rj ; 1 ri k 逆变换 ri ( ) 或 ri k; k ri krj 逆变换 ri ( k )rj 或 ri krj .
矩阵的初等变换及其应用

㊀㊀㊀㊀㊀㊀矩阵的初等变换及其应用矩阵的初等变换及其应用Һ顾江永㊀(宿迁学院文理学院,江苏㊀宿迁㊀223800)㊀㊀ʌ摘要ɔ矩阵的初等变换在代数学中具有重要的地位,本文给出了运用初等变换求解方程组的基础解系㊁特征值㊁多项式的最大公因式和Jordan标准形相似变换矩阵等方法,这些方法具有直观㊁简捷㊁有效等特点.ʌ关键词ɔ初等变换;基础解系;最大公因式;相似变换矩阵ʌ基金项目ɔ2019江苏省高校教学研究一般项目(2019SJA1997)一㊁引㊀言矩阵的初等变换包括矩阵的初等行变换和矩阵的初等列变换,矩阵的初等行(列)变换有三种形式[1]:(1)交换两行(列);(2)任一行(列)的k倍(kʂ0);(3)任一行(列)的k倍加到另一行(列).在代数学中,矩阵的初等变换有着非常重要且广泛的应用,它常被应用于行列式的计算㊁方程组以及矩阵方程的求解㊁向量线性关系的判定㊁求矩阵的秩以及逆㊁λ-矩阵的不变因子和矩阵的Jordan标准形等.张家宝给出了初等变换求逆的几种方法[2];石擎天等研究了初等变换求解方程组的特殊方法[3];于莉琦等介绍了初等变换在行列式㊁矩阵和方程组中的应用[4].本文给出了矩阵的初等变换求解方程组的基础解系㊁最大公因式和Jordan标准形的相似变换矩阵等方法及应用.二㊁预备知识引理1[5]㊀设矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,其中Pmˑm,Qnˑn为可逆矩阵,则有P-100Enæèçöø÷AEnæèçöø÷Q-1=Er000Q-1æèççöø÷÷.证明㊀因为Amˑn=PEr000æèçöø÷Q,所以Er000æèçöø÷=P-1AmˑnQ-1,故P-100Enæèçöø÷AEnæèçöø÷Q-1=P-1AEnæèçöø÷Q-1=P-1AQ-1Q-1æèçöø÷=Er000Q-1æèççöø÷÷,注:引理1给出了化一个矩阵为标准形的求Q-1的方法.引理2㊀设矩阵Amˑn的秩为r,则矩阵AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷,其中β1,β2, ,βr线性无关,且AQ=β1,β2, ,βr,0, ,0().证明㊀因为Amˑn的秩为r,所以Amˑn的列秩等于r,即矩阵Amˑn列向量组的最大线性无关组由r个向量构成,不妨设为β1,β2, ,βr,故由初等变换的性质可得AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷.引理3[6]㊀设A是数域P上的n阶方阵,将矩阵λE-A经初等变换化为上三角形矩阵f1(λ)0 0∗f2(λ)0︙︙⋱︙∗∗fn(λ)æèççççöø÷÷÷÷,则fi(λ)=0(i=1,2, ,n)在数域P上的根即为矩阵A的全部特征根.证明㊀根据初等变换的性质可知,初等变换不改变λE-A=0的根,故f1(λ)0 0∗f2(λ) 0︙︙⋱︙∗∗fn(λ)=f1(λ)f2(λ) fn(λ)=0的根即为矩阵A的全部特征根.引理4㊀设f1(x),f2(x), ,fs(x)是数域P上的多项式,且f1(x),f2(x), ,fs(x)()T经初等行变换化为d(x),0, ,0()T,则d(x)即为f1(x),f2(x), ,fs(x)的最大公因式.证明㊀由辗转相除法原理直接可得[1].三㊁主要结论定理1㊀设齐次线性方程组Amˑnx=0,其系数矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,又设Q-1=(η1, ,ηr,ηr+1, ,ηn),则ηr+1,ηr+2, ,ηn是线性方程组Amˑnx=0的基础解系.证明㊀设Qx=y1︙yr︙ynæèçççççöø÷÷÷÷÷=YrYn-ræèçöø÷,由Amˑnx=PEr000æèçöø÷Qx=PEr000æèçöø÷YrYn-ræèçöø÷=0,可得Yr=y1︙yræèççöø÷÷=0,所以x=Q-1YrYn-ræèçöø÷=Q-10︙0yr+1︙ynæèççççççöø÷÷÷÷÷÷.㊀㊀㊀㊀㊀令Q-1=(η1, ,ηr,ηr+1, ,ηn),则x=yr+1ηr+1+yr+2ηr+2+ +ynηn.因为Q是可逆矩阵,则ηr+1,ηr+2, ,ηn线性无关,所以ηr+1,ηr+2, ,ηn为方程组的一个基础解系.定理2[7]㊀设A是数域P上的n阶方阵,矩阵λEn-AEnæèçöø÷经初等变换化为φ1(λ)0⋱0φn(λ)Q(λ)æèççççöø÷÷÷÷(其中初等行变换只能在前n行进行).