初中八年级上册数学《探索勾股定理
合集下载
探索勾股定理(19张PPT)数学八年级上册

在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.
初中八年级上册数学《探索勾股定理》

2、图l一2,1-3中,A、B、C之间的面积之间有什么关系?
3、从图1一l、1一2、1一3中你发现了什么?
4、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?
小结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。
三、议一议,归纳定理
5、你能发现直角三角形三边长度之间的关系吗?
注意引导学生发现数字间的倍数关系
引导学生进一步发现勾股定理还可以用来解决其他图形的问题
以问题串的形式引导学生总结本节课的学习内容
检测与反馈
激发学生的探索欲望和学习热情
阅读,小组合作,获取有用信息,归纳
动手操作,数方格,并小组合作
引导学生从中发现不同的解题方法
计算并说明依据
观察前三组数据,小组合作发现规律
小组交流,解决问题
根据提供问题总结
独立完成
课题
1.1探索勾股定理
课型
新授
教学目标
知识目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。
能力目标:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力
(2)查阅与勾股定理与关的资料,了解勾股定理的其他证明方法。
出示投影,创设问题的情境,揭示课题。
引导学生了解勾股定理的内容和相关背景,
引导学生数格子,并交流不同的的解题方法
引导学生发现A + B=C
引导学生归纳勾股定理
3、从图1一l、1一2、1一3中你发现了什么?
4、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?
小结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。
三、议一议,归纳定理
5、你能发现直角三角形三边长度之间的关系吗?
注意引导学生发现数字间的倍数关系
引导学生进一步发现勾股定理还可以用来解决其他图形的问题
以问题串的形式引导学生总结本节课的学习内容
检测与反馈
激发学生的探索欲望和学习热情
阅读,小组合作,获取有用信息,归纳
动手操作,数方格,并小组合作
引导学生从中发现不同的解题方法
计算并说明依据
观察前三组数据,小组合作发现规律
小组交流,解决问题
根据提供问题总结
独立完成
课题
1.1探索勾股定理
课型
新授
教学目标
知识目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。
能力目标:让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力
(2)查阅与勾股定理与关的资料,了解勾股定理的其他证明方法。
出示投影,创设问题的情境,揭示课题。
引导学生了解勾股定理的内容和相关背景,
引导学生数格子,并交流不同的的解题方法
引导学生发现A + B=C
引导学生归纳勾股定理
北师大版八年级数学上册1.1《探索勾股定理》课件

c=
。
2.在△ABC中,∠C=90°,若c=13,ቤተ መጻሕፍቲ ባይዱ=12,则
a=
。
3.若直角三角形中,有两边长是3和4,则第三
边长的平方为( )
A 25 B 14 C 7 D 7或25
二、提高训练
4.一个长为10 m为梯子斜靠在墙上,梯子的顶端距
地面的垂直高度为8m,梯子的顶端下滑2 m后,底端
滑动
m.
5.已知Rt△ABC中,∠C=90°,若 a+b=14cm, c=10cm,则Rt△ABC的面积为( )
视察这三 个正方形
你发现图中三个正方形的面积之间 存在什么关系吗?
换个角度来看呢?
你发现了什么?
结论1 以等腰直角三角形两直角边为边长 的小正方形的面积的和,等于以斜边为边长的正 方形的面积.
分小组动手操作实践
用四张全等的等腰直角三角形纸片,拼成一个 正方形。(不能重叠,不能有间隙)
∵c2= 4×12 a2 ∴c2=2a2
(1)如果三角形的三边长分别为a,b,c,则 a2+b2=c2
( ×)
(2)如果直角三角形的三边长分别为a,b,c,则a2+b2=c2
( ×)
( 3) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 a+b=c
( ×)
(4) 如果直角三角形的三边长分别为a,b,c,且c为斜边,
则 b2=c2-a2
2002年国际数 学家大会会标 ——弦图.
四、课堂小结 定理内容
重要的 思想方 法及数 学思想
勾股 定理
从特殊 到一般、 数形结 合思想
定理运用
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界.
1.1.1探索勾股定理 北师大版数学八年级上册

