江苏省梅村高级中学2020-2021学年高三上学期数学期初检测卷(无答案)

合集下载

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学(word版含答案)

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学(word版含答案)

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为A .第一象限B .第二象限C .第三象限D .第四象限3.421(2)x x -的展开式中x 的系数为 A .﹣32 B .32 C .﹣8 D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为A .0.2B .0.3C .0.4D .0.65.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB AB AC x y =+,则A .y =2xB .y =﹣2xC .x =2yD .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Q log 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为A .1800B .2700C .7290D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1的距离为2C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 18.设a >0,b >0,且2a +b =1,则12a a a b ++ A .有最小值为4 B .有最小值为221+C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面 B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()R y f t == sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有A .()y f x =的图象不经过第三象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点12.数列{}n a 为等比数列A .{}1n n a a ++为等比数列B .{}1n n a a +为等比数列C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+= .14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为 .15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k = .16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC。

江苏省梅村高级中学2020年秋高二数学上学期10月阶段检测卷(修正版)

江苏省梅村高级中学2020年秋高二数学上学期10月阶段检测卷(修正版)

(
)
A. 16
B. 8
C. 4
D. 2
6. 已知数列 an
满足 a1 = 0,a2 = 1,an =
2 + an-2,n 为奇数 n ≥ 3 2 × an-1,n 为偶数
,则数列 an
的前 10 项和为
(
)
A. 48
B. 49
C. 50
D. 61
7. 数列 an
的通项公式
an
=
n
cos
nπ 2

中,a2
=
3 2
,a5
=
9 8
,且
1 an - 1
是等差数列,则 a7 =
A.
10 9
B.
11 10
C.
12 11
D.
13 12
4. 等差数列 an
中,公差
d
不等于零,若
a2,a4,a5
成等比数列
,则
a4+a7 a3 + a5
=
A.
1 4
B.
11 8
C. 1
D.
1

1 2
(
)
(
)
(
)
5. 已知等差数列 an 的前 n 项和为 Sn ,且 S13 = 52 ,数列 bn 为等比数列 ,且 b7 = a7 ,则 b 1 ∙ b13 =
具体如下:等比数列 an 的前 n 项和为 Sn;已知 _________ .
(1)判断 S4,S3,S5 的关系;
a6 = 13, 则 a7 + a8 =
.
14. 已知 a > 0,b > 0,若 a + 4b + ab = 5,则 ab 的最大值为

