风力发电功率和叶尖速比
第五章 变速恒频风力发电机组的控制

三、基本控制逻辑 (1)事先根据叶片特性计算出最优的叶尖速比λopt和最优功率系
数CPmax,将它们作为固定值设置在控制器中,于是由测量到的
发电机转速即可得知获得最大功率下的理想发电机电磁转矩。 (2)时刻计算∂Pem/∂ω,以爬山法来追求最优工作点,使∂Pem/∂ω= 0,从而获得最大功率输出。
风力发电机组监测与控制
第五章 变速恒频风力发电机组的控制
第五章 变速恒频风力发电机组的控制 第一节 变速恒频风力发电机组的控制目标
第二节 变速恒频风力发电机组的控制策略
第三节 常用的控制方法和手段
第一节 变速恒频风力发电机组的控制目标 叶轮所受的空气动力学载荷主要分为两大部分:确定性载荷与
随机性载荷。随机性载荷是由风湍流引起的,而确定性载荷则
统的扭转振动存在很大的阻尼,一般不会引起什么问题。但对 于变速恒频风力发电机组,特别是处于恒转矩控制状态下,叶 轮、齿轮箱和发电机的阻尼都很小,因而叶片的平面内振动模 态和电磁转矩脉动可能激发传动系统产生剧烈的扭转振动。
七、塔架前后振动的抑制
图5-7
带通滤波器的频率特性
八、独立变桨技术
图5-8 增加传动链阻尼后的转矩控制器
(4)机组在额定风速以上运行时,为保持稳定的功率输出而进行 的变速变桨耦合控制。
第二节 变速恒频风力发电机组的控制策略 一、变速风力机的转矩-转速特性
二、功率系数CP、叶尖速比λ和桨距角β的特定关系
三、基本控制逻辑 四、滤波器 五、转矩和变桨控制 六、传动系统的扭转振动抑制 七、塔架前后振动的抑制 八、独立变桨技术
图5-12 变速与变桨分步控制带来的功率损失
四、在过渡区域进行变桨调节以增强可控性 实际的运行中,由于叶轮动态特性的影响,如果在额定点C附
_风力发电实验指导

风力发电实验风能是一种清洁的可再生能源,蕴量巨大。
全球的风能约为2.7×10 8万千瓦,其中可利用的风能为2×10 6万千瓦,比地球上可开发利用的水能总量要大10倍。
随着全球经济的发展,对能源的需求日益增加,对环境的保护更加重视,风力发电越来越受到世界各国的青睐。
大力发展风电等新能源是我国的重大战略决策,也是我国经济社会可持续发展的客观要求。
发展风电不但具有巨大的经济效益,而且与自然环境和谐共生,不对环境产生有害影响。
近几年,随着我国的风电设备制造技术取得突破,风力发电取得飞速发展。
据2011年4月《国家电网公司促进风电发展白皮书》。
截至2010年底,全国风电并网容量2956万千瓦,“十一五”期间年均增速接近100%。
2010年,全国风电机组平均利用小时数2097小时。
蒙东、蒙西、吉林、黑龙江风电发电量占全社会用电量的比例分别达到21.1%、8.7%、5.6%、4.6%,风电利用已达到较高水平。
预计到2015年,我国风电规模将超过9000万千瓦,2020年将达到1.5亿千瓦以上。
与其它能源相比,风力,风向随时都在变动中。
为适应这种变动,最大限度地利用风能,近年来在风叶翼型设计,风力发电机的选型研制,风力发电机组的控制方式,并网发电的安全性等方面,都进行了大量的研究,取得重大进展,为风力发电的飞速发展奠定了基础。
风电的飞速发展提供大量的就业与个人发展机会,普及风电知识,在高等院校培养相关专门人才已成当务之急。
实验内容实验1 风速,螺旋桨转速(也是发电机转速),发电机感应电动势之间关系测量 实验2 测量扭曲型可变浆距3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系 实验3 切入风速到额定风速区间功率调节实验实验4 额定风速到切出风速区间功率调节实验 - 变浆距调节 实验5 风帆型3叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量 实验6 平板型4叶螺旋桨风轮叶尖速比λ与功率系数C P 关系的测量实验原理1、风能与风速测量风是风力发电的源动力,风况资料是风力发电场设计的第一要素。
风力机的基本参数与理论.