121.52 + 68.52 ≈ 139.72
售货员没有搞错.
课堂小结
内容
直角三角形两直角边的平方和等于斜边的平方
勾
股
定
理
如果直角三角形两直角边分别为a,b,斜边为c,
字母表示
那么 a2 b2 c2
第一章 勾股定理
课程结束
北师大版八年级(初中)数学上册 授课老师:孙老师
C A
B
C Aa c
b B
(3)如果直角 三角形的两直角边 分别为 1.6 个单位 长度和 2.4 个单位 长度,上面所猜想 的数量关系还成立 吗?说明你的理由.
(每个小正方形的面积为单位 1)
1.6 2.4
直角三角形两直角边的平方和等于斜边的平
方,这就是著名的“勾股定理”.
如果用a,b和c分别表示直角三角形的两直角
第一章 勾股定理
1 探索勾股定理(1)
北师大版八年级(初中)数学上册 授课老师:孙老师
复习回顾 三角形
定义
由不在同一条直线上的三条线段首尾顺次 相接组成的平面图形.
角 三角形的内角和是 180°.
边 两边之和大于第三边,两边之差小于第三边.
直角 三角形
定义 有一个角是 90°的三角形是直角三角形.
角
直角三角形的两个锐角互余;两个锐角互余 的三角形是直角三角形.
边?
新课导入 我们知道,任意三角形的三条边必须满足定理:三角形 的两边之和大于第三边.
对于一些特殊的三角形,是否还存在其他特殊的关 系?
新知探究
(1)在纸上画若干个直角三角形,分别测量 它们的三条边,看看三边长的平方之间有怎样的 关系. 与同伴进行交流.
B
左图
北师大版八年级数学上册《探索勾股定理》课件(24张PPT)

勾是6, 62=36, 勾是5,
股是8, 82=64, 股是12,
弦一定是10;
102=100
62+82=102
弦一定是13,
52=25, 122=144, 132=169 52+122=132 等等. 是不是所有的直角三角形都有这个性质呢?世界上许
多数学家,先后用不同方法证明了这个结论. 我国把它称 为勾股定理.
正方形C的面积是__1_8__ 个单位面积.
(图中每个小方格代表1个单位面积)
C A
B
S正方形C 4 1 33 2
=18个单位面积
把正方形C分割成若干 个直角边为整数的三角 形来求
(图中每个小方格代表1个单位面积)
C A
B
S正方形C
1 2
62
=18个单位面积
把正方形C看成边长为 6的正方形面积的一半
第一章 勾股定理
1 探索勾股定理
1.经历探索勾股定理及验证勾股定理的过程,了解勾股 定理的探究方法及其内在联系. 2.掌握勾股定理,并能运用勾股定理解决一些实际问题.
这是1955年希腊为纪念一个数学学派发行的邮票.
P
C
A
Q
R B
如图,小方格的边长为1.
正方形P 正方形Q 正方形R 的面积 的面积 的面积
2
通过本课时的学习,需要我们掌握: 勾股定理: 直角三角形两直角边的平方和等于斜边的平方,即
a2 b2 c2
没有智慧的头脑,就像没有蜡烛的灯笼.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
八年级数学上册《探索勾股定理》教案、教学设计

-设计具有挑战性的延伸性问题,激发学生的探究欲望,为下一节课的学习打下基础。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。
2.7 探索勾股定理八年级上册数学浙教版