2020-2021无锡市梅村中学高三数学上期中模拟试卷含答案

2020-2021无锡市梅村中学高三数学上期中模拟试卷含答案

2020-2021无锡市梅村中学高三数学上期中模拟试卷含答案一、选择题1.若不等式组22yx yx yx y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a的取值范围是()A.4,3⎡⎫+∞⎪⎢⎣⎭B.(]0,1C.41,3⎡⎤⎢⎥⎣⎦D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭U2.若正数,x y满足20x y xy+-=,则32x y+的最大值为()A.13B.38C.37D.13.已知,x y满足404x yx yx-≥⎧⎪+-≥⎨⎪≤⎩,则3x y-的最小值为()A.4B.8C.12D.164.等差数列{}n a满足120182019201820190,0,0a a a a a>+>⋅<,则使前n项和0nS>成立的最大正整数n是()A.2018B.2019C.4036D.40375.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A.3323B.5323C.323D.83236.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .147.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km8.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,43a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒10.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13711.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++12.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .40二、填空题13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 14.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.15.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________16.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 17.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 18.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.19.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .20.在△ABC 中,2BC =,AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,已知24sin 4sin sin 22A BA B -+=(1)求角C 的大小;(2)已知4b =,ABC ∆的面积为6,求边长c 的值. 22.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 23.已知n S 是数列{}n a 的前n 项之和,*111,2,n n a S na n N +==∈. (1)求数列{}n a 的通项公式; (2)设211(1)n n n n a b a a ++=-⋅⋅,数列{}n b 的前n 项和n T ,若112019n T +<,求正整数n 的最小值.24.在ABC V 中,角A ,B ,C 的对边分别是a ,b ,c()cos 2cos C b A =(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC V 面积的最大值.25.已知数列{}n a 满足:1=1a ,()*11,2,n n n a n a n N a n ++⎧=∈⎨⎩为奇数为偶数设21n n b a -=. (1)证明:数列{}2n b +为等比数列; (2)求数列3+2n n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫ ⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U 故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.2.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,212(2)54(2)5922x x x x -++≥-⋅+=--Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.3.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.5.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45HB =︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.7.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =+=+⨯=km ,所以cos 2404BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,222222cos 90290BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯g 10800=,所以BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有. 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.8.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案. 【详解】由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=, 所以sin 2sin 20B A -=,得22B A =或22180B A +=o , 所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.9.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒.【详解】解:60A =︒Q ,a=4b =由正弦定理得:sin 1sin2b A B a === a b >Q 60B ∴<︒ 30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.10.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.11.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 12.B 解析:B【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.二、填空题13.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为解析:4 【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.14.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <, 再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.15.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.16.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛解析:14【解析】 【分析】结合已知条件,结合余弦定理求得π4C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221cos 2a b C ab +-=②,由①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 2a b C ab +-==,化简221a b =+-22121a b ab =+-≥-,化简得22ab +≤所以三角形面积1121sin 22224S ab C =≤⨯=.故答案为14. 【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.17.【解析】【分析】设等比数列的公比为由数列为等比数列得出求出的值即可得出的值【详解】设等比数列的公比为由于数列为等比数列整理得即化简得解得因此故答案为:【点睛】本题考查等比数列基本量的计算同时也考查了 解析:12【解析】 【分析】设等比数列{}n a 的公比为q ,由数列{}12n S a -为等比数列,得出()()()2211131222S a S a S a -=--,求出q 的值,即可得出32aa 的值.【详解】设等比数列{}n a 的公比为q ,由于数列{}12n S a -为等比数列,()()()2211131222S a S a S a ∴-=--,整理得()()2211321a a a a a a -=-⋅+-,即()()2211q q q -=-+-,化简得220q q -=, 0q ≠Q ,解得12q =,因此,3212a q a ==. 故答案为:12. 【点睛】本题考查等比数列基本量的计算,同时也考查了等比中项的应用,考查运算求解能力,属于中等题.18.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴=()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.19.【解析】试题分析:因为不等式有解所以因为且所以当且仅当即时等号是成立的所以所以即解得或考点:不等式的有解问题和基本不等式的求最值【方法点晴】本题主要考查了基本不等式在最值中的应用不等式的有解问题在应 解析:()(),14,-∞-⋃+∞【解析】试题分析:因为不等式234y x m m +<-有解,所以2min ()34yx m m +<-,因为0,0x y >>,且141x y+=,所以144()()224444y y x y x x x y y x +=++=++≥=,当且仅当44x y y x =,即2,8x y ==时,等号是成立的,所以min ()44yx +=,所以234m m ->,即(1)(4)0m m +->,解得1m <-或4m >.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.20.;【解析】试题分析:由余弦定理得即得考点:余弦定理三角形面积公式解析:;2【解析】试题分析:由余弦定理得22202cos60AC AB BC AB BC =+-⋅,即2174222AB AB =+-⋅⋅,得2230AB AB --=,31()AB ∴=-或舍,011sin 60322222S AB BC =⋅=⨯⨯⨯=考点:余弦定理,三角形面积公式.三、解答题21.(1)4π;(2. 【解析】 【分析】(1)由二倍角的余弦公式把24sin4sin sin 22A BA B -+=+的余弦公式求cos()A B +,由三角形三内角和定理可求得cos C ,从而求得角C ; (2)根据三角形的面积公式求出边a ,再由余弦定理求E 边. 【详解】 试题分析:(1)由已知得2[1cos()]4sin sin 2A B A B --+=+化简得2cos cos 2sin sin A B A B -+=,故cos()A B +=34A B π+=,因为A B C π++=,所以4C π=.(2)因为1sin 2S ab C ⊥=,由6ABC S =V ,4b =,4C π=,所以a =, 由余弦定理得2222cos c a b ab C =+-,所以c =. 【点睛】本题主要考查了两角和差公式的应用及利用余弦定理解三角形,属于基础题. 22.(Ⅰ)12n n a -=(Ⅱ)112221n n ++--【解析】试题分析:(1)设等比数列{}n a 的公比为q ,,根据已知由等比数列的性质可得32311(1)9,8a q a q +==,联立解方程再由数列{}n a 为递增数列可得11{2a q ==则通项公式可得(2)根据等比数列的求和公式,有122112nn n s -==--所以1112(21)(21)nn n n n n n a b s s +++==--,裂项求和即可试题解析:(1)设等比数列{}n a 的公比为q ,所以有323141231(1)9,8a a a q a a a q +=+===联立两式可得11{2a q ==或者18{12a q ==又因为数列{}n a 为递增数列,所以q>1,所以11{2a q == 数列{}n a 的通项公式为12n n a -=(2)根据等比数列的求和公式,有122112nn n s -==--所以1111211(21)(21)2121n n n n n n n n n a b s s ++++===----- 所以1111111111221 (133721212121)n n n n n n T ++++-=-+-++-=-=---- 考点:等比数列的通项公式和性质,数列求和23.(1)n a n =;(2)2019. 【解析】 【分析】(1)由已知递推关系式和1n n n a S S -=-可推出11n na a n n +=+,则{}n a n为常数列,继而可算出n a ;(2)先把n b 表示出来,用裂项相消法求n T ,然后代入不等式可求出n . 【详解】(1)因为12n n S na +=……①, 所以12(1)n n S n a -=-……②,②-①得:12(1),2n n n a na n a n +=--≥,所以11n n a a n n +=+,则n a n ⎧⎫⎨⎬⎩⎭为常数列, 又22122,12n a a a S n ==∴==, (2)n a n n ∴=≥,当1n =时也满足,所以n a n =. (2)2112111(1)(1)(1)(1)1nn n n n n n a n b a a n n n n +++⎛⎫=-=-=-+ ⎪++⎝⎭, 当n 为偶数时,111111112233411n n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋯++=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 当n 为奇数时,1111111212233411n n T n n n +⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋯-+=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, 综上,1,111,1n n n T n n ⎧⎪⎪++=⎨⎪-⎪+⎩为偶数为奇数,则1111201912019n T n n +=<⇒+>+, 2018,n n ∴>的最小值为2019.【点睛】此题考查数列临差法求数列通项公式、并项求和法,考查方程思想和分类讨论思想,考查逻辑思维能力和运算求解能力,求和时注意对n 分奇偶讨论. 24.(Ⅰ)6π;(Ⅱ)2+. 【解析】分析:(12sin cos B B A =. (2)由余弦定理2222cos a b c bc A =+-结合基本不等式进行求解.cos 2sin cos cos A C B A C A =()2sin cos A C B A +=2sin cos B B A = 又B 为三角形内角,所以sin 0B ≠,于是cos 2A = 又A 为三角形内角,所以6A π=.(Ⅱ)由余弦定理:2222cos a b c bc A =+-得:224222b c bc bc =+-≥,所以(42bc ≤+,所以1sin 22S bc A ==. 点睛:本题主要考查了正弦定理、余弦定理、三角形面积公式和基本不等式的应用,属于中档题.25.(1)见解析(2)1242n n n S -+=- 【解析】 【分析】(1)根据数列{}n a 的递推公式及21n n b a -=,可表示出1n b +与n b 的等量关系,再将等式变形即可证明数列{}2n b +为等比数列;(2)由(1)可求得数列{}n b 的通项公式,代入后可得3+2n n b ⎧⎫⎨⎬⎩⎭的通项公式,结合错位相减法即可求得前n 项和n S . 【详解】(1)()121221212212222n n n n n n b a a a a b ++--===+=+=+, 所以()1222n n b b ++=+,即1222n n b b ++=+, 又因为112230b a +=+=≠,所以数列{}2n b +是以3为首项以2为公比的等比数列.(2)由(1)得,1232n n b -+=⋅,11332322n n n n n nb --==+⋅, 所以02111222n n n n n S ---=+++L 0222222n n n S -=+++L 则1021122222n n n n n n S S S --⎛⎫=-=-+++ ⎪⎝⎭L 11111221212n n n --⎛⎫⋅- ⎪⎝⎭=-+- 1242n n -+=-. 【点睛】 本题考查了由递推公式证明数列为等比数列,错位相减法的求和应用,属于中档题. 26.(1)61n a n =-;(2)9n ≥且*n N ∈;(3)5(65)n nT n =+.【解析】 【分析】(1)首先根据题意列出方程217111721161a a d S a d =+=⎧⎨=+=⎩,解方程组再求n a 即可.(2)首先计算n S ,再解不等式6512n n S a n >--即可. (3)首先得到11166(1)65n b n n =--+,再利用裂项法即可得到前n 项和n T 的值. 【详解】(1)由题意得217111721161a a d S a d =+=⎧⎨=+=⎩,解得156a d =⎧⎨=⎩所以61n a n =-. (2)由(1)得2(1)56322n n n S n n n -=+⨯=+, 因为6512n n S a n >--,即2329180n n -+≥. 解得23n ≤或9n ≥, 因为1n ≥且*n ∈N ,所以n 的取值范围为9n ≥且*n ∈N . (3)因为11111611()()6(615)566n n n b a a n n n n +===--+-+,所以1111111[()()()]651111176165n T n n =-+-+⋯+--+ 1116565(5)65)(n n n -==++ 【点睛】本题第一问考查等差数列通项公式的求法,第二问考查等差数列前n 项和n S 的求法,第三问考查裂项法求和,属于中档题.。

【首发】江苏省2020-2021学年度第一学期新高考质量检测模拟试题高三数学试题(PDF版)

【首发】江苏省2020-2021学年度第一学期新高考质量检测模拟试题高三数学试题(PDF版)

15.若一个圆柱的轴截面是面积为 4的正方形,则该圆柱的外接球的表面积为________.
16.已知数列{an}的前 n项和为 Sn,且满足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若
不等式λSn>an恒成立,则实数λ的取值范围是________.
四、解答题(本大题共 6小题,共 70分)
(1)求 A的大小; (2)若 a= 2,B=π3,求△ABC的面积.
19.(12分)如图,在五边形 ABSCD中,四边形 ABCD为长方形,△SBC为边长为 2的正三角 形,将△SBC沿 BC折起,使得点 S在平面 ABCD上的射影恰好在 AD上.
(1)当 AB= 2时,证明:平面 SAB⊥平面 SCD; (2)若 AB=1,求平面 SCD与平面 SBC所成二面角的余弦值的绝对值.
{ 13.f(x)= 1 2x+1,x≤0, -x-12,x>0,
则使 f(a)=-1成立的 a的值是________.
14.已知 xn=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n(n∈N*)对任意 x∈R恒成立,则 a0=
________;若 a4+a5=0,则 n=________.(本题第一空 2分,第二空 3分)
[ ] A.g(x)在 0,π2上的最小值为 0 [ ] B.g(x)在 0,π2上的最小值为-1 [ ] C.g(x)在 0,π2上的最大值为 0 [ ] D.g(x)在 0,π2上的最大值为 1
10.如图所示的函数图象,对应的函数解析式不可能是( )
A.y=2x-
列对“等方差数列”的判断正确的是( )
A.若{an}是等差数列,则{a2 n}是等方差数列 B.{(-1)n}是等方差数列