设Q(λ)的第j列为qj(λ),若λ-λ0()k为φj(λ)的初等因子,则Aqj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷=qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷λ0100λ00︙︙⋱100λ0æèççççöø÷÷÷÷.证明㊀由题设知,存在可逆矩阵P(λ),Q(λ),使得P(λ)λEn-A()Q(λ)=φ1(λ)0⋱0φn(λ)æèççöø÷÷.因为qj(λ)是Q(λ)的第j列,所以P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T.又设qj(λ)的幂级数展开式为qj(λ)=qj(λ0)+qᶄj(λ0)1!λ-λ0()+qᵡj(λ0)2!λ-λ0()2+ ,代入P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T,得λ0En-A()qj(λ0)=0,λ0En-A()qᶄj(λ0)+qj(λ)=0,λ0En-A()q(k-1)j(λ0)(k-1)!+qk-2()j(λ0)k-2()!=0.上面等式两边相加㊁移项并提取矩阵A可得A(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)=(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)λ0100λ0 0︙︙⋱100λ0æèççççöø÷÷÷÷.四㊁应用举例例1㊀求多项式f1(x),f2(x),f3(x)的最大公因式,其中f1(x)=x4+2x3+4x2+3x+2,f2(x)=x4+x3+3x2+x+2,f3(x)=x3+2x2+3x+2.解㊀因为f1(x)f2(x)f3(x)æèççöø÷÷=f1(x)-f2(x)f2(x)-xf3(x)f3(x)æèççöø÷÷=x3+x2+2x-x3-x+2x3+2x2+3x+2æèççöø÷÷=x3+x2+2xx2+x+2x2+x+2æèççöø÷÷=x3+x2+2xx2+x+20æèççöø÷÷=x2+x+200æèççöø÷÷,所以由引理4知,f1(x),f2(x),f3(x)的最大公因式为d(x)=x2+x+2.例2㊀求齐次线性方程组x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,5x1+4x2+3x3+3x4-x5=0{的基础解系.解㊀对系数矩阵A施行初等行变换如下A=111113211-35433-1æèççöø÷÷ r2-3r1r3-5r1111110-1-2-2-60-1-2-2-6æèççöø÷÷ r1+r2r2ˑ(-1)r3-r210-1-1-50122600000æèççöø÷÷.又10-1-1-5012261000001000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3+c1c4+c1c5+5c110000012261011501000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3-2c2c4-2c2c5-6c210000010001011501-2-2-6001000001000001æèçççççççöø÷÷÷÷÷÷÷则由引理2知,方程组的基础解系为η1=(1,-2,1,0,0)T,η2=(1,-2,0,1,0)T,η3=(5,-6,0,0,1)T.ʌ参考文献ɔ[1]王萼芳,石生明.高等代数(第五版)[M].北京:高等教育出版社,2019:5.[2]张家宝.浅谈求逆矩阵的几种方法[J].数学学习与研究,2020(10):4-5.[3]石擎天,黄坤阳.线性方程组求解及应用[J].教育教学论坛,2020(12):325-327.[4]于莉琦,高恒嵩.初等变换概述[J].数学学习与研究,2019(06):116.[5]徐仲,陆全,等.高等代数考研教案(第2版)[M].西安:西北工业大学出版社,2009.[6]卢博,田双亮,等.高等代数思想方法及应用[M].北京:科学出版社,2017.[7]朱广化.关于‘相似变换矩阵的简单求法“的改进[J].数学通报,1994(11):44-46.。
矩阵 初等变换

矩阵初等变换:从入门到实践
矩阵初等变换是线性代数重要的基础知识,也是机器学习和人工
智能领域必须掌握的技能。
本文将从基本概念到实际应用,全面深入
地介绍矩阵初等变换的相关知识。
什么是矩阵初等变换?矩阵初等变换指的是对矩阵的行、列进行
一些基本的变换操作,比如交换矩阵的某两行(列)、将某一行(列)中的元素乘以一个非零常数、将某一行(列)加上另一行(列)的k
倍等。
通过矩阵初等变换,我们可以改变矩阵的性质,比如行列式、秩,同时也可以解决某些线性方程组的求解问题。
矩阵初等变换有哪些基本形式?根据变换的形式,矩阵初等变换
可以分为三类:交换两行(列)、将某一行(列)中的元素乘以一个数、将某一行(列)加上另一行(列)的k倍。
需要注意的是,矩阵
