实验二:时域采样与频域采样

合集下载

实验2 信号的时域采样与频域采样(讲稿)

实验2 信号的时域采样与频域采样(讲稿)

实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。

连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。

(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。

(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。

实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。

用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。

选取三种采样频率,即1kHz,300Hz 200Hz s F =,。

观测时间选64p T ms =。

采样点数用公式p s N T F =⨯计算。

设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。

(2)计算时域采样点数。

(3)生成时域抽样信号。

(4)用fft 函数计算频谱。

(5)计算频域采样点上的频率,绘制频谱图。

程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。

时域采样与频域采样 实验报告

时域采样与频域采样  实验报告

实验二 时域采样与频域采样学校:西南大学 班级:通信工程班一、实验目的时域采样理论与频域采样理论就是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

频域采样定理的要点就是:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k N X k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。

如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。

()N x n 与x(n)不相同。

三、实验程序(1)时域采样理论的验证。

Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444、128;alph=pi*50*2^0、5;omega=pi*50*2^0、5;xnt=A*exp(-alph*n*T)、*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn);box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1、2*max(abs(Xk))])(Fs=300Hz与Fs=200Hz的程序与上面Fs=1000Hz完全相同。

数字信号处理学习指导与课后答案第8章

数字信号处理学习指导与课后答案第8章

xˆa (t) xa (t) δ(t nT ) n
第8章 上机实验
对上式进行傅里叶变换, 得到
Xˆ a ( j )

[xa (t)

δ(t nT )]e j tdt
n



xa
(t
)δ(t

nT
)e

j
t
dt
n
在上式的积分号内只有当t=nT时, 才有非零值, 因此
第8章 上机实验
2. 实验原理与方法
1)
时域采样定理的要点是:
(1) 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成 的采样信号的频谱 Xˆ ( j ) 会以采样角频率Ωs(Ωs=2π/T)为 周期进行周期延拓。 公式为
Xˆ a ( j ) FT[xˆa (t)]
ห้องสมุดไป่ตู้

1 T

X a ( j
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
第8章 上机实验
8.1.2

数字信号处理实验答案

数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

时域采样定理和频域采样定理

时域采样定理和频域采样定理

时域采样定理和频域采样定理
时域采样定理和频域采样定理是信号处理中的重要理论。

时域采样定理规定,要想保持信号的完整性,采样频率必须大于信号最高频率的两倍以上。

频域采样定理规定,要想保持信号的完整性,采样间隔必须小于信号最低频率的一半以下。

这两个定理可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。

时域采样定理和频域采样定理是信号处理中的重要理论,在信号采样过程中起着至关重要的作用。

它们可以帮助我们确定信号采样的最佳参数,以保证采样结果的准确性。

正确的采样参数可以有效地提高采样效率,提高信号处理效果,为研究者带来更多的有效信息。

数字信号处理上机实验答案(第三版,第十章)[自己整理完善的]

数字信号处理上机实验答案(第三版,第十章)[自己整理完善的]

第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一 系统响应及系统稳定性。

实验二 时域采样与频域采样。

实验三 用FFT 对信号作频谱分析。

实验四 IIR 数字滤波器设计及软件实现。

实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。

也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

数字信号处理第三版用MATLAB上机实验

数字信号处理第三版用MATLAB上机实验

实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。

时域及频域采样定理

时域及频域采样定理

时域及频域采样定理
时域采样定理(Nyquist定理)表示:在连续时间信号的采样
过程中,为了准确地重构原始信号,采样的频率必须大于等于原始信号最高频率的两倍。

频域采样定理表示:在连续频谱信号的采样过程中,为了准确地还原原始频谱,采样的时间间隔必须小于等于原始信号的最小周期。

时域采样定理保证了信号在采样和重构过程中不存在混叠现象,即采样频率大于等于原始信号最高频率的两倍,可以完整地还原原始信号。

频域采样定理保证了在频谱分析中,通过对信号进行采样得到的频谱能准确地表示原始频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二:时域采样与频域采样
1. 实验目的
时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

2. 实验原理与方法
➢ 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的
频谱)(ˆΩj X 是原模拟信号频谱()a
X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:
)](ˆ[)(ˆt x FT j X a a
=Ω )(1∑∞
-∞
=Ω-Ω=n s a jn j X T ➢ 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信
号的频谱不产生频谱混叠。

3. 实验内容及步骤
%物联一班 胡洪 201313060110 %2015年10月24日
%实验二:程序1
Tp=64/1000;
Fs=1000;T=1/Fs;M=ceil(Tp*Fs);n=0:M-1;
A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5;
xnt=A*exp(-a*n*T).*sin(w*n*T);
Xk=fft(xnt,M);
subplot(3,2,1);
stem(n,xnt,'.');axis([1,65,-5,150]);
title('图1 Fs=1000Hz');
subplot(3,2,2);plot(n/Tp,abs(Xk));title('图2 Fs=1000Hz幅度'); Fs=300;T=1/Fs;
M=ceil(Tp*Fs);n=0:M-1;
A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5;
xnt=A*exp(-a*n*T).*sin(w*n*T);
Xk=fft(xnt,M);
subplot(3,2,3);
stem(n,xnt,'.');axis([0,M,-10,150])
title('图3 Fs=300Hz');
subplot(3,2,4);plot(n/Tp,abs(Xk));title('图4 Fs=300Hz幅度'); Fs=200;T=1/Fs;
M=ceil(Tp*Fs);n=0:M-1;
A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5;
xnt=A*exp(-a*n*T).*sin(w*n*T);
Xk=fft(xnt,M);
subplot(3,2,5);
stem(n,xnt,'.');axis([0,M,-10,150])
title('图5 Fs=200Hz');
subplot(3,2,6);plot(n/Tp,abs(Xk));title('图6 Fs=200Hz幅度');
图1
%物联一班胡洪201313060110
%2015年10月24日
%实验二:程序2
n=0:13;xa=n+1;
n=14:26;xb=27-n;
xn=[xa,xb];n=0:26;
subplot(3,2,2);stem(n,xn,'.');
title('三角波序列x(n)');axis([0,32,0,15])
Xk=fft(xn,1024);
k=0:1023;wk=2*k/1024;
subplot(3,2,1);plot(wk,abs(Xk));ylabel('|X(e^(j*w))|');xlabel('w/
pi')
axis([0,1,0,200]);
Xk32=fft(xn,32);
subplot(3,2,3);k=0:31;
stem(k,abs(Xk32),'.');axis([0,16,0,200]);xlabel('k');ylabel('|Xk3
2|')
xn32=ifft(Xk32);
subplot(3,2,4);k=0:31;
stem(k,xn32,'.');axis([0,32,0,15]);
Xk16=Xk32(1:2:32);
subplot(3,2,5);k=0:15;
stem(k,abs(Xk16),'.');axis([0,8,0,200]);xlabel('k');ylabel('|Xk16 ') xn16=ifft(Xk16);
subplot(3,2,6);k=0:15;
stem(k,xn16,'.');axis([0,32,0,15]);
10
20
30
三角波序列x(n)
0.51
100200
|X (e (j *w ))
|
w/pi
k
|X k 32|
k
|X k 16|
10
20
30
图2
4. 思考题:
1. 如果序列x (n )的长度为M ,希望得到其平铺X(e^(jw))在[0,2pi]上的N 点等间隔采样,当N<M,如何用一次最小的点数DFT 得到该频谱采样?
答:先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,再计算N 点DFT 则得到N 点频域采样。

相关文档
最新文档