江苏省无锡市梅村高级中学2020—2021学年高一下学期数学期中试卷(解析版)

江苏省无锡市梅村高级中学2020—2021学年高一下学期数学期中试卷(解析版)

江苏省梅村高级中学2020-2021学年度第二学期期中试卷高一数学命题:校对:审核:注意事项考生在答题前请认真阅读本注意事项及各题答题要求 1、本试卷共4页,包含选择题(第1题~第12题,共12题)、非选择题(第13题~第22题,共10题)两部分。

本卷满分150分,答题时间为120分钟。

2、试题答案需作答在答题卡,答在试卷上无效。

3、作答选择题时必须用28铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其它答案;作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其它位置作答一律无效。

4、如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1.在平行四边形ABCD 中,=( )A .B .C .D .【答案】A【解答】解:∵ABCD 是平行四边形,∴=.故选:A .2.在△ABC 中,若b =2,B =30°,则的值为( )A .34B .32C .4D .2 【答案】A【解答】解:由正弦定理得:,∴a =2R sin A ,c =2R sin C ,∴==2R ===43. 已知向量)4,3(),2,(-==b x a ,若//,则=x ( ) A .38B .38-C .23 D .23-【答案】D【解答】∵b a //,∴230324-=⇒=⨯--x x4.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和一带一路”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为()A.2800 B.3000 C.3200 D.3400【答案】D【解答】解:根据扇形统计图知,高三所占的扇形圆心角为360°﹣144°﹣80°=136°,且高一年级共交稿2000份,则高三年级的交稿数为2000÷=3400(份).故选:D.5.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及共运算具有了几何意义,例如,|z|=|OZ|,也即复数z的模的几何意义为z对应的点Z到原点的距离.在复平面内,复数z0=(i是虚数单位,a∈R)是纯虚数,其对应的点为Z0,Z为曲线|z|=1上的动点,则Z0与Z之间的最小距离为()A.B.1 C.D.2【答案】B【解答】解:z0===,∵z0为纯虚数,∴,即a=﹣2.∴z0=2i,则Z0(0,2),Z为曲线|z|=1上的动点,其轨迹为以原点为圆心,以1为半径的圆,则Z0与Z之间的最小距离为2﹣1=1.故选:B.6.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x1,x2,x3,…,x100,它们的平均数为,方差为s2;其中扫码支付使用的人数分别为2x1+3,2x2+3,2x3+3,…,2x100+3,它们的平均数为,方差为s′2,则,s′2分别为()A.2+3,2s2+3 B.2,2s2C.2+3,4s2+3 D.2+3,4s2【答案】D【解答】解:共享单车使用的人数分别为x1,x2,x3,…,x100,它们的平均数为,方差为s2,扫码支付使用的人数分别为2x1+3,2x2+3,2x3+3,…,2x100+3,它们的平均数为,方差为s′2,则=,s′2=4s2.7.有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在△ABC中角A,B,C所对的边长分别为a,b,c,已知角B=45°,a=,,求角A.若已知正确答案为A=60°,且必须使用所有已知条件才能解得,请你选出一个符合要求的已知条件是()A.C=75°B.C.b cos A=a cos B D.【答案】D【解答】解:由于正确答案为A=60°,故B=75°=45°+30°,根据正弦定理=,解得.故一个符合要求的已知条件可以是.而选项中没有该选项,但由,即,得c=.也就是给出,使用所有已知条件能解出正确答案为A=60°.故选:D.8.骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A(前轮),圆D(后轮)的半径均为,△ABE,△BEC,△ECD均是边长为4的等边三角形.设点P为后轮上的一点,则在骑动该自行车的过程中,的最大值为()A.18 B.24 C.36 D.48【答案】C【解答】解:据题意:圆D(后轮)的半径均为,△ABE,△BEC,△ECD均是边长为4的等边三角形.点P为后轮上的一点,如图建立平面直角坐标系:则A(﹣8,0),B(﹣6,),C(﹣2,).圆D的方程为x2+y2=3,可设P(),所以,.故===12sin()+24≤12+24=36.二、多项选择题:(本题共4小题,每小题5分,共20分在每小题给出的四个选项中有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分.)9.已知复数z(1+2i)=5i,则下列结论正确的是()A.B.复数z在复平面内对应的点在第二象限C.=﹣2+iD.z2=3+4i【答案】AD【解答】解:因为z(1+2i)=5i,所以z====2+i,其对应的点(2,1)在第一象限,B错误,又|z|=,A正确,所以=2﹣i,C错误,z2=(2+i)2=3+4i,D正确.故选:AD.10.下列结论正确的是()A.在△ABC中,若A>B,则sin A>sin BB.在锐角三角形ABC中,不等式b2+c2﹣a2>0恒成立C.在△ABC中,若,a2﹣c2=bc,则△ABC为等腰直角三角形D.在△ABC中,若b=3,A=60°,三角形面积,则三角形外接圆半径为【答案】ABC【解答】解:对于选项A:在△ABC中,若A>B,根据大边对大角,所以a>b,利用正弦定理,所以2R sin A>2R sin B,则sin A>sin B,故选项A正确.对于选项B:,故不等式b2+c2﹣a2>0恒成立,故选项B正确.对于选项C:在△ABC中,a2﹣c2=bc,可得,所以b2+c2+2bc=2a2,由于a2﹣c2=bc,所以b2+c2+2(a2﹣c2)=2a2,所以b=c,所以B=C=,所以A=,故正确.对于选项D:在△ABC中,若b=3,A=60°,三角形面积所以,解得c=4,所以=,由正弦定理,故选项D错误.故选:ABC.11.某赛季甲乙两名篮球运动员各6场比赛得分情况如表:场次 1 2 3 4 5 6甲得分31 16 24 34 18 9乙得分 23 21 32 11 35 10则下列说法正确的是( )A .甲运动员得分的极差小于乙运动员得分的极差B .甲运动员得分的中位数小于乙运动员得分的中位数C .甲运动员得分的平均值大于乙运动员得分的平均值D .甲运动员的成绩比乙运动员的成绩稳定 【答案】BD【解答】解:在A 中,甲运动员得分的极差为:34﹣9=25,乙运动员得分的极差为:35﹣10=25, ∴甲运动员得分的极差等于乙运动员得分的极差,故A 错误; 在B 中,甲运动员得分的中位数为:=21,乙运动员得分的中位数为:=22,∴甲运动员得分的中位数小于乙运动员得分的中位数,故B 正确; 在C 中,甲运动员得分的平均数为:(31+16+24+34+18+9)=22, 乙运动员得分的平均数为:(23+21+32+11+35+10)=22, ∴甲运动员得分的平均值等于乙运动员得分的平均值,故C 错误; 在D 中,由统计表得乙的数据相对分散,甲的数据相对集中,∴甲运动员的成绩比乙运动员的成绩稳定,故D 正确.故选:BD . 12.下列命题正确的是( ) A .已知和是两个互相垂直的单位向量,且垂直,则实数k =6B .非零向量和不共线,若21212163,2,e e CD e e BC e e AB -=+=-=,则A 、B 、D 三点共线C .若平行四边形ABCD 满足,,则该四边形一定是正方形D .点O 在△ABC 所在的平面内,若,则点O 为△ABC的垂心【答案】AB【解答】对于A :已知和是两个互相垂直的单位向量,,即,且垂直,故2k =12,解得k =6,故A 正确;对于B :,非零向量和不共线,BD AB CD e e BC AB =⇒=-=-563521,所以A 、B 、D 三点共线,故B 正确; 对于C :⇒=⇒四边形ABCD 为平行四边形,⇒⊥,对角线互相垂直的平行四边形为菱形,故C 错误;对于D:分别为的单位向量,任意两个向量的单位向量的差为三角形的第三边的向量,所以、垂直于构成菱形的对角线,所以点O在角平分线上,故点O为内心,故D错误;三、填空题:(本题共4小题,每小题5分,共20分.)13.