风力发电机风轮系统2.1.1 风力机空气动力学的基本概念1、风力机空气动力学的几何定义(1)翼型的几何参数翼型翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。
下面是翼型的几何参数图1)前缘、后缘翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。
2)弦线、弦长连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。
弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。
3)最大弯度、最大弯度位置中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。
4)最大厚度、最大厚度位置上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。
5)前缘半径翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。
6)后缘角翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。
7)中弧线翼型内切圆圆心的连线。
对称翼型的中弧线与翼弦重合。
8)上翼面凸出的翼型表面。
9)下翼面平缓的翼型表面。
(2)风轮的几何参数1)风力发电机的扫风面积风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。
下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。
根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。
按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速6m/s设计的风力机风轮会很大,虽在6m/s时运行很好,但遇大风易超速损坏电机,为抗强风时需增加结构强度使成本大大增加。
风力发电机原理

• 风力发电机组最主要的参数是风轮直径(对于垂直轴风力发电机来说是风轮扫掠面积)和额定功率,成为 产品型号的组成部分:风轮直径(或风轮扫掠面积)说明风力发电机组能够在多大的范围内获取风中蕴含 的能量,是风力发电机能力的基本标志。。
(2)额定功率
• 额定功率是与风力发电机组配套的发电机铭牌功率,其定义式“正常工作条件下,风力发电机组在额定风 速下设计要达到的最大连续输出功率”。风轮直径应当根据不同的风况与额定功率匹配,以获得最大的年 发电量和最低的发电成本,配置较大直径风轮供低风速区选用,配置较小直径的风轮供高风速区选用.
(叶片数一到三)都属于此类。 • 叶尖速比对风电机的建造结构和形状有很大的影响,比如:
• 叶片转速:如果叶片长度一定,那么叶尖速比越大,叶片的转速也就越快。只有一个叶片的风电机,其叶 尖速比很高,旋转速度也要比三叶片的风电机快的多。需要注意的是,风力泵的叶尖速比虽然属于慢速比 机械,但旋转速度一般都很快。原因是其转动直径很小,最终圆周速度相对低很多,所以属于慢速比机械。
• 定桨距风轮因失速有个过程,超过额定风速后功率略有上升,然后又下降。如果风速继续增加,为了保护 风力发电机组的安全,规定了允许风力发电机组正常运行的最大风速,称为切出风速(停机风速)。机组 运行时遇到这样的大风必须停机与电网脱开,输出功率立刻降为0,功率曲线到此终止。
叶片锥角
攻角、浆距角和迎角
叶尖速比
• 叶尖速比是用来表述风电机特性的一个十分重要的参数。它等于叶片顶端的速度(圆周速度)除以风接触 叶片之前很远距离上的速度;叶片越长,或者叶片转速越快,同风速下的叶尖速比就越大。
• 根据叶尖速比的不同,我们可以把风电机分成两类:慢速比风电机和快速比风电机:
风力发电系统的控制原理

风力发电系统的控制原理风力涡轮机特性:1,风能利用系数Cp风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:P---风力涡轮实际获得的轴功率r---空气密度S---风轮的扫风面积V---上游风速根据贝兹〔Betz〕理论可以推得风力涡轮机的理论最大效率为:。
2,叶尖速比l为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。
n---风轮的转速w---风轮叫角频率R---风轮半径V---上游风速在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。
从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。
如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。
涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。
图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。
在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。
每条曲线都有一个上升段和下降段,其中下降段是稳定工作段〔假设风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。
〕它是工作区段。
在工作区段中,倾角越大,l和Cp越小。
3,变速发电的控制变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确〔机组惯量大〕。
三段控制要求:低风速段N<Nn,按输出功率最大功率要求进行变速控制。
联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f〔n〕关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。
图3是风速变化时的调速过程示意图。
设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。
【精品】风电知识问答

【精品】风电知识问答一、关于风电 1、风能来源于何处?答:风能是由太阳辐射热引起的,是太阳能的一种转换形式。
太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。
据估计,到达地球的太阳能中大约有 2%转化为风能,全球风能约为 2. 74 109MW,其中可利用的风能为 2 107MW,比地球上可开发利用的水能总量大 1 0 倍。
2、我国的风能总量有多少?答:我国 10 米高度层的风能资源总储量为 32. 26 亿千瓦,其中实际可开发利用的风能资源储量为 2. 53 亿千瓦。
据估计,我国近海风能资源约为陆地的 3 倍。
因此,我国可开发风能资源总量约为 10 亿千瓦。
3、风机功率如何计算?答:一般来讲,风机叶片从风中吸收的功率可以用下面的公式表示:功率= 1/2 空气密度面积风速 3 风能利用系数面积=R2 其中,功率单位为瓦特;空气密度单位为千克/立方米,空气密度随气压和温度而变;面积指风轮扫掠面积,单位为平方米;风速单位为米/秒;风能利用系数为风力机将风能转换为机械能的效率,它与风速、叶片转速、叶片直径和桨叶节距角均有关系,是1/ 12叶尖速比和叶节距角的函数。
于上述公式中可以看出,风功率与速度的三次方(立方)成正比,并与风叶扫掠面积成正比。
4、什么是海风、陆风?答:白天,大陆上的气流受热膨胀上升至高空流向海洋,到海洋上空冷却下沉,在近地层海洋上的气流吹向大陆,补偿大陆的上升气流,低层风从海洋吹向大陆,称为海风;夜间,情况相反,低层风从大陆吹向海洋,称为陆风。
5、为什么说风能是一种绿色能源?答:风能是一种干净的自然能源,没有常规能源与核电会造成环境污染的问题。
风电机组平均每发电 1 亿千瓦时,按同比等量计算,相当于节约标准煤 3. 8 万吨,节水 31 万吨,减排二氧化碳 10. 5 万吨、二氧化硫 600 吨。
而且风机不会危害鸟类和其它野生动物。
在常规能源告急和全球生态环境恶化的双重压力下,风能作为一种高效清洁的新能源有着巨大的发展潜力。
风机的叶尖速比