初等变换对应的变换矩阵是方阵,也就是说,如果我们进行一次矩阵
初等变换,那么原矩阵的行列式和秩都不会改变。
矩阵初等变换的应用有哪些?矩阵初等变换在线性代数和数学计
算中有着广泛的应用。
我们可以通过矩阵初等变换解决线性方程组的
求解问题,可以判断矩阵的线性相关性,可以求取矩阵的逆矩阵,还
可以将高斯-约旦消元法的过程表示成矩阵初等变换的形式,方便进行
计算。
在机器学习中,矩阵初等变换也有着重要的应用。
比如,我们
可以通过初等变换将数据标准化为均值为零、方差为一的正态分布,
也可以进行特征值分解和奇异值分解等,从而进行降维和信息提取。
总结:矩阵初等变换是线性代数中的重要内容,在数学计算和机器学习领域都有着广泛的应用。
我们应该深入了解矩阵初等变换的各种形式和应用,从而更好地掌握线性代数和机器学习的相关知识。
矩阵初等变换的性质及其应用

摘要本文探讨矩阵初等变换的性质及其在代数中的若干应用,主要从矩阵的逆、矩阵的秩、求解线性方程组及矩阵方程、求一元多项式的最大公因式、求解指派问题等若干方面进行阐述。
关键词:矩阵的初等变换;矩阵的秩;可逆矩阵;线性方程组;最大公因式AbstractThis paper is mainly to discuss the application of the elementary transfor mation of matrix in algebra, using matrix elementary transformation to solve th e matrix inverse, matrix rank, solving linear equations and matrix equations, on e yuan polynomial greatest common divisor, solving assignment problem of the se aspects of the application.Keywords:Elementary transformation of matrix;Matrix rank;Invertible matrix;System of linear equations;Greatest common factor目录1 引言 ............................. 错误!未定义书签。
2 矩阵的初等变换及其性质 (1)2.1 矩阵初等变换的定义.......................... 错误!未定义书签。
2.2 矩阵初等变换相关性质 (2)3 矩阵初等变换的若干应用 (2)3.1 利用矩阵初等变换求矩阵的逆 (1)3.2 利用矩阵的初等变换来求矩阵的秩 (5)3.3 利用矩阵初等变换求解线性方程组及矩阵方程 (7)3.4 利用矩阵的初等变换求一元多项式最大公因式 (11)3.5 利用矩阵初等变换解决指派问题 (13)参考文献 (16)矩阵初等变换的性质及其应用矩阵及其理论在众多领域中都发挥着重要的作用,而矩阵的初等变换是矩阵理论的核心和灵魂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数第一次讨论课1.导语2.讨论内容目录3.正文4.个人总结导语:矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。
它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。
矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。
本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。
讨论内容目录矩阵的初等变换及其应用1.两个矩阵的等价2.两个矩阵的乘积3.将矩阵化为行阶梯型、行最简形、标准型4.求矩阵的秩5.求可逆矩阵的逆矩阵6.求线性方程组的解7.判断向量组的线性相关性8.求向量组的秩与极大无关组9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)10.二次型化为标准形正文一、矩阵的等价1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A与B 行等价;若矩阵A 经过一系列初等列变换化为B 矩阵,则称A 与B 列等价;若矩阵A 经过一系列初等变换化为B 矩阵,则称A 与B 等价(相抵)。
2.矩阵的等价变换形式主要有如下几种:1)矩阵的i 行(列)与j 行(列)的位置互换; 2)用一个非零常数k 乘矩阵的第i 行(列)的每个元; 3)将矩阵的第j 行(列)的所有元得k 倍加到第i 行(列)的对应元上去;即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。