设复数,其中i为虚数单位,则1+ω+ω2+ω3=.【答案】1【解答】解:因为,所以ω2=﹣,ω3=(﹣)()=1,则1+ω+ω2+ω3=1﹣+1=1.14.平面向量两两夹角都相等,且,则=.【答案】1或5.【解答】解:因为由题意三个平面向量两两夹角相等,可得任意两向量的夹角是120°或0°,因为,当夹角为120°时;则2=+4+4•+2•+4•=12+4×12+22+4×1×1×cos120°+2×1×2×cos120°+4×1×2×cos120°=1,∴=1;当夹角为0°时,=||+2||+||=5;故答案为:1或5.15.古希腊数学家海伦著作《测地术》中记载了著名的海伦公式,利用三角形的三边长求三角形的面积.若三角形的三边分别为a、b、c,则其面积s=,这里p=,已知在△ABC中,=.3【答案】5【解答】设AC=x,则AB=3AC=3x,所以s ==2,(2<x <4). S ≤2•=12,当且仅当x 2﹣4=16﹣x 2,即x =时等号成立,所以s 得最大值为12. 此时AC =,AB =3,BC =8,由余弦定理得:cos A =,16.△ABC 内接于以O 为圆心,1为半径的圆,且3+4+5=,则=∆ABC S .【答案】 【解答】解:∵3+4+5=,∴3+4=﹣5;∴(3+4)2=(﹣5)2;由||=||=||=1,∴9+16+24•=25,∴•=0,∴⊥;∴△AOB 的面积为S △AOB =×1×1=.四、解答题:(本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.)17.在①)//()(b t a b a t ++;②)()(b t a b a t +⊥+;③||||b t a b a t +=+这三个条件中任选一个,补充在下面问题中,并解答问题. 已知向量)1,0(),1,1(=--=b a (1)若,求实数t 的值;(2)若),(y x c =向量,且b x a y c )1(-+-=,求||c .【解答】选①(1)∵)1,0(),1,1(=--=b a 代入)//()(b t a b a t ++,11)1,1//()1,(2±=⇒=⇒----⇒t t t t t(2)⎩⎨⎧=-=⇒⎩⎨⎧--=-=⇔---=⇔-+-=111)1,1(),()1(y x y x y y x y x y y x b x a y c ,所以2||=c 选①(1)∵)1,0(),1,1(=--=b a 代入)()(b t a b a t +⊥+,253013)1,1//()1,(2±=⇒=+-⇒----⇒t t t t t t(2)⎩⎨⎧=-=⇒⎩⎨⎧--=-=⇔---=⇔-+-=111)1,1(),()1(y x y x y y x y x y y x b x a y c ,所以2||=c选③(1)∵)1,0(),1,1(=--=b a 代入||||b t a b a t +=+,11)1()1()1()(22222±=⇒=⇒-+-=-+-⇒t t t t t(2)⎩⎨⎧=-=⇒⎩⎨⎧--=-=⇔---=⇔-+-=111)1,1(),()1(y x y x y y x y x y y x b x a y c ,所以2||=c18.已知复数z 1=﹣2+i ,z 1z 2=﹣5+5i (其中i 为虚数单位) (1)求复数z 2;(2)若复数z 3=(3﹣z 2)[(m 2﹣2m ﹣3)+(m ﹣1)i ]所对应的点在第四象限,求实数m 的取值范围. 【解答】解:(1)∵复数z 1=﹣2+i ,z 1z 2=﹣5+5i , ∴=;(2)z 3=(3﹣z 2)[(m 2﹣2m ﹣3)+(m ﹣1)i ] =i [(m 2﹣2m ﹣3)+(m ﹣1)i ] =﹣(m ﹣1)+(m 2﹣2m ﹣3)i , ∵复数z 3所对应的点在第四象限, ∴,解得﹣1<m <1.∴实数m 的取值范围是﹣1<m <1.19.已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2+=,(1)用,表示;(2)若点D 是OB 的中点,用向量方法证明四边形OCAD 是梯形.【解答】解:(1)由题意:直线AB 上有一点C , ∵2+=,∴,所以A 为BC 的中点;由:…①,…②,∵带入①可得:…③由②③消去可得:. (2)点D 是OB 的中点,则=. 由:…④ …⑤,由①④⑤可得:,所以AD ∥OC ,故得四边形OCAD 是梯形.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量=(cos B ,2cos 2﹣1),=(c ,b ﹣2a ),且0=⋅n m . (Ⅰ)求∠C 的大小;(Ⅱ)若点D 为边AB 上一点,且满足=,||=,c =2,求△ABC 的面积.【解答】解:(Ⅰ)∵向量=(cos B ,2cos 2﹣1),=(c ,b ﹣2a ),且•=0, ∴c •cos B +(b ﹣2a )cos C =0,由正弦定理可得,sin C cos B +(sin B ﹣2sin A )cos C =0,∴sin A ﹣2sin A cos C =0, ∵sin A ≠0,∴cos C =, ∵C ∈(0,π),∴C =, (Ⅱ)=,||=,c =2,∴=﹣,∴2=+,两边平方得4||2=b 2+a 2+2ac cos C =b 2+a 2+ac =28,(1),∵c 2=b 2+a 2﹣2ac cos C =b 2+a 2﹣ac =12,(2), 由(1),(2)可得ab =8,∴S △ABC =ab sin C =2.21.已知灯塔B 与海洋观测站A 的距离为2km ,灯塔C 在观测站A 的北偏东45°方向,灯塔D 在观测站A 的正西方向,灯塔B 在灯塔D 的南偏东60°方向.在观测站A 与灯塔B ,C 构成的三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足a 2=3b 2+3c 2﹣2bc sin A .(1)求灯塔B 与灯塔C 的距离;(2)求△BCD的面积.【解答】解:(1)在△ABC中,利用余弦定理a2=b2+c2﹣2bc cos A,由于且满足a2=3b2+3c2﹣2bc sin A.所以,化简为,由于b2+c2≥2bc,所以,即,当sin(A﹣)=1时,A=,且b=c=2.所以BC=2,故灯塔B和灯塔C之间的距离为2km.(2)由题意知:,,AB=2,所以利用正弦定理:,解得AD=2.S△BCD=S△ABC+S△ABD+S△ACD==2.所以△BCD的面积为km2.22.中国独有的文书工具,即笔、墨、纸、砚,有文房四宝之名,起源于南北朝时期.其中宣纸是文房四宝的一种,宣纸“始于唐代,产于泾县”,因唐代泾县隶属宣州管辖,故因地得名宣纸.宣纸按质量等级分为:正牌(优等品)、副牌(合格品)、废品三等.某公司生产的宣纸为纯手工制作,年产宣纸10000刀(1刀=100张),该公司按照某种质量指标x给宣纸确定等级如表所示:x的范围(44,48]∪(52,56] (48,52] [0,44]∪(56,60]质量等级副牌正牌废品在该公司所生产的宣纸中随机生产了一刀进行检验,得到频率分布直方图如图所示,已知每张正牌宣纸的利润为15元,副牌宣纸利润为8元,废品的利润为﹣20元.(Ⅰ)试估计该公司的年利润;(Ⅱ)市场上有一种售价为100万元的机器可以改进宣纸的生产工艺,但这种机器的使用寿命为一年,只能提高宣纸的质量,不能增加宣纸的年产量;据调查这种机器生产的宣纸的质量指标x如表所示:x的范围(﹣2,+2)(﹣6,+6)频率0.6827 0.9545其中为质量指标x的平均值,但是由于人们对传统手工工艺的认可,改进后的正牌和副牌宣纸的利润都将下降3元/张,请该公司是否购买这种机器,请你为公司提出合理建议,并说明理由.(同一组的数据用该组区间的中点值作代表)【解答】解:(Ⅰ)由频率分布直方图得:一刀宣纸有正牌100×0.1×4=40张,有副牌100×0.05×4×2=40张,有废品100×0.025×4×2=20张,∴该公司一刀宣纸的利润的估计值为:40×15+40×8﹣20×20=520元,∴估计该公司的年利润为520万元.(Ⅱ)由频率分布直方图得:=42×0.025×4+46×0.025×4+50×0.1×4+50×0.1×4+58×0.025×4=50.这种机器生产的宣纸的质量指标x如下表所示:x的范围(x﹣2,x+2)(x﹣6,x+6)频率0.6827 0.9545 ∴一刀宣纸中有正牌的张数估计为100×0.6827=68.27,废品的张数估计为:100×(1﹣0.9545)=4.55,副牌的张数为:100×(0.9545﹣0.6827)=27.18,∴一刀宣纸的利润为:68.27×12+27.18×5﹣4.55×20=864.14元,∴公司改进后该公司的利润为:864.14﹣100=764.14万元,∵764.14万元>520万元,∴建议该公司购买这种机器.。