第2章 特殊三角形
2.7 探索勾股定理
学习目标
1.掌握勾股定理,了解勾股定理的证明过程.
2.会用勾股定理解决简单的几何问题和实际问题.
3.掌握勾股定理的逆定理.
4.会应用勾股定理的逆定理来判定直角三角形.
知识点1 勾股定理 重点
勾股定理
几何语言
变式
应用Βιβλιοθήκη 图示直角三角形两条直角边的平方和等于斜边的平方.
考点2 利用勾股定理的逆定理解决实际问题
典例5 (2021·玉林中考)如图,某港口 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点 , 处,且相距20海里,如果知道甲船沿北偏西 方向航行,则乙船沿____________方向航行.
典例1 在 中, , , 的对边长分别为 , , .
(1) 若 , , ,求 ;
解:(1) , , ,由勾股定理,得 . , .
, , .由勾股定理,得 ,解得 ( 舍去). .
(2) 若 , , ,求 ;
(3) 若 , ,求 .
(3)当 是斜边长时,由勾股定理,得 . , .当 是直角边长时,由勾股定理,得 . , .综上, 或 .
由图(1)得大正方形的面积 ,由图(2)得大正方形的面积 ,联立两式易得 .
续表
古印度的“无字证明”,单靠移动几个图形就直观地验证了勾股定理
典例2 一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种验证方法.如图所示,火柴盒倒下后,它的一个侧面 到了四边形 的位置,连结 , , ,设 , , .请利用四边形 的面积验证勾股定理: .
北偏东
解析:由题意可知, 海里, 海里, 海里. , 是直角三角形,且 .由题意知 , ,即乙船沿北偏东 方向航行.
2.7 探索勾股定理
学习目标
1.掌握勾股定理,了解勾股定理的证明过程.
2.会用勾股定理解决简单的几何问题和实际问题.
3.掌握勾股定理的逆定理.
4.会应用勾股定理的逆定理来判定直角三角形.
知识点1 勾股定理 重点
勾股定理
几何语言
变式
应用Βιβλιοθήκη 图示直角三角形两条直角边的平方和等于斜边的平方.
考点2 利用勾股定理的逆定理解决实际问题
典例5 (2021·玉林中考)如图,某港口 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点 , 处,且相距20海里,如果知道甲船沿北偏西 方向航行,则乙船沿____________方向航行.
典例1 在 中, , , 的对边长分别为 , , .
(1) 若 , , ,求 ;
解:(1) , , ,由勾股定理,得 . , .
, , .由勾股定理,得 ,解得 ( 舍去). .
(2) 若 , , ,求 ;
(3) 若 , ,求 .
(3)当 是斜边长时,由勾股定理,得 . , .当 是直角边长时,由勾股定理,得 . , .综上, 或 .
由图(1)得大正方形的面积 ,由图(2)得大正方形的面积 ,联立两式易得 .
续表
古印度的“无字证明”,单靠移动几个图形就直观地验证了勾股定理
典例2 一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种验证方法.如图所示,火柴盒倒下后,它的一个侧面 到了四边形 的位置,连结 , , ,设 , , .请利用四边形 的面积验证勾股定理: .
北偏东
解析:由题意可知, 海里, 海里, 海里. , 是直角三角形,且 .由题意知 , ,即乙船沿北偏东 方向航行.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
1
a bc
b a
c
c
c
a
a
b c b bc
b
a
a
c
a
c
b
三国时期数学家赵爽在
《周髀b算经》a作注时给出。2002年北京
世界数学家大会会标,既标志着中国古
代的数学成就,又像一只转动风车,欢
迎来自世界的数学家们。
2
a bc
b ca
ac b
cb a
c
a
a
b
c
b bb
c
a
a
c
大正方形面积(a+b)2 大正方形面积 c2
6千米/时 小明
因此 x2 = 122 + 52 = 169
x = 13
答:两队相距13千米。
7
飞机在空中水平飞
行,某一时刻刚好
飞到一个男孩头顶 正上方15千米处, 过了40秒,飞机距 离这个男孩头顶17 千米.飞机每时飞行 多少千米?
?
C
B
15
千 米
17千米
A
8
解:如所画示意图。 BC2=AB2 一AC2
商高就提出了“勾三、股四、弦五
a2 = c2_ b2 b2 = c2_ a2
” 的说法。 两千年前,希腊的毕达 c2 = a2+b2
哥拉斯学派证明了勾股定理,此定
理被世界上称为毕达哥拉斯定理。
4
( 口答):求出图中的x和S值
6x 8
解:X2=62+82=100 x=10
5 6
13 12 面积 S =15
BC2=172—152 =64 BC =8(千米) v=8÷40×3600 =720千米 /时 答:飞机每小时飞行 720千米。
?
C
B
15
千 米
17千米
A
9
与直角三角形有关的:
1、勾股定理:a2+b2=c2
2、角:直角三角形两锐角互余;
3、全等:HL B
a
c
C bA
10
11
12
个人观点供参考,欢迎讨论!
小正方形面积 c2 小正方形面积(b-a)2
4个三角形面积
4个三角形面积
½ ab×4
½ ab×4
这三者有什么关系?这三者有什么关系? 3
勾股定理
a2 + b2 = c2
B
直角三角形两直角边的 a
c
平方和等于斜边的平方 C b A
勾股世界
我国是最早了解勾股定理的国家之 一。早在三千多年前,周朝数学家
5
北 东
放假了,小明团队、小 小强 强团队相约去内蒙古草
?
原。某日早晨7时小明团
队先出发,6千米/时的速 度向东行走;1小时后小
6千米/时 小明
强团队出发,以5千米/时
的速度向北行进。上午9
时他们两队相距多远?
6
北 东
解:设两队相距x米。 小强
小明路程:
?
6 x 2 = 12千米
小强路程: 5 x 1 = 5千米