风机的叶尖速比周日, 2008-03-02 03:16 — xieyaqian叶尖速比是用来表述风电机特性的一个十分重要的参数。
它等于叶片顶端的速度(圆周速度)除以风接触叶片之前很远距离上的速度;叶片越长,或者叶片转速越快,同风速下的叶尖速比就越大。
.根据叶尖速比的不同,我们可以把风电机分成两类:慢速比风电机和快速比风电机:慢速比:慢速比风电机的速度比最大为2.5 。
所有以阻力原理作用的风电机的叶尖速比都小于1,属于慢速比风电机。
以浮力原理作用的风电机,如果其叶尖速比在1到2.5之间,也被称为慢速比风电机。
Westernmills 和某些风力泵的叶尖速比大概是1,而Bock风车以及荷兰风车的叶尖速比大概是2。
快速比:快速比风电机是指按照浮力原理作用的风电机,并且其叶尖速比在2.5到15之间。
几乎所有的现代风电机(叶片数一到三)都属于此类。
叶尖速比对风电机的建造结构和形状有很大的影响,比如:叶片转速:如果叶片长度一定,那么叶尖速比越大,叶片的转速也就越快。
只有一个叶片的风电机,其叶尖速比很高,旋转速度也要比三叶片的风电机快的多。
需要注意的是,风力泵的叶尖速比虽然属于慢速比机械,但旋转速度一般都很快。
原因是其转动直径很小,最终圆周速度相对低很多,所以属于慢速比机械。
叶片数:Westernmills的叶尖速比比较低(大约为1),所以需要更多的叶片来遮挡风,一般有20到30个叶片;荷兰风车的速度比大约为2,一般有4个叶片。
现代三叶片风电机的叶尖速比大约为6,而一个叶片的风电机,其叶尖速比大概为12。
叶片切面:快速比风机的叶片一般都设计的细长而薄,其原因就是叶片切割风的时候,与风的相对速度十分高。
(站长注:这段我看不懂,只是照原文翻译。
)风机的转化效率系数:快速比风机由于产生的涡流损失要比慢速比风机低很多,所以其作用系数要明显比慢速比的风机高。
一般慢速比风机的转化效率系数cP在0.3到0.35之间,而快速比的风机能够达到0.45到0.55。
基于叶尖速比控制的风力发电的最大风能捕获分析

4总结 .
一
图1 风能利用系数 c 与 叶尖速 比 关 系曲线 p 风能利用 系数 c 是表征风 力机效率 的重要参数 , p 是一个与 风速 , 叶片转速 , 叶片直径均有关 系的量 。定义风力 机的另一个重要 参数叶 尖速 比入 即是叶片的叶尖线速度 与风速之 比。 ,
:
。
在 变速 风力 发 电系统 中 , 最大 风能追 踪 是其 主要 的控制 目标 之 本 文对 当前 比较常 见的几种 最大风 能追踪 的方法进 行详 细的 阐
E:l
pCm ( s p
() 5
由() 5式可 得到风轮机 的输出功率 P m与转速 W的特性 , 在不同 的 风速 下 , 风力 机 的输 出功率 P m与风轮 角速度 W呈非 线性关 系 , 图 2 如
所示气体质量 , =v, 一 体 的速度 ( 一 m ps、 气 风速 ) s 一空气 r ,P d 密度 ,C ’ —气流流过的截 面积 , k m, s m
图2风力机输出功率 P W 、的关系曲线 与 r v 理论分析 可以知道 , 风力机 的输 出功率 是风速的立方函数关系 , 随 着风速增加 , 出功率是无 限大的。但是实 际的变速风力发 电机组受 输 到两个基本 的限制 : ① 功率 限制 , 所有 的电路及 电力电子器件都受 功率限制 ; ②转速 限制 , 所有 的旋转部件的机械强度受转速的限制。 作 为变速风力发 电机组 , 一个重要 的 目标是追求 最大限度地将 风 能转变为 电能 , 以提高机组 的运行 效率 。风力 发电机组可分 为三个不 同的区域运行 : c 恒定 区 p 通过对发 电机 的转速进行控 制 c 不断上升 , p 直到 C = p a, pC m x 进人 c 恒 定区 , p 这时机组在最佳状态 下运行 。这段 区域主要是调 节发电机 组力 矩, 使转速 随着风速而变化 , = 实现最大风能捕获。 使k h ,