江苏省苏州市2020-2021学年第一学期高三期初调研试卷数学附解析

江苏省苏州市2020-2021学年第一学期高三期初调研试卷数学附解析

C.两条异面直线 D1C 和 BC1 所成的角为
4
3 D.三棱柱 AA1D1—BB1C1 外接球半径为 2
答案:C 解析:连接 CB1,交 BC1 于点 O,在正方体中易得 CB1⊥平面 ABC1D1,则∠CBC1 即为直线
BC 与平面 ABC1D1 所成的角,等于 ,故 A 正确;
4
2 CO 即为点 C 到面 ABC1D1 的距离,等于 2 ,故 B 正确;
如图,已知椭圆
x2 a2
y2 b2
1(a>b>0)的长轴两个端点分别为 A,B,P( x0 , y0 )( y0 >0)
是椭圆上的动点,以 AB 为一边在 x 轴下方作矩形 ABCD,使 AD=kb(k>0),PD 交 AB 于 E, PC 交 AB 于 F.
5
(1)若 k=1,△PCD 的最大面积为 12,离心率为 ,求椭圆方程;


四、解答题(本大题共 6 小题,共计 70 分.请在答题卡指定区域内作答.解答时应写出文
字说明、证明过程或演算步骤)
17.(本小题满分 10 分)
在△ABC 中,角 A,B,C 的对边分别为 a,b,c,△ABC 的面积为 S.现在以下三个 条件:①(2c+b)cosA+acosB=0;②sin2B+sin2C﹣sin2A+sinBsinC=0;③a2﹣b2﹣c2=
整数)②现随机抽取了该省 800 名高一学生的此次生物学科的原始分,若这些学生的原始分
相互独立,记 为被抽到的原始分不低于 71 分的学生人数,求 P( =k)取得最大值时 k 的
值.
附:若 ~N(0,1),则 P( ≤0.8)≈0.788,P( ≤1.04)≈0.85.
4
21.(本小题满分 12 分)