3. 矩阵等价具有下列性质(1)反身性 任一矩阵A 与自身等价; (2)对称性 若A 与B 等价,则B 与A 等价;(3)传递性 若A 与B 等价,B 与C 等价,则A 与C 等价; 注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。
下面举例说明矩阵等价及等价变换:13640824100412204128--⎛⎫⎪- ⎪ ⎪-- ⎪-⎝⎭13r r +−−−→432131314143312221364136408241008241004122041220412804128136413640824100824100003000300060000r rr r r r r rr r r r B++-++-----⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪−−−→−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪−−−→= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭1231213121310341813601030013001300001000100000000r r r r r r r r r C -------⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪⎪⎝⎭⎝⎭显然,根据矩阵等价的定义,以上变换过程中的每一个矩阵均为等价的,每个步骤都是等价转换。
二.矩阵的乘法1.定义:设A=(ij a )是一个m*s 的矩阵,B=(ij b )是一个s*n 的矩阵,规定矩阵A 与矩阵B 的乘积是m*n 矩阵C=(ij c ),记为C=AB ,其中11221sij i j i j is sj ik kj i c a b a b a b a b ==+++=∑(i=1,2,…,m;j=1,2,…,n)由矩阵乘积的定义可见,不是任何两个矩阵都可以相乘。
位于左边矩阵的列数与位于右边矩阵的行数相等的两个矩阵才能相乘;其乘积是一个与左边矩阵有相同行数,与右边矩阵有相同列数的矩阵;乘积矩阵的第i 行第j 列的元等于左边矩阵第i 行的各元与右边矩阵第j 列的对应元乘积之和。
所谓对应元,及第i 行的列号与第j 列的行号相同的元。
例:求矩阵A=(31−12041−12) 与 B=(231503)的乘积。
解:AB=(31−12041−12)(231503)=(3×2+1×1+(−1)×03×3+1×5+(−1)×32×2+0×1+4×02×3+0×5+4×31×2+(−1)×1+2×01×3+(−1)×5+2×3)=(71141814)注意:1).矩阵乘法不满足交换律,即在一般情况下,AB ≠BA. 2).两个非零矩阵之积可能为零矩阵。
3).若A ≠O,AB=AC,不能推出B=C.2、矩阵乘法满足下列运算规律: (1) (AB )C=A(BC);(2) A(B+C)=AB+BC,(B+C)A=BA+CA; (3) α(AB )=(αA )B =A(αB),其中α是数; (4) E m A m∗n=A m∗n E n =A m∗n .三、将矩阵化为行阶梯型、行最简型、标准型将矩阵化为行阶梯型、行最简型、标准型就是利用矩阵的初等变换。
下面是以上三种形式的定义: 1、若满足以下两个条件:(1)若有零行(元全为0的行),则零行位于非零行(元不全为0的行)的下方;(2)每个首非零元(非零行从左边数起第一个不为零的元)前面零的个数逐行增加。
则为行阶梯型,简称阶梯型。
2、首非零元为1,且首非零元所在的列其他元都为0的行阶梯形称为行最简矩阵,简称最简形。
3、对任何m*n 矩阵A ,必可经有限次初等变换化为如下形式的矩阵rE O N OO ⎛⎫= ⎪⎝⎭我们称N 为矩阵A 的等价标准形。
此标准形是有m ,n ,r 完全确定的,其中r 就是行阶梯矩阵中非零行的个数。
是否每个矩阵都能经过初等变换化为行阶梯型或行最简型呢?下面这个定理给出了肯定的回答。
定理1:任意m*n 矩阵A 总可以经初等变换行阶梯型及行最简型矩阵。
推论:m ×n 矩阵A 经过初等变换化为的行最简型是唯一的。
例:13640824100412204128--⎛⎫⎪- ⎪ ⎪-- ⎪-⎝⎭13r r +−−−→432131314143312221364136408241008241004122041220412804128136413640824100824100003000300060000r rr r r r r rr r r r B++-++-----⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪−−−→−−−→⎪⎪---- ⎪ ⎪--⎝⎭⎝⎭----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪−−−→= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭1231213121310341813601030013001300001000100000000r r r r r r r r r C -------⎛⎫⎛⎫⎪⎪--⎪ ⎪−−−→−−−→= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭则B 为阶梯型,C 为最简型。