江苏省2020届高三上学期考试数学试卷及答案.doc

江苏省2020届高三上学期考试数学试卷及答案.doc

高三数学11月考.1数学Ⅰ试题一、填空题(每小题5分,计70分)1.已知集合2{1,1,2,3},{|,3},A B x x R x =-=∈<则AB =.2.设幂函数αkx x f =)(的图像经过点),(24,则=+αk .3.已知复数2i 12++=i z (i 为虚数单位),则复数z 的共轭复数为. 4. 若双曲线1422=+-my m x 的虚轴长为2,则实数m 的值为________. 5. 已知,x y R ∈,则“1a =”是直线10ax y +-=与直线10x ay ++=平行的条件(从“充分不必要"、“必要不充分”、“充分必耍”、“既不充分也不必要“中选择恰当的一个填空).6. 已知实数y x ,满足条件⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则25+++x y x 的取值范围是__________.7..若5cos 26sin 0,,42ππαααπ⎛⎫⎛⎫++=∈ ⎪ ⎪⎝⎭⎝⎭,则sin2α= . 8.设函数()2x xf x e e x -=--,则不等式0)3()12(2≤++x f x f 的解集为.9.已知直线l 与曲线()sin f x x =切于点(,sin )(0)2A πααα<<,且直线l 与函数()y f x =的图象交于点(,sin )B ββ.若αβπ-=,则tan α的值为. 10.如图,在圆O :224x y +=上取一点(1)A ,E F ,为y 轴上的两点,且AE AF =,延长AE ,AF 分别与圆交于点M N ,,则直线MN 的斜率为.11.若直线04:=-+a y ax l 上存在相距为2的两个动点B A ,,圆1:22=+y x O 上存在点C ,使得ABC ∆为等腰直角三角形(C 为直角顶点),则实数a 的取值范围为.(第10题)12.在四边形ABCD 中,AB =6,AD =2,DC →=13AB →,AC 与BD 相交于点O ,E 是BD 的中点,AO →·AE →=8,则AC →·BD →=________.13.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.14.给出函数4)(,)(22-+-=+-=x mx x h bx x x g ,这里R x m b ∈,,,若不等式)(01)(R x b x g ∈≤++恒成立,4)(+x h 为奇函数,且函数⎩⎨⎧>≤=t x x h tx x g x f ),(),()(恰有两个零点,则实数t 的取值范围为________________.二、解答题(共6道题,计90分) 15、(本小题满分14分)如图,已知A 、B 、C 、D 四点共面,且CD =1,BC =2,AB =4,︒=∠120ABC ,772cos =∠BDC . (1)求DBC ∠sin ;(2)求AD.16.(本小题满分14分)已知圆)40(04222222≤<=-+-++a a a ay ax y x 的圆心为C ,直线m x y l +=:.(1)若4=m ,求直线l 被圆C 所截得弦长的最大值;(2)若直线l 是圆心下方的切线,当a 在(]0,4的变化时,求m 的取值范围.17. (本小题满分14分)江苏省第十九届运动会在扬州举行,为此,扬州某礼品公司推出一系列纪念品,其中一个工艺品需要设计成如图所示的一个结构(该图为轴对称图形),其中ABC ∆的支撑杆CD AB ,由长为3的材料弯折而成,AB 边的长为t 2,⎥⎦⎤⎢⎣⎡∈23,1t (BC AC ,另外用彩色线连结,此处不计);支撑杆曲线AOB拟从以下两种曲线中选择一种:曲线1C 是一段余弦曲线(在如图所示的平面直角坐标系中,其表达式为x y cos 1-=),此时记结构的最低点O 到点C 的距离为)(1t h ;曲线2C 是一段抛物线,其焦点到准线的距离为98,此时记结构的最低点O 到点C 的距离为)(2t h .(1)求函数)(1t h ,)(2t h 的表达式;(2)要使得点O 到点C 的距离最大,应选用哪一种曲线?此时最大值是多少?18. (本小题满分16分)已知椭圆22221(0)x y a b a b+=>>的左顶点为A ,右焦点为F ,右准线为l ,l 与x 轴相交于点T ,且F 是AT 的中点.(1)求椭圆的离心率;(2)过点T 的直线与椭圆相交于,M N 两点,,M N 都在x 轴上方,并且M 在,N T 之间,且2NF MF =.①记,NFM NFA ∆∆的面积分别为12,S S ,求12S S ; ②若原点O 到直线TMN,求椭圆方程.19. (本小题满分16分)若函数)(x f y =对定义域内的每一个值1x ,在其定义域内都存在唯一的2x ,使1)()(21=x f x f 成立,则称该函数为“依赖函数”.(1)判断函数x x g sin )(=是否为“依赖函数”,并说明理由;(2)若函数12)(-=x x f 在定义域[m, n](m>0)上为“依赖函数”,求mn 的取值范围:(3)己知函数)34()()(2≥-=a a x x h 在定义域]4,34[上为“依赖函数”,若存在实数]4,34[∈x ,使得对任意的R t ∈,不等式4)()(2+-+-≥x t s t x h 都成立,求实数s 的最大值.20.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R .(1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上 的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.数学Ⅱ(附加题)1、已知二阶矩阵A 有特征值4=-λ,其对应的一个特征向量为14-⎡⎤=⎢⎥⎣⎦e ,并且矩阵A 对应的变换将点(1,2)变换成点(8,4),求矩阵A .2、在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin )ρθθ=设点P 是曲线22:19y C x +=上的动点,求P 到直线l 距离的最大值.3、现有一款智能学习APP ,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP 积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.4、数列满足且.(1)用数学归纳法证明:;(2)已知不等式对成立,证明:(其中无理数).高三数学月考.1 试题Ⅰ一、填空题(每小题5分,计70分) 1.{1,1}- 2.233.i -1 4.3=m 5.充分必耍6.[2,3]7.1-8.⎥⎦⎤⎢⎣⎡21-1-,9.2π10.解析:.由题意,取(0,2)M,3kAM=,因为AE AF=,所以3kAN=-,过原点所以1)N-,所以kMN=11.⎥⎦⎤⎢⎣⎡3333-,12. -323解析:由DC→=13AB→得DC∥AB,且DC=2,则△AOB∽△COD,所以AO→=34AC→=34⎝⎛⎭⎪⎫AD→+13AB→=34AD→+14AB→.因为E是BD的中点,所以AE→=12AD→+12AB→,所以AO→·AE→=⎝⎛⎭⎪⎫34AD→+14AB→·⎝⎛⎭⎪⎫12AD→+12AB→=38|AD→|2+18 |AB→|2+12AD→·AB→=32+92+12AD→·AB→=8,所以AD→·AB→=4,所以AC→·BD→=⎝⎛⎭⎪⎫AD→+13AB→·(AD→-AB→)=|AD→|2-13|AB→|2-23AD→·AB→=4-13×36-23×4=-323.13.解析:()()2222211122x ty t yx yx y xy y++-+++=≥++()01t<<12=,即15t=时()2212x yx y+++5=14.[-2,0)∪[4,+∞)二、解答题(共6道题,计90分)15、16. 解析:(1)已知圆的标准方程是(x +a )2+(y -a )2=4a (0<a ≤4),则圆心C 的坐标是(-a ,a ),半径为. 直线l 的方程化为:x -y +4=0.则圆心C 到直线l |2-a |.设直线l 被圆C 所截得弦长为L ,由圆、圆心距和圆的半径之间关系是:L ===.∵0<a ≤4,∴当a =3时,L 的最大值为(2)因为直线l 与圆C =,即|m -2a |=又点C 在直线l 的上方,∴a >-a +m ,即2a >m .∴2a -m =m =)21-1.∵0<a ≤4,∴0.∴m ∈1,8⎡--⎣17. 解析: (1)对于曲线C 1,因为曲线AOB 的表达式为y =1-cos x , 所以点B 的坐标为(t ,1-cos t), 所以点O 到AB 的距离为1-cos t. 因为DC =3-2t ,所以h 1(t)=(3-2t)+(1-cos t)=-2t -cos t +4⎝⎛⎭⎪⎫1≤t≤32; 对于曲线C 2,设C 2:x 2=2py ,由题意得p =98,故抛物线的方程为x 2=94y ,即y =49x 2,所以点B 的坐标为⎝ ⎛⎭⎪⎫t ,49t 2, 所以点O 到AB 的距离为49t 2.因为DC =3-2t ,所以h 2(t)=49t 2-2t +3⎝⎛⎭⎪⎫1≤t≤32. (2)因为h′1(t)=-2+sin t<0,所以h 1(t)在⎣⎢⎡⎦⎥⎤1,32上单调递减, 所以当t =1时,h 1(t)取得最大值2-cos 1.因为h 2(t)=49⎝ ⎛⎭⎪⎫t -942+34,1≤t≤32,所以当t =1时,h 2(t)取得最大值为139.因为2-cos 1≈1.46>139,所以选用曲线C 1,且当t =1时,点O 到点C 的距离最大,最大值为2-cos 1.18.(1)因为F 是AT 的中点,所以22a a c c-+=,即(2)()0a c a c -+=,又a 、0c >,所以2a c =,所以12c e a ==; (2)①过,M N 作直线l 的垂线,垂足分别为11,M N ,则11NF MFe NN MM ==,又2N F M F =,故112NN MM =,故M 是NT 的中点,∴12MNF TNF S S ∆∆=,又F 是AT 中点,∴ANF TNF S S ∆∆=,∴1212S S =; ②解法一:设(,0)F c ,则椭圆方程为2222143x y c c+=,由①知M 是,N T 的中点,不妨设00(,)M x y ,则00(24,2)N x c y -,又,M N 都在椭圆上,即有⎧⎪⎨⎪⎩220022220022143(24)4143x y c cx c y c c +=-+=即⎧⎪⎨⎪⎩220022220022143(2)1434x y c c x c y c c +=-+=,两式相减得220022(2)3444x x c c c --=,解得074x c =,可得0y =,故直线MN的斜率为8744k c c ==-, 直线MN的方程为4)y x c =-60y +-= 原点O 到直线TMN的距离为d ==,41=,解得c=2212015x y+=.解法二:设(,0)F c,则椭圆方程为2222143x yc c+=,由①知M是,N T的中点,故1224x x c-=,直线MN的斜率显然存在,不妨设为k,故其方程为(4)y k x c=-,与椭圆联立,并消去y得:22222(4)143x k x cc c-+=,整理得222222(43)3264120k x ck x k c c+-+-=,(*)设11(,)M x y,22(,)N x y,依题意⎧⎪⎨⎪⎩21222221223243641243ckx xkk c cx xk+=+-=+由⎧⎨⎩212212324324ckx xkx x c+=+-=解得⎧⎨⎩2122221644316443ck cxkck cxk+=+-=+所以222222221641646412434343ck c ck c k c ck k k+--⨯=+++,解之得2536k=,即6k=-.直线MN的方程为4)y x c=-60y+-=原点O到直线TMN的距离为d==,41=,解得c=2212015x y+=.19.解:(1) 对于函数()sing x x=的定义域R内存在16xπ=,则2()2g x=2x无解故()sing x x=不是“依赖函数”;…3分(2) 因为1()2xf x-=在[m,n]递增,故f(m)f(n)=1,即11221,2m n m n--=+=……5分由n>m>0,故20n m m=->>,得0<m<1,从而(2)mn m m =-在()0,1m ∈上单调递增,故()0,1mn ∈,……7分 (3)①若443a ≤<,故()()2f x x a =-在4,43⎡⎤⎢⎥⎣⎦上最小值0,此时不存在2x,舍去;9分 ②若4a ≥故()()2f x x a =-在4,43⎡⎤⎢⎥⎣⎦上单调递减,从而()4413f f ⎛⎫⋅= ⎪⎝⎭,解得1a = (舍)或133a =……11分 从而,存在4,43x ⎡⎤∈⎢⎥⎣⎦,使得对任意的t∈R,有不等式()221343x t s t x ⎛⎫-≥-+-+ ⎪⎝⎭都成立,即2226133039t xt x s x ⎛⎫++-++≥ ⎪⎝⎭恒成立,由22261334039x x s x ⎡⎤⎛⎫∆=--++≤ ⎪⎢⎥⎝⎭⎣⎦,……13分得2532926433s x x ⎛⎫+≤ ⎪+⎝⎭,由4,43x ⎡⎤∈⎢⎥⎣⎦,可得265324339s x x ⎛⎫+≤+ ⎪⎝⎭, 又53239y x x =+在4,43x ⎡⎤∈⎢⎥⎣⎦单调递减,故当43x =时,max 532145393x x ⎛⎫+= ⎪⎝⎭,……15分 从而,解得,综上,故实数s 的最大值为4112.……16分 20.(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =.………………………………………………………2分列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-.………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立,即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立.…………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立,所以002x x =,又00x >,所以0x =分法二:变形得0022x x x x ++≥在()0+∞,上恒成立,因为2x x+≥x =,所以002x x +,从而(200x ≤,所以0x =分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .22x a x a x x x x ax x x a x x ax x x a x x ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩,………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,,记1()2ln p t t t t =+-,则222(1)21()10t p t t t t -'=--=-<,所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=.从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点.……………………………………………………………………………16分附加题1、【解析】设所求二阶矩阵a b c d ⎡⎤=⎢⎥⎣⎦A . 因为A 有特征值4λ=-,其对应的一个特征向量为14-⎡⎤=⎢⎥⎣⎦e ,所以4=-Ae e ,且1824⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,所以444162824a b c d a b c d -+=⎧⎪-+=-⎪⎨+=⎪⎪+=⎩,解得4282a b c d =⎧⎪=⎪⎨=⎪⎪=-⎩.所以4282⎡⎤=⎢⎥-⎣⎦A . 2、【解析】易得直线0l y +-=, 设点(cos ,3sin )P αα, ∴P 到直线l的距离|3sin |22d αα--==≤=当且仅当ππ2π62k α+=-,即22ππ()3k k α=-∈Z 时取“=”, 所以P 到直线l距离的最大值为3、【解析】(1)由题意,获得的积分不低于9分的情形有:因为两类学习互不影响,所以概率111111115926223229P =⨯+⨯+⨯+⨯=, 所以每日学习积分不低于9分的概率为59.(2)由题意可知,随机变量ξ的所有可能取值为0,1,2,3. 由(1)知每个人积分不低于9分的概率为59. 则()3464=0=9729P ⎛⎫= ⎪⎝⎭ξ;()2135424080=1=C =99729243P ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ξ; ()22354300100=2=C =99729243P ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ξ;()35125=3=9729P ⎛⎫=⎪⎝⎭ξ.所以,随机变量ξ的概率分布列为所以6401237297297297293E =⨯+⨯+⨯+⨯=ξ. 所以,随机变量ξ的数学期望为53.4、【解析】 (1)①当时,,不等式成立.②假设当时不等式成立,即,那么.这就是说,当时不等式成立.根据①,②可知:对所有成立.(2)当时,由递推公式及(1)的结论有,两边取对数并利用已知不等式得,故,求和可得.由(1)知,,故有,而均小于,故对任意正整数,有.。