四、求矩阵的秩矩阵的秩是矩阵的一个重要的数值特征,是反映矩阵本质属性的一个不变的量。
它在线性方程组等问题的研究起着非常重要的作用。
下面我们介绍一下矩阵秩的求解方法。
1. 矩阵的秩的定义:如果矩阵A 中有一个不等于零的r 阶子式D ,而所有的r+1阶子式(如果存在的话)全为0,那么D 称为矩阵A 的一个最高阶非零子式。
数r 称为矩阵A 的秩,记作R(A)或r(A),并规定零矩阵的秩为0.由定义可得:(1) 若矩阵A 有一个r 阶子式不等于零,则(R )≥r ,若矩阵A 的所有r+1子式全为零,则(R )≤r. (2) 若任意m*n 矩阵A ,必有R(A)=R(A T ).(3) 矩阵A 的秩既不会超过它的行数,也不会超过它的列数。
(4) 若矩阵B 是矩阵A 的子矩阵,则R(B)≤R(A). 2. 求矩阵的秩的方法(1)子式判别法(定义):例为阶梯型矩阵,求R(B).解:由于,存在一个二阶子式不为零,而所有三阶子式全为零,所以R(B)=2.结论:阶梯型矩阵的秩=台阶数 . (2)用初等变换发求矩阵的秩 定理:初等变换不改变矩阵的秩推论 设A 是任一m*n 矩阵,P 、Q 分别是m 阶、n 阶可逆(满秩)矩阵,则必有R(PA)=R(AQ)=R(PAQ). 例:求R(A)。
解:所以R(A)=2.⎪⎪⎪⎭⎫ ⎝⎛=00007204321B 0221≠⎪⎪⎪⎭⎫⎝⎛--→00021104201⎪⎪⎪⎭⎫⎝⎛-----=211163124201A −−→−-122rr A ⎪⎪⎪⎭⎫ ⎝⎛----211021104201求矩阵A的秩方法:1)利用初等行变换化矩阵A为阶梯形矩阵B2)数阶梯形矩阵B非零行的行数即为矩阵A的秩。
五、求可逆矩阵的逆矩阵逆矩阵是矩阵中单独的一个分支,但是其求解等各种方法与矩阵基本方法规律相同。
下面是矩阵的逆矩阵的定义:设A为n方阵,若存在你阶方阵B,使AB=BA=E则称A为可逆矩阵或A是可逆的,并且称B为A的逆矩阵。
可逆矩阵具有唯一性,即A若可逆,其可逆矩阵是唯一的。
矩阵的逆矩阵的求法有三种:(1)特殊的矩阵。
1)矩阵为对角阵或者分块都为对角阵,可用特殊的方法求解。
若矩阵为对角阵,逆矩阵就是每一个元素分别求倒数放到原来位置。
若矩阵分块都为对角阵,可将每个小块分别求逆矩阵,然后将逆矩阵放到原来的位置即可。
2)矩阵为两阶的矩阵,可运用公式求解(公式根据逆矩阵的定义推出)若ad-bc ≠0,则矩阵a b A c d ⎛⎫=⎪⎝⎭可逆,且逆矩阵为11d b A c a ad bc --⎛⎫=⎪--⎝⎭(2) 运用矩阵的初等变换求矩阵的逆矩阵。
其原理如下:若A 为n 阶可逆矩阵,其逆也是n 阶可逆矩阵,故A 可表示为初等矩阵的乘积,即存在初等矩阵12,,,m P P P ,使得112m A PP P -=。
由逆矩阵定义,有11()()A A E E A --=即112()()m PP P A E E A -=即有()()A E E A −−−−→初等行变换若摆放方式不同也可以将A ,E 竖放在经过初等列变换可得逆 矩阵与单位矩阵。
与第一个问题相关的是,变换前后两个矩阵等价。
(3)根据公式**A A AA A E==,可知A 的逆矩阵为1*1A A A-=. 这个公式在使用时十分复杂,但是若用于理论及电脑计算就有较大优势. 例:信息加密问题将26个英文字母按顺序逐一与数字对应后,“send money ”编码为19,5,14,13,15,14,5,25,如果直接发出编码,很容易被人破译,显然这是不可取的,如何进行加密呢,可将式子表示为一个三阶方阵,乘以一个三阶方阵后密码的破译难度就大多了,问题是如何解密呢?根据式子AB=C ,知B=A (-1) C.可知破译方式,即将得到的信息乘以逆矩阵就可以了。
1232132111110102213A A -⎛⎫⎪= ⎪⎪⎝⎭-⎛⎫ ⎪=- ⎪⎪-⎝⎭则明文SEND MONEY 对应的9个数值按3列被排成以下矩阵:194145135141525B ⎛⎫ ⎪= ⎪ ⎪⎝⎭矩阵乘积:232194148177931325135627379111141525383244AB ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭对应密文编码为:81,77,93,62,73,79,38,32,44。