江苏省无锡市滨湖区梅村高级中学2020-2021学年高二上学期10月月考数学试题

江苏省无锡市滨湖区梅村高级中学2020-2021学年高二上学期10月月考数学试题

江苏省无锡市滨湖区梅村高级中学2020-2021学年高二上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( ) A .¬p :∀x ∈A ,2x ∉B B .¬p :∀x ∉A ,2x ∉B C .¬p :∃x ∉A ,2x ∈BD .¬p :∃x ∈A ,2x ∉B2.数列1,-3,5,-7,9,……的一个通项公式为( ) A .a n =2n -1B .a n =(-1)n (2n -1)C .a n =(-1)n +1(2n -1)D .a n =(-1)n (2n +1)3.已知数列{}n a 中,2539,,28a a ==且11n a ⎧⎫⎨⎬-⎩⎭是等差数列,则7a =( )A .109B .1011 C .1211D .13124.等差数列{}n a 中,公差不为0,若245,,a a a 成等比,则4735a a a a +=+( )A .14B .118C .1D .1或125.已知等差数列{}n a 的前n 项和为n S ,且1352=S ,数列{}n b 为等比数列,且77b a =,则113b b ⋅=( ) A .16B .8C .4D .26.已知数列{}n a 满足21212,0,1,2,n nn a n a a a a n --+⎧===⎨⨯⎩为奇数为偶数(n ≥3),则数列{}n a 的前10项和为( ) A .48B .49C .50D .617.数列{}n a 的通项公式cos ,2n n a n π=其前n 项和为n S ,则2012S 等于 A .1006B .2012C .503D .08.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为1c 的频率正好是中音c的2倍.已知标准音1a 的频率为440Hz,那么频率为的音名是( )A .dB .fC .eD .#d二、多选题 9.使不等式110x+>成立的一个充分不必要条件是( ) A .2x >B .0x ≥ C .1x <-或1x > D .10x -<<10.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n=+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .511.设正项等差数列{}n a 满足()211029220a a a a +=+,则( ) A .29a a 的最大值为10B .29a a +的最大值为C .222911a a +的最大值为15D .4429a a +的最小值为20012.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足:11a =,21a =,()*123,n n n a a a n n N --=+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则下列结论正确的是( )A .2111n n n n S a a a +++=+⋅ B .12321n n a a a a a +++++=-C .1352121n n a a a a a -++++=-D .()1214n n n n c c a a π--+-=⋅三、填空题13.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=______.14.已知0,0a b >>,若45a b ab ++=,则ab 的最大值是___.15.已知等比数列{}n a 的首项是1,公比为3,等差数列{}n b 的首项是5-,公差为1,把{}n b 中的各项按如下规则依次插入到{}n a 的每相邻两项之间,构成新数列{}n c :1a ,1b ,2a ,2b ,3b ,3a ,4b ,5b ,6b ,4a ,…,即在n a 和1n a +两项之间依次插入{}n b 中n 个项,则2018c =__________.(用数字作答)四、双空题16.若1x ,2x 是函数()()320,0f x x mx nx m n =-+>>的两个不同的零点,且1x ,2x ,-3这三个数适当排列后可以成等差数列,也可以适当排列后成等比数列,则m =__________,n =__________五、解答题17.已知数列{}n b 为等比数列,21n n b a n =+-,且15a =,215a =. (1)求{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .18.若关于x 的不等式22(21)0x a x a a -+++≤的解集为A ,不等式322x-≥的解集为B .(1)已知B 是A 的必要不充分条件,求实数a 的取值范围.(2)设命题p :22,(21)8x B x m x m m ∃∈+++->,若命题p 为假命题,求实数m的取值范围.19.甲乙两同学在复习数列时发现原来曾经做过一道数列问题,因纸张被破坏导致一个条件看不清,具体如下:等比数列{}n a 的前n 项和为n S ,已知__________. (1)判断4S 、3S 、5S 的关系; (2)若316a a -=,设31n nn b a -=,记{}n b 的前n 项和为n T ,证明:5n T <. 甲同学记得缺少的条件是首项1a 的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第一问的答案是4S 、3S 、5S 成等差数列.如果甲乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.20.已知数列{}n a 的前n 项和,n S 若对1,22n n n n N S a ++∀∈=-恒成立(1)求证:数列{}2n na为等差数列 (2)若不等式:223(5)n n n a λ--<-对n N +∀∈恒成立,求λ取值范围. 21.已知函数()12f x x x =--+. (Ⅰ)求不等式()f x x <的解集;(Ⅱ)记函数()f x 的最大值为M .若正实数a ,b ,c 满足1493a b c M ++=,求193c a cab ac--+的最小值. 22.设首项为1的正项数列{}n a 的前n 项和为,n S 数列2{}n a 的前n 项和为,n T 且24(),3n n S p T --=其中p 为常数.(1)求p 的值;(2)求证:数列{}n a 为等比数列; (3)证明:“数列12,2,2x y n n n a a a ++成等差数列,其中x 、y 均为整数”的充要条件是“x =1,且y =2”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省梅村高级中学2020-2021学年高三(上)
暑期检测卷数学
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要
求的.
1.已知集合{}0,1,2,4,6A =,{}
233n B n =∈<N ,则集合A B 的子集个数为( )
A .8
B .7
C .6
D .4
2.
212i
i
-=+( ) A .1
B .-1
C .i
D .i -
3.ABC 中,0AB BC ⋅>,则ABC 一定是( ) A .锐角三角形
B .直角三角形
C .钝角三角形
D .不确定
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则暑针与点A 处的水平面所成角为( )
A .20︒
B .40︒
C .50︒
D .90︒
5.已知函数(]2,,1
x
y x m n x -=∈+的最小值为0,则m 的取值范围是( ) A .()1,2
B .()1,2-
C .[)1,2
D .[)1,2-
6.已知()()()23f x m x m x m =-++,()42g x x =-,若对任意x ∈R ,()0f x <或()0g x <,则m 的取值范围是( ) A .7,2⎛⎫
-
+∞ ⎪⎝⎭
B .1,
4⎛
⎫-∞ ⎪⎝⎭
C .7,02⎛⎫
-
⎪⎝⎭
D .10,4⎛⎫ ⎪⎝⎭
7.4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰有2个空盒的放法有( ) A .144种
B .120种
C .84种
D .60种
8.圆()()212231:x C y -+-=,圆()()22
2:349C x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )
A .4
B 1
C .6-
D 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得5分,选错和漏选的得0分. 9.己知函数()2
361f x x x =--,则( )
A .函数()f x 在()2,3有唯一零点
B .函数()f x 在()1,-+∞上单调递增
C .当1a >时,若()
x f a 在[]1,1x ∈-上的最大值为8,则3a = D .当01a <<时,若()
x f a 在[]1,1x ∈-上的最大值为8,则13
a = 10.下列判断正确的是( )
A .若随机变量服从正态分布()
21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=
B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的必要不充分条件
C .若随机变量ξ服从二项分布:14,4B ξ
⎛⎫
⎪⎝⎭
,则()1E ξ= D .22am bm >是a b >的充分不必要条件
11.下图是函数()sin y x ωϕ=+的部分图像,则()sin x ωϕ+=( )
A .sin 3x π⎛⎫
+
⎪⎝

B .sin 23x π⎛⎫-
⎪⎝⎭
C .cos 26x π⎛

+
⎪⎝

D .5cos 26x π⎛⎫
-
⎪⎝⎭
12.下列选项中,p 是q 的必要不充分条件的是( )
A .:37p m <<;q :方程
22
173
x y m m +=--的曲线是椭圆.
B . :8p a ≥;q :对[]1,3x ∈不等式20x a -≤恒成立.
C .设{}n a 是首项为正数的等比数列, p :公比小于0;q :对任意的正整数n ,2120n n a a -+<.
D .已知空间向量()0,1,1a =-,(),0,1b x =-,:1p x =;q :向量a 与b 的夹角是3
π
. 三、填空题:本题共4小题,每小题5分,共20分.
13.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是______________.
14.设椭圆22
143
x y +=的焦点为1F ,2F ,点Р在椭圆上,若12PF F 是直角三角形,则12PF F 的面积为______________.
15.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于
AB .已知4AB =,6AC =,8BD =,CD =______________.
16.棱长为12的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点
均在一球的球面上,则正三棱锥E BCD -的体积为___________,该正三棱锥内切球的半径为___________.(第一空3分,第2空2分)
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.在公差为2的等差数列{}n a 中,11a +,22a +,34a +成等比数列.
(1)求{}n a 的通项公式;
(2)求数列{}
2n n a -的前n 项和n S .
18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin
sin 2
A C
a b A +=. (1)求B ;
(2)若ABC 为锐角三角形,且2c =,求ABC 面积的取值范围.
19.为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动,现从参加该活动
的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:[)40,50,[)50,60,
[)60,70,[)70,80,[)80,90,[]90,100,得到如图所示的频率分布直方图.
(1)求a 的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表); (2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优
秀”.请将下面的22⨯列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”.
参考公式及数据:()()()()()
2
2
n ad bc K a b c d a c b d -=++++,n a b c d =+++.
20.如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .
(1)证明:l ⊥平面PDC ;
(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.
21.已知抛物线2
4y x =,与圆()2
2:11F x y -+=,直线:4MN x my =+与抛物线相交于M ,N 两点.
(1)求证:OM ON ⊥.
(2)若直线MN 与圆F 相切,求OMN 的面积S . 22.(12分)
已知函数()2
ln 2,f x x a x x a =--∈R .
(1)若函数()f x 在()0,+∞内单调,求a 的取值范围; (2)若函数()f x 存在两个极值点1x ,2x ,求
()()
1212
f x f x x x +
的取值范围.。

相关文档